KR100270512B1 - The precess for the preparation of solid catalysts for olefin polymerization - Google Patents

The precess for the preparation of solid catalysts for olefin polymerization Download PDF

Info

Publication number
KR100270512B1
KR100270512B1 KR1019980010041A KR19980010041A KR100270512B1 KR 100270512 B1 KR100270512 B1 KR 100270512B1 KR 1019980010041 A KR1019980010041 A KR 1019980010041A KR 19980010041 A KR19980010041 A KR 19980010041A KR 100270512 B1 KR100270512 B1 KR 100270512B1
Authority
KR
South Korea
Prior art keywords
compound
solid catalyst
olefin polymerization
component
metal
Prior art date
Application number
KR1019980010041A
Other languages
Korean (ko)
Other versions
KR19990075692A (en
Inventor
강갑구
정영태
Original Assignee
서갑석
대한유화공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서갑석, 대한유화공업주식회사 filed Critical 서갑석
Priority to KR1019980010041A priority Critical patent/KR100270512B1/en
Publication of KR19990075692A publication Critical patent/KR19990075692A/en
Application granted granted Critical
Publication of KR100270512B1 publication Critical patent/KR100270512B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: A solid catalyst useful in the olefine polymerization process is provided to accomplish high polymerizing activity without requiring alternative treatment for removing residual catalysts by reacting the compounds including electron donor, in combination with metal and alkoxyl group, magnesium halide, alkyl metal compound, titanium halide derivative. CONSTITUTION: A solid catalyst used in the polymerization of olefins comprises the compound A having the VA or VIA family elements on the periodic table as the electron donor; the compound B having the combined material of IB-IVB family metals and the alkoxy group and magnesium halide C. The three compounds react together to form a semi-product under the semi-recrystallization process. The semi-product is added with the alkyl metallic compound D of formula M(R)n (wherein M=Mg, B, Al, Zn) to be fully semi-recrystalized and react with the titanium halide derivative E. The resultant product is washed with any suitable solvent to form the final solid catalyst product. Both of the compounds A and B is contained in an amount of 1x10¬-4 to 30 moles and 1x10¬-2 to 10 moles in terms of 1 mole of the compound C.

Description

[발명의 명칭][Name of invention]

올레핀 중합용 고체촉매의 제조방법Method for preparing solid catalyst for olefin polymerization

[발명의 상세한 설명]Detailed description of the invention

[발명의 목적][Purpose of invention]

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

본 발명은 반재결정법(半再結晶法, Semirecrystallization)을 이용한 올레핀 중합용 고체 촉매의 제조방법에 관한 것이다. 보다 상세히 설명하면 촉매 제조과정에서 촉매성분중의 하나인 고체성분이 완전히 용해되지 않고 일부분만 용해되어 재결정화가 일어나는 반재결정법에 의한 올레핀 중합용 고체 촉매의 제조방법에 관한 것이다. 올레핀 중합 촉매는 반응액 중 고체로 남아있는 불균일상 촉매와 반응액 중 용해되는 균일상 촉매로 대별되며 본 발명에서는 불균일상 촉매에 국한하기로 한다.The present invention relates to a method for producing a solid catalyst for olefin polymerization using semirecrystallization. In more detail, the present invention relates to a method for preparing a solid catalyst for olefin polymerization by a semi-recrystallization method in which a solid component, which is one of the catalyst components, is not completely dissolved but is partially dissolved in the catalyst manufacturing process so that recrystallization occurs. The olefin polymerization catalyst is roughly classified into a heterogeneous catalyst remaining as a solid in the reaction solution and a homogeneous catalyst dissolved in the reaction solution, and the present invention is limited to the heterogeneous catalyst.

올레핀 중합촉매의 조성은 지글러-낫타(Ziegler-Natta)형태의 중합 촉매, 전자주게 그리고 올레핀 단량체로 이루어진다. 이러한 촉매체계에 대한 종래기술로는 미국특허 4,107,413, 4,294,721, 4,439,540, 4,115,319, 4,220,554, 4,460,701, 4,562,173에 발표되어 있고, 프로필렌과 에틸렌의 중합에 대한 촉매체계에 관련된 특허도 많이 발표되어 있다.The composition of the olefin polymerization catalyst consists of a polymerization catalyst in the form of Ziegler-Natta, an electron donor and an olefin monomer. Conventional techniques for such catalyst systems are disclosed in US Pat. Nos. 4,107,413, 4,294,721, 4,439,540, 4,115,319, 4,220,554, 4,460,701, 4,562,173, and many patents relating to catalyst systems for the polymerization of propylene and ethylene have been published.

Ziegler-Natta형태의 중합 촉매는 기본적으로 알킬알루미늄과 착화합물화한 마그네슘 화합물에 지지된 티타늄할라이드로 구성되어 있다. 담체로서 사용되는 마그네슘 화합물에는 디클로로마그네슘, 디브로모마그네슘, 디아요드마그네슘, 클로로에톡시마그네슘, 디에톡시마그네슘 및 디부톡시마그네슘등과 같은 디알콕시마그네슘, 디에칠마그네슘 및 디부칠마그네슘등과 같은 디알킬마그네슘, 그리고 클로로하이드록시마그네슘과 디하이드록시마그네슘 등이 있다. 이들 중에서 현재 가장 많이 사용되고 있는 것으로는 디클로로마그네슘, 디에톡시마그네슘, 클로로하이드록시마그네슘, 디알킬마그네슘, 등으로 이들의 사용되어지는 방법도 다양하다. 이러한 여러가지 마그네슘 담체를 이용하여 촉매를 합성한 예로는 미국특허 4,218,339, 4,439,540, 4,115,319와 유럽특허 0,412,696, 0,412,750, 0,336,204 및 일본특허 4,142,306, 63,137,904, 4,222,804등에 발표되어 있다. 특히 디클로마그네슘과 디에톡시마그네슘등은 입자의 모양, 크기에 따라 합성된 촉매의 모양, 크기도 달라질 뿐만 아니라 중합된 고분자의 모양, 크기 및 입도 분포 등이 결정된다. 즉 불균일상 촉매계에서는 담체입자의 크기, 형태, 다공도등이 중합후 고분자의 크기 및 형태를 결정하게 되므로 담체 입자가 구형에 가까울수록 중합후 고분자의 벌크밀도(g/㎖)가 상승할 수 있으므로 상업적인 규모의 폴리올레핀의 생산능력에 직결되며, 또한 균일한 입도분포를 갖는 것도 중합장치의 생산능력과 이송등의 후처리의 관점에서 볼 때 매우 중요한 문제이다. 그래서 이들 마그네슘 화합물들을 분쇄 혹은 재결정등의 방법을 통해 미세하고 구형에 가까운 균일한 입자 모양을 갖도록 노력해 왔다.Ziegler-Natta type polymerization catalysts consist essentially of titanium halides supported on magnesium compounds complexed with alkylaluminum. Magnesium compounds used as carriers include, for example, dialkyl magnesiums such as dichloromagnesium, dibromo magnesium, diaiod magnesium, chloroethoxymagnesium, diethoxy magnesium, and dibutoxymagnesium, such as dialkoxymagnesium, diemagnesium and dibutylmagnesium. Magnesium, and chlorohydroxymagnesium and dihydroxymagnesium. Among the most widely used among them, dichloromagnesium, diethoxymagnesium, chlorohydroxymagnesium, dialkylmagnesium, and the like are variously used. Examples of synthesizing catalysts using various magnesium carriers are disclosed in US Pat. In particular, dichloromagnesium and diethoxy magnesium are not only varied in shape and size of the synthesized catalyst depending on the shape and size of particles, but also in shape, size and particle size distribution of the polymerized polymer. In other words, in the heterogeneous catalyst system, the size, shape, and porosity of the carrier particles determine the size and shape of the polymer after polymerization. As the carrier particles become spherical, the bulk density (g / ml) of the polymer after polymerization may increase. It is also important to have a uniform particle size distribution, which is directly connected to the production capacity of polyolefins of scale, from the standpoint of post-treatment such as production capacity and transfer of the polymerization apparatus. Therefore, these magnesium compounds have been tried to have a fine and nearly spherical uniform particle shape by grinding or recrystallization.

분쇄에 의한 방법은 분쇄기의 종류, 분쇄시간등의 변수에 따라 마그네슘 화합물들의 형태 및 크기가 좌우되기 때문에 이러한 조건들을 잘 고려하여 올레핀의 종류, 채택된 중합의 형태에 맞게 숙련된 기술자들에 의해 적절하게 선택될 수 있다. 이런 분쇄를 통한 촉매합성의 예로는 미국 특허 4,777,216, 4,487,845, 4,156,063, 4,576,994등에 발표되었다.Since the type and size of magnesium compounds depend on variables such as the type of grinder and the grinding time, the method of milling is appropriate for the type of olefin and the type of polymerization adopted by those skilled in the art. Can be chosen. Examples of catalytic synthesis through such grinding are disclosed in US Pat. Nos. 4,777,216, 4,487,845, 4,156,063, 4,576,994 and the like.

일반적으로 마그네슘 화합물들은 용해도 차이에 의한 용매법, 온도차 및 감압 건조등에 의해 개결정화하여 얻을 수 있다. 이 경우 용매의 선택이 중요한 부분을 차지하며, 동시에 미국 특허 4,469,648에는 클로로마그네슘과 에탄올을 반응시켜 얻은 용액을 재결정화하는데 온도, 유속, 유량 등이 잘 조절되어야만 원하는 형태 및 크기(직경이 1~5,000마이크론 범위의 구형입자)를 가진 마그네슘 화합물을 얻을 수 있다고 발표하였다. 그러나 이런 재결정화 방법에는 액상으로 부터의 고체 마그네슘 화합물들의 분리 및 건조등의 문제를 안고 있으며 또 다른 예들은 미국특허 3,308,221, 3,389,194, 4,042,374, 4,946,816, 5,223,466, 5,124,297등에 발표되었다.In general, magnesium compounds can be obtained by crystallization by solvent method, temperature difference, and drying under reduced pressure by solubility difference. In this case, the choice of solvents plays an important part, and at the same time, U.S. Patent 4,469,648 recrystallizes a solution obtained by reacting chloromagnesium and ethanol. It is reported that magnesium compounds with spherical particles in the micron range can be obtained. However, this recrystallization method has problems such as separation and drying of solid magnesium compounds from the liquid phase, and other examples are disclosed in US Pat.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

본 발명에서의 담체로 사용되는 마그네슘 화합물의 변형(modification)방법은 반재결정화 방식으로써 완전한 균일상 용액이 아닌 불균일상 용액을 부분적으로 결정화함으로써 입자 조절을 다양화할 수 있다. 재결정법은 완전한 균일상 용액으로 부터 고체를 석출시키므로 온도, 속도, 용매등에 영향을 많이 받으나 본 발명에서의 반재결정법은 일부 균일상 용액을 포함하는 불균일상 용액으로부터 고체를 석출시키기 때문에 재결정방법과 같이 외부조건에 크게 영향을 받지 않으나 불균일상 용액으로부터 촉매 입자가 조절된 고체를 얻기 위해서는 입자를 조절할 수 있는 성분 혹은 인자가 필요하다. 첫번째 성분은 전자주게(electron donor)를 함유하는 원소(주기율표 제VA 및 VIA족 원소)로 구성된 알코올 유도체(ROH, RSH등), 아민과 인 유도체(RNH2, R2NH, R3N, R3P등), 에테르 유도체(ROR, RSR등) 혹은 산 유도체(RCOOH, RCOSH)등의 화합물(A)로서 R은 탄소원자수 1내지 20개를 가지는, 바람직하게는 1내지 10개를 가지는 알킬 아릴 혹은 사이클로알킬기를 나타낸다. 두 번째 성분은 알콕시기를 함유하는 주기율표 제IB~IVB족의 금속화합물(B)로서 일반식 M(OR)n(M은 주기율표 제IB~IVB족의 금속을 나타내고 R는 탄소원자수 1내지 16개, 바람직하게는 1내지 10개를 가지는 알킬, 아릴 혹은 사이클로알킬기를 나타내며, 그리고 n은 금속(M)의 원자가를 표시한다)으로 나타낸다. 본 발명은 전자 주게를 함유하는 화합물, 금속과 알콕시기가 조합된 금속화합물, 마그네슘할라이드, 알킬금속화합물, 티타늄 할라이드 유도체를 반응시켜 고체 촉매를 얻고 이를 폴리 올레핀의 제조에 사용하여 중합체의 입자 형상과 크기 및 벌크 밀도를 향상시키며 제조공정을 단순화는데 있다.The modification method of the magnesium compound used as a carrier in the present invention is a semi-recrystallization method, which can diversify particle control by partially crystallizing a heterogeneous solution rather than a complete homogeneous solution. The recrystallization method is highly influenced by temperature, velocity, solvent, etc. because it precipitates solids from the complete homogeneous solution, but the anti-crystallization method of the present invention recrystallizes solids from heterogeneous solution containing some homogeneous solution. In order to obtain a solid in which the catalyst particles are controlled from the heterogeneous solution as described above, the components or factors capable of controlling the particles are required. The first component is an alcohol derivative (ROH, RSH, etc.) consisting of elements containing electron donors (groups VA and VIA elements of the periodic table), amine and phosphorus derivatives (RNH 2 , R 2 NH, R 3 N, R 3 P and the like), ether derivatives (ROR, RSR, etc.) or acid derivative (RCOOH, RCOSH) as the compound (a), such as R is a having 1 to 20 carbon atoms, preferably an alkyl aryl group having from 1 to 10 Or a cycloalkyl group. The second component is a metal compound (B) of group IB-IVB of the periodic table containing an alkoxy group, represented by the general formula M (OR) n (M represents a metal of group IB-IVB of the periodic table, R is 1-16 carbon atoms, Preferably an alkyl, aryl or cycloalkyl group having 1 to 10, and n represents the valence of the metal (M). The present invention provides a solid catalyst by reacting a compound containing an electron donor, a metal compound having a metal and an alkoxy group, a magnesium halide, an alkyl metal compound, and a titanium halide derivative, which is used to prepare a polyolefin, and thus the particle shape and size of the polymer. And to improve bulk density and simplify the manufacturing process.

[발명의 구성 및 작용][Configuration and Function of Invention]

본 발명의 고체 촉매 및 폴리올레핀의 제조과정을 간략히 설명하자면 다음과 같다.A brief description of the process of preparing the solid catalyst and the polyolefin of the present invention is as follows.

본 발명에서의 촉매 입자를 조절할 수 있는 전자주게를 함유하는 화합물(A)와 알콕시기를 함유하는 금속화합물(B)이 각자 독립적으로 작용하는 것이 아니라 공유관계 즉, 착화합물 형태를 취하면서 촉매 입자를 조절하며 그 대표적인 반응식은 아래와 같다.In the present invention, the compound (A) containing the electron donor that can control the catalyst particles and the metal compound (B) containing the alkoxy group do not act independently of each other, but control the catalyst particles while taking a covalent relationship, that is, complex form. The typical reaction is as follows.

이들 알콕시 금속 화합물(B)과 전자주게 화합물(A)은 상기 식에서와 같이 평형을 유지하면서 고체촉매로 사용되는 할로 마그네슘 담체(C)와 반응을 하여 담체를 변형(modification)시키게 되며 아래 몇 가지 반응식으로 표시할 수 있다.These alkoxy metal compounds (B) and electron donor compounds (A) react with the halo magnesium carrier (C) used as a solid catalyst while maintaining equilibrium as in the above formula to modify the carrier. Can be displayed as

본 발명에 의한 올레핀 중합용 고체촉매는 다음성분들의 조합과 반응에 의해 제조된다.The solid catalyst for olefin polymerization according to the present invention is prepared by the combination and reaction of the following components.

(A) 전자 주게를 함유하는 화합물(A) a compound containing an electron donor

주기율표 제VA 및 VIA족의 원소로 구성된 알코올 유도체(ROH, RSH등), 아민과 인 유도체(RNH2, R2NH, R3N, R3P등), 에테르 및 설파이드 유도체(ROR, RSR등), 혹은 산 유도체(RCOOH, RCOSH등)들로서 R은 탄소 원자수 1내지 20개, 바람직하게는 1개 내지 10개를 가지는 알킬, 아릴 혹은 사이클로알킬기를 나타낸다. 예를 들면 알코올류로는 메탄올, 메탄티올, 에탄올, 에탄티올, 아이소프로판올, 아이소프로판티올, 노르말프로판올, 노르말프로판티올, 노르말부탄올, 노르말부탄티올, 아이소부탄올, 아이소부탄티올, 헥산올, 헥산티올, 옥탄올, 옥탄티올, 2-에틸헥산올, 에틸렌글리콜, 글리세롤등이고 아민과 인 유도체로는 메틸아민, 디메틸아민, 트리메틸아민, 트리메틸포스핀, 트리메틸포스파이트, 에틸아민, 디에틸아민, 트리에틸아민, 트리에틸포스핀, 트리에틸포스파이트, 부틸아민, 디부틸아민, 트리부틸포스핀, 트리부틸포스파이트등이며 에테르 및 설파이드 유도체로는 디메틸에테르, 디메틸설파이드, 디에틸에테르, 디에틸설파이드, 디아이소아밀에테르, 디아이소아밀설파이드등이고 산유도체로는 아세트산, 부탄산, 티오벤젠산등이 있다.Alcohol derivatives composed of elements of Groups VA and VIA (ROH, RSH, etc.), amine and phosphorus derivatives (RNH 2 , R 2 NH, R 3 N, R 3 P, etc.), ether and sulfide derivatives (ROR, RSR, etc.) Or, as acid derivatives (RCOOH, RCOSH, etc.), R represents an alkyl, aryl or cycloalkyl group having 1 to 20, preferably 1 to 10, carbon atoms. For example, alcohols include methanol, methanethiol, ethanol, ethanethiol, isopropanol, isopropanethiol, normal propanol, normal propane thiol, normal butanol, normal butane thiol, isobutanol, isobutanthiol, hexanol and hexanethiol , Octanol, octane thiol, 2-ethylhexanol, ethylene glycol, glycerol, and the like.Amine and phosphorus derivatives include methylamine, dimethylamine, trimethylamine, trimethylphosphine, trimethylphosphite, ethylamine, diethylamine and triethyl Amine, triethylphosphine, triethylphosphite, butylamine, dibutylamine, tributylphosphine, tributylphosphite and the like, and ether and sulfide derivatives include dimethyl ether, dimethyl sulfide, diethyl ether, diethyl sulfide, Diisoamyl ether, diisoamyl sulfide and the like, and acid derivatives include acetic acid, butanoic acid and thiobenzene acid.

(B) 알콕시기를 함유하는 금속화합물(B) a metal compound containing an alkoxy group

주기율표 제IB~IVB족의 금속과 여러 가지 알콕시기가 조합된 화합물로서 일반식 M(OR')n(M은 주기율표 제IB~IVB족의 금속을 나타내고 R'는 탄소원자수 1내지 16개, 바람직하게는 1내지 10개를 가지는 알킬, 아릴 혹은 사이클로알킬기를 나타내며, 그리고 n은 금속(M)의 원자가를 표시한다)으로 나타낸다. 예를 들면 디에톡시징크, 테트라메톡시티타늄, 테트라에톡시티타늄, 테트라아이소프로폭시티타늄, 테트라노말부톡시티타늄, 테트라(2-에틸헥실록시)티타늄, 클로로트리에톡시티타늄, 디클로로디에톡시티타늄, 디브로모디에톡시티타늄, 디브로모디아이소프로폭시티타늄, 테트라에톡시지르코늄, 테트라노말부톡시지르코늄등이 있다.A compound in which a metal of Groups IB to IVB of the periodic table is combined with various alkoxy groups is represented by the general formula M (OR ') n (M represents a metal of Groups IB to IVB of the periodic table, and R' is 1 to 16 carbon atoms, preferably Represents an alkyl, aryl or cycloalkyl group having 1 to 10, and n represents the valence of the metal (M). For example, diethoxy zinc, tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxytitanium, tetranormal butoxytitanium, tetra (2-ethylhexyloxy) titanium, chlorotriethoxytitanium, dichlorodiethoxytitanium And dibromo diethoxy titanium, dibromodiaisopropoxytitanium, tetraethoxy zirconium, tetranormal butoxy zirconium and the like.

(C) 마그네슘 할라이드(C) magnesium halide

본 발명에서의 마그네슘할라이드는 일반식 MgX2로 표시되고 X는 할로겐원소이며 X가 다른 치환기에 의해 치환되는 MgX(OR)식으로 표시 가능하며 여기서 R은 탄소원자수 1내지 10개, 바람직하게는 1내지 5개를 가지며 혹은 R이 수소일 경우도 있다. 예를 들면 디플르오르마그네슘, 디클로로마그네슘, 디브로모마그네슘, 디아요드마그네슘, 클로로하이드록시마그네슘, 클로로에톡시마그네슘, 클로로메톡시마그네슘등이 있다.Magnesium halide in the present invention is represented by the general formula MgX 2 and X is a halogen element and X can be represented by MgX (OR) substituted by another substituent, where R is 1 to 10 carbon atoms, preferably 1 To 5 or R may be hydrogen. For example, difluoromagnesium, dichloromagnesium, dibromomagnesium, diaiod magnesium, chlorohydroxymagnesium, chloroethoxymagnesium, chloromethoxymagnesium, etc. are mentioned.

(D) 알킬 금속화합물(D) alkyl metal compounds

일반식 M(R)n로 표시되며 M은 Mg, B, Al, Zn등이고 n은 금속원자가 이며 R은 탄소원자수 1내지 20개, 바람직하게는 1내지 10개를 가지는 알킬기이다. 그리고 R에 산소가 삽입된 알콕시 형태도 존재하며 R대신에 할로겐 혹은 수소가 치환된 경우도 있다. 예를 들면 부틸에틸마그네슘, 디노르말 헥실마그네슘, 트리메틸알루미늄, 메틸알루미녹산, 디에틸알루미늄브로마이드, 디에틸알루미늄클로라이드, 디에틸알루미늄아요다이드, 디에틸알루미늄에톡사이드, 디에틸알루미늄하이드라이드, 디에틸징크, 트리에틸보란, 에틸알루미늄세스퀴클로라이드, 디아이소부틸알루미늄클로라이드, 디아이소부틸알루미늄에톡사이드, 디아이소부틸알루미늄하이드라이드, 트리아이소부틸보란, 트리아이소부틸알루미늄, 트리노르말헥실알루미늄, 트리노르말옥틸알루미늄, 트리노르말옥틸보란등이 있다.It is represented by the general formula M (R) n , M is Mg, B, Al, Zn and the like, n is a metal atom and R is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. There is also an alkoxy form in which oxygen is inserted in R, and in some cases halogen or hydrogen is substituted for R. For example, butyl ethyl magnesium, dinormal hexyl magnesium, trimethyl aluminum, methyl aluminoxane, diethyl aluminum bromide, diethyl aluminum chloride, diethyl aluminum iodide, diethyl aluminum ethoxide, diethyl aluminum hydride, di Ethyl zinc, triethyl borane, ethyl aluminum sesquichloride, diisobutyl aluminum chloride, diisobutyl aluminum ethoxide, diisobutyl aluminum hydride, triisobutyl borane, triisobutyl aluminum, trinormal hexyl aluminum, tri Normal octyl aluminum, and trinormal mal octyl borane.

(E) 티타늄할라이드 유도체(E) titanium halide derivatives

일반식 Ti(OR)4-nXn로 표시되며 R은 탄소원자수 1내지 10개를 가지는 알킬기이며 X는 할로겐 원자이고 n은 티타늄의 원자가를 만족하는 0<n4이다. 몇 가지 예를 들면 테트라브로모티타늄, 테트라클로로티타늄, 트리클로로에톡시티타늄, 디클로로디에톡시티타늄, 클로로테트라에톡시티타늄, 클로로노르말트리부톡시티타늄, 트리브로모에톡시티타늄, 디클로로에톡시부톡시티타늄 등이 있다.General formula Ti (OR) 4-n X n wherein R is an alkyl group having 1 to 10 carbon atoms, X is a halogen atom and n is 0 <n satisfying the valence of titanium 4 Some examples include tetrabromotitanium, tetrachlorotitanium, trichloroethoxytitanium, dichlorodiethoxytitanium, chlorotetraethoxytitanium, chloronormaltributoxytitanium, tribromoethoxytitanium, dichloroethoxybutoxytitanium Etc.

본 발명에서 촉매의 제조는 탄소원자수 5내지 12개를 가지는 적당한 탄화수소를 용매로 선택하여 마그네슘 할라이드(C)와 주기율표 제 VA 및 VIA족의 원소로 구성된 전자주게 화합물 (A) 및 주기율표 제 IB~IVB족의 금속에 알콕시기가 조합된 금속 알콕사이드(B)가 적당한 온도 범위(30℃~150℃)에서 화학적인 반응에 의해 반재결정화를 위한 과정이 진행되면서 마그네슘 할라이드(C)의 입자가 변형된다. 상기의 (A), (B), (C)의 혼합물(a)에 알킬금속 화합물(D) 혹은 알킬금속화합물(D)의 혼합물을 적하시키면 완전한 반재결정화 과정이 일어나면서 변형된 마그네슘 할라이드의 결정이 석출된다. 변형된 마그네슘할라이드 고체를 상기의 적당한 탄화수소로 불순물이 없어질 때까지 세척한 후 티타늄 할라이드 유도체(E)와 반응시켜 최종의 고체 촉매를 얻을 수 있다.In the present invention, the catalyst is prepared by selecting a suitable hydrocarbon having 5 to 12 carbon atoms as a solvent, an electron donor compound (A) composed of magnesium halide (C) and elements of Groups VA and VIA of the periodic table, and IB to IVB of the periodic table. As the metal alkoxide (B) in which the alkoxy group is combined with the metal of the group is subjected to a semirecrystallization by chemical reaction in the appropriate temperature range (30 ° C. to 150 ° C.), the particles of the magnesium halide (C) are deformed. When a mixture of alkyl metal compound (D) or alkyl metal compound (D) is added dropwise to the mixture (a) of (A), (B), and (C) above, Crystals precipitate. The modified magnesium halide solid may be washed with the appropriate hydrocarbons until the impurities are free and then reacted with the titanium halide derivative (E) to obtain the final solid catalyst.

본 발명에서 중합에 사용되는 단량체는 일반식 RC2H3인 α-올레핀으로서 R은 수소 혹은 탄소 원자수 1개 내지 16개, 바람직하게는 1개 내지 10개를 가진다. 예를 들면 에틸렌, 프로필렌, 1-부텐, 1,3-부타디엔, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐 등을 들 수 있다. 또한 상기의 α-올레핀 단량체의 호모중합(Homopolymerization) 뿐만 아니라 두성분 이상의 단량체 혼합물을 이용한 공중합(Copolymerization)도 가능하다. 특히 에틸렌 또는 에틸렌과 에틸렌 이외의 상기 α-올레핀과의 혼합물을 사용 것이 제일 적당하다. α-올레핀류의 중합은 소위 지글러법의 일반적인 방법으로 실시된다. 즉 연속식 혹은 벳치식(batch type)으로 온도는 20℃~200℃로 특히 슬러리상일때는 50℃~100℃로 용액상일때는 120℃~160℃로 중합을 행한다. 중합 압력은 1~100㎏/㎠, 바람직하게는 1~40㎏/㎠ 범위가 적당하다.The monomer used for the polymerization in the present invention is an α-olefin having the general formula RC 2 H 3 and R has hydrogen or 1 to 16 carbon atoms, preferably 1 to 10 carbon atoms. For example, ethylene, propylene, 1-butene, 1,3-butadiene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, etc. are mentioned. In addition, homopolymerization of the α-olefin monomers as well as copolymerization using a monomer mixture of two or more components is possible. It is particularly suitable to use ethylene or a mixture of ethylene and the above α-olefins other than ethylene. Polymerization of alpha -olefins is performed by the general method of what is called a Ziegler method. That is, the polymerization is carried out in a continuous or batch type (temperature of 20 ℃ ~ 200 ℃, especially in the slurry phase 50 ℃ ~ 100 ℃, in the solution phase 120 ℃ ~ 160 ℃. The polymerization pressure is in the range of 1 to 100 kg / cm 2, preferably in the range of 1 to 40 kg / cm 2.

본 발명에서의 중합은 반재결정의 과정에 의해 제조된 고체 마그네슘-티타늄 촉매로 2ℓ들이 스텐레스강 고압 반응기를 질소로 충분히 치환시킨 후 질소 기류하에 용매는 노르말 헥산을 이용(슬러리 중합법)하고 조촉매로는 알킬 알루미늄을 적당히 선택하여 단량체의 압력을 1~15㎏/㎠, 온도는 20℃~100℃ 사이에서 행한다. 그리고 중합체의 분자량은 수소를 사용하여 조절할 수 있다.The polymerization in the present invention is a solid magnesium-titanium catalyst prepared by the process of semi-recrystallization, after sufficiently replacing the 2 L stainless steel high pressure reactor with nitrogen, the solvent is normal hexane under a nitrogen stream (slurry polymerization method) and a cocatalyst. The furnace is suitably selected from alkyl aluminum, and the pressure of the monomer is carried out between 1 to 15 kg / cm 2 and the temperature between 20 ° C and 100 ° C. And the molecular weight of the polymer can be adjusted using hydrogen.

다음의 실시 예는 본 발명을 보다 상세히 설명하기 위한 것으로서 이들 실시예가 본 발명의 기술적 범위를 한정하는 것은 아니다.The following examples are intended to illustrate the present invention in more detail, and these examples do not limit the technical scope of the present invention.

[실시예 1]Example 1

(a) 촉매 제조(a) preparation of catalyst

질소 기류하에 자석 교반기와 응축기, 온도감지기가 장착된 1ℓ크기의 4구 환저 플라스크에 데칸 100㎖와 마그네슘클로라이드 4g을 넣고 수 분간 교반시킨 후 에탄올 5.8g과 티타늄테트라에톡사이드 28.7g을 넣고 온도를 95℃까지 승온시킨 후 2시간동안 반응시킨다. 반응이 끝난 후 불균일 상태의 반응 혼합물을 상온까지 냉각하여 디에틸알루미늄클로라이드 15.2g을 노르말 헥산 100㎖에 희석시켜 2시간동안 적하시키면 용해된 일부 고체가 완전히 석출된다. 반응을 완결시키기 위해 상온에서 서서히 가열하여 1시간정도 환류시켜 정치하고, 상등액을 질소 가압하에 제거하여 노르말 헥산 200㎖를 넣어 고체성분을 교반, 정치, 상등액제거의 순서로 세정한 후 노르말 헥산 200㎖와 티타늄테트라 클로라이드 20g을 넣고 70℃까지 승온시켜 2시간동안 환류시킨다. 환류후 정치시켜 질소 가압하에 상등액을 제거하고 상등액에 염소이온이 검출되지 않을 때까지 노르말 헥산으로 세정하고 30~40℃에서 건조시켜 고체 촉매를 얻는다.In a 1 liter four-necked round bottom flask equipped with a magnetic stirrer, a condenser, and a temperature sensor under nitrogen stream, 100 ml of decane and 4 g of magnesium chloride were stirred for several minutes, followed by 5.8 g of ethanol and 28.7 g of titanium tetraethoxide. After raising the temperature to 95 ° C., the reaction was carried out for 2 hours. After completion of the reaction, the heterogeneous reaction mixture was cooled to room temperature, 15.2 g of diethylaluminum chloride was diluted in 100 ml of normal hexane, and added dropwise for 2 hours to completely precipitate some dissolved solids. To complete the reaction, the mixture was slowly heated at room temperature and refluxed for about 1 hour. The supernatant was removed under nitrogen pressure, 200 ml of normal hexane was added, the solids were washed in the order of stirring, standing, and removing the supernatant, followed by 200 ml of normal hexane. 20 g of titanium tetrachloride was added thereto, and the mixture was heated to 70 ° C. and refluxed for 2 hours. After refluxing, the mixture was left to stand under pressure under nitrogen to remove the supernatant, washed with normal hexane until no chlorine ion was detected in the supernatant, and dried at 30 to 40 ° C. to obtain a solid catalyst.

(b) 중합(b) polymerization

2ℓ크기 스텐레스강 고압반응기(autoclave)를 질소로 충분히 치환시킨 후 질소 기류하에서 노르말 헥산 900㎖를 넣고 트리아이소부칠알루미늄 0.6g을 넣어 수 분간 교반한다. 실시예 (a)에서 제조한 고체 촉매 4㎎을 넣고 질소로 충진된 반응기에서 진공펌프를 이용하여 불활성기체를 제거한 후 수소를 4㎏/㎠가하고 온도를 65℃까지 승온시켜 에틸렌을 가하면서 중합을 시작하여 에틸렌의 압력을 7㎏/㎠로 하고 전체 압력을 11㎏/㎠로, 중합온도는 70℃로 유지하면서 1시간동안 중합을 한다. 중합이 끝나면 미반응 기체는 서서히 배출시킨 후 반응조를 개방하여 슬러리 분말을 여과하고 분말은 40℃진공에서 24시간동안 건조시킨다. 건조하여 얻은 고분자 분말은 182g으로 촉매활성은 45,500(g-고분자/g-촉매), 벌크밀도는 0.21(g/㎖), 고분자 분말의 평균입경은 250㎛이었다. 그리고 고분자 분말의 입도분포 및 중합 결과를 표 1에 정리하였다.After sufficiently replacing the 2 L stainless steel autoclave with nitrogen, 900 mL of normal hexane was added under nitrogen stream, and 0.6 g of triisobutyluminum was added thereto, followed by stirring for several minutes. 4 mg of the solid catalyst prepared in Example (a) was added and the inert gas was removed using a vacuum pump in a reactor filled with nitrogen. Then, the polymerization was carried out while adding 4 kg / cm 2 of hydrogen and raising the temperature to 65 ° C. and adding ethylene. The polymerization is started for 1 hour while the pressure of ethylene is 7 kg / cm 2, the total pressure is 11 kg / cm 2, and the polymerization temperature is 70 ° C. After the polymerization is completed, the unreacted gas is slowly discharged, the reactor is opened, the slurry powder is filtered, and the powder is dried in a vacuum at 40 ° C. for 24 hours. The polymer powder obtained by drying was 182 g, the catalytic activity was 45,500 (g-polymer / g-catalyst), the bulk density was 0.21 (g / ml), and the average particle diameter of the polymer powder was 250 µm. The particle size distribution and polymerization results of the polymer powder are summarized in Table 1.

[실시예 2]Example 2

촉매 제조 과정(a)에서 에탄올 대신에 아이소프로판올 7.6g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 172g으로 촉매 활성은 43000(g-고분자/g-촉매), 벌크 밀도는 0.21(g/㎖), 고분자 분말의 평균입경은 250㎛이었다.Except for using 7.6 g of isopropanol instead of ethanol in the catalyst preparation process (a), the polymer powder obtained in the same manner as in Example 1 was 172 g, and the catalytic activity was 43000 (g-polymer / g-catalyst), and the bulk density. Was 0.21 (g / ml) and the average particle diameter of the polymer powder was 250 µm.

[실시예 3]Example 3

촉매 제조 과정(a)에서 에탄올 대신에 노르말부탄올 9.3g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 176g으로 촉매 활성은 44000(g-고분자/g-촉매), 벌크 밀도는 0.23(g/㎖), 고분자 분말의 평균입경은 240㎛이었다.Except for using 9.3 g of normal butanol instead of ethanol in the catalyst preparation process (a), the polymer powder obtained in the same manner as in Example 1 was 176 g, and the catalytic activity was 44000 (g-polymer / g-catalyst), and the bulk density Was 0.23 (g / ml) and the average particle diameter of the polymer powder was 240 µm.

[실시예 4]Example 4

촉매 제조 과정(a)에서 에탄올 대신에 2-에틸헥산올 16.4g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 188g으로 촉매 활성은 4700(g-고분자/g-촉매), 벌크 밀도는 0.23(g/㎖), 고분자 분말의 평균입경은 240㎛이었다.Except that 16.4 g of 2-ethylhexanol was used instead of ethanol in the catalyst preparation process (a), the polymer powder obtained in the same manner as in Example 1 was 188 g, and the catalytic activity was 4700 (g-polymer / g-catalyst). The bulk density was 0.23 (g / ml) and the average particle diameter of the polymer powder was 240 µm.

[실시예 5]Example 5

촉매 제조 과정(a)에서 티타늄테트라에톡사이드 대신에 티타늄테트라부톡사이드 42.9g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 168g으로 촉매 활성은 42000(g-고분자/g-촉매), 벌크 밀도는 0.23(g/㎖), 고분자 분말의 평균입경은 250㎛이었다.In the catalyst preparation process (a), except that 42.9 g of titanium tetrabutoxide was used instead of titanium tetraethoxide, the polymer powder obtained in the same manner as in Example 1 was 168 g, and the catalytic activity was 42000 (g-polymer / g). -Catalyst), the bulk density was 0.23 (g / ml), and the average particle diameter of the polymer powder was 250 µm.

[실시예 6]Example 6

촉매 제조 과정(a)에서 티타늄테트라에톡사이드 대신에 티타늄테트라아이소프로폭사이드 35.8g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 179g으로 촉매 활성은 44800(g-고분자/g-촉매), 벌크 밀도는 0.26(g/㎖), 고분자 분말의 평균입경은 270㎛이었다.In the catalyst preparation process (a), except that 35.8 g of titanium tetraisopropoxide was used instead of titanium tetraethoxide, the polymer powder obtained in the same manner as in Example 1 was 179 g, and the catalytic activity was 44800 (g-polymer). / g-catalyst), bulk density was 0.26 (g / ml), and the average particle diameter of the polymer powder was 270 µm.

[실시예 7]Example 7

촉매 제조 과정(a)에서 디에틸알루미늄클로라이드 대신에 트리에틸알루미늄 14.4g을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 129g으로 촉매 활성은 32200(g-고분자/g-촉매), 벌크 밀도는 0.22(g/㎖), 고분자 분말의 평균입경은 430㎛이었다.Except for using 14.4 g of triethylaluminum instead of diethylaluminum chloride in the catalyst preparation process (a), the polymer powder obtained in the same manner as in Example 1 was 129 g, and the catalytic activity was 32200 (g-polymer / g-catalyst). ), The bulk density was 0.22 (g / ml), and the average particle diameter of the polymer powder was 430 µm.

[실시예 8]Example 8

촉매 제조 과정(a)에서 디에틸알루미늄클로라이드 대신에 트리아이소부틸알루미늄 25g을 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 117g으로 촉매 활성은 29200(g-고분자/g-촉매), 벌크 밀도는 0.26(g/㎖), 고분자 분말의 평균입경은 410㎛이었다.In the catalyst preparation process (a), except that 25 g of triisobutylaluminum was used instead of diethylaluminum chloride, the polymer powder obtained in the same manner as in Example 1 was 117 g, and the catalytic activity was 29200 (g-polymer / g-catalyst). The bulk density was 0.26 (g / ml) and the average particle diameter of the polymer powder was 410 µm.

[실시예 9]Example 9

촉매 제조 과정(a)에서 디에틸알루미늄클로라이드 대신에 에틸알루미늄디클로라이드 16g을 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 166g으로 촉매 활성은 41500(g-고분자/g-촉매), 벌크 밀도는 0.26(g/㎖), 고분자 분말의 평균입경은 350㎛이었다.Except for using 16 g of ethyl aluminum dichloride instead of diethyl aluminum chloride in preparing the catalyst (a), the polymer powder obtained in the same manner as in Example 1 was 166 g, and the catalytic activity was 41500 (g-polymer / g-catalyst). The bulk density was 0.26 (g / ml) and the average particle diameter of the polymer powder was 350 µm.

[실시예 10]Example 10

촉매 제조 과정(a)에서 디에틸알루미늄클로라이드 대신에 디에틸알루미늄디클로라이드 7.6g과 트리아이소부틸알루미늄 12.5g의 혼합물을 사용한 것을 제외하고 실시예 1과 동일하게 수행하여 얻은 고분자 분말은 160g으로 촉매 활성은 40000(g-고분자/g-촉매), 벌크 밀도는 0.29(g/㎖), 고분자 분말의 평균입경은 400㎛이었다.The polymer powder obtained by performing the same procedure as in Example 1 except for using a mixture of 7.6 g of diethylaluminum dichloride and 12.5 g of triisobutylaluminum instead of diethylaluminum chloride in the preparation of the catalyst (a) was 160 g of catalytic activity. The average particle diameter of silver 40000 (g-polymer / g-catalyst), bulk density was 0.29 (g / ml), and the polymer powder was 400 µm.

[실시예 11]Example 11

촉매 제조 과정(a)에서 에탄올 대신에 노르말 프로판올 7.6g을 사용한 것을 제외하고 실시예 10과 동일하게 수행하여 얻은 고분자 분말은 158g으로 촉매 활성은 39500(g-고분자/g-촉매), 벌크 밀도는 0.28(g/㎖), 고분자 분말의 평균입경은 420㎛이었다.In the catalyst preparation process (a), except that 7.6 g of normal propanol was used instead of ethanol, the polymer powder obtained in the same manner as in Example 10 was 158 g, and the catalytic activity was 39500 (g-polymer / g-catalyst), and the bulk density was The average particle diameter of 0.28 (g / ml) and polymer powder was 420 micrometers.

[실시예 12]Example 12

촉매 제조 과정(a)에서 에탄올 대신에 노르말부탄올 9.3g을 사용한 것을 제외하고 실시예 10과 동일하게 수행하여 얻은 고분자 분말은 157g으로 촉매 활성은 39200(g-고분자/g-촉매), 벌크 밀도는 0.29(g/㎖), 고분자 분말의 평균입경은 400㎛이었다.In the catalyst preparation process (a), except that 9.3 g of normal butanol was used instead of ethanol, the polymer powder obtained in the same manner as in Example 10 was 157 g, and the catalytic activity was 39200 (g-polymer / g-catalyst), and the bulk density was The average particle diameter of 0.29 (g / ml) and polymer powder was 400 micrometers.

[실시예 13]Example 13

촉매 제조 과정(a)에서 용매인 데칸 대신에 헵탄을 사용하고 반응온도를 75℃까지 승온시켜 2시간 동안 반응시킨 것을 제외하고 실시예 10과 동일하게 수행하여 얻은 고분자 분말은 156g으로 촉매 활성은 39000(g-고분자/g-촉매), 벌크 밀도는 0.28(g/㎖), 고분자 분말의 평균입경은 480㎛이었다.In the catalyst preparation process (a), heptane was used instead of the solvent decane and the reaction temperature was increased to 75 ° C. for 2 hours. (g-polymer / g-catalyst), bulk density was 0.28 (g / ml), and the average particle diameter of the polymer powder was 480 µm.

[실시예 14]Example 14

촉매 제조 과정(a)에서 용매인 데칸 대신에 헥산을 사용하고 반응온도를 55℃까지 승온시켜 2시간 동안 반응시킨 것을 제외하고 실시예 10과 동일하게 수행하여 얻은 고분자 분말은 155g으로 촉매 활성은 38800(g-고분자/g-촉매), 벌크 밀도는 0.28(g/㎖), 고분자 분말의 평균입경은 800㎛이었다.In the process of preparing the catalyst (a), hexane was used instead of decane as a solvent, and the reaction temperature was increased to 55 ° C. for 2 hours. (g-polymer / g-catalyst), bulk density was 0.28 (g / ml), and the average particle diameter of the polymer powder was 800 µm.

[실시예 15]Example 15

촉매 제조 과정(a)에서 용매인 데칸 대신에 헵탄을 사용하고 반응온도를 98℃까지 승온시켜 2시간 동안 반응시킨 것을 제외하고 실시예 13과 동일하게 수행하여 얻은 고분자 분말은 165g으로 촉매 활성은 41200(g-고분자/g-촉매), 벌크 밀도는 0.27(g/㎖), 고분자 분말의 평균입경은 400㎛이었다.In the preparation of the catalyst (a), heptane was used instead of the solvent decane and the reaction temperature was increased to 98 ° C. for 2 hours, except that the polymer powder obtained in the same manner as in Example 13 was 165 g, and the catalytic activity was 41200. (g-polymer / g-catalyst), bulk density was 0.27 (g / ml), and the average particle diameter of the polymer powder was 400 µm.

[실시예 16]Example 16

촉매 제조 과정(a)에서 용매인 데칸을 사용하되 반응온도를 130℃까지 승온시켜 2시간 동안 반응시킨 것을 제외하고 실시예 10과 동일하게 수행하여 얻은 고분자 분말은 166g으로 촉매 활성은 41500(g-고분자/g-촉매), 벌크 밀도는 0.26(g/㎖), 고분자 분말의 평균입경은 390㎛이었다.In the catalyst preparation process (a), using a decane solvent, but the reaction temperature was raised to 130 ℃ and reacted for 2 hours except that the polymer powder obtained in the same manner as in Example 10 is 166g, the catalytic activity is 41500 (g- Polymer / g-catalyst), bulk density was 0.26 (g / ml), and the average particle diameter of the polymer powder was 390 µm.

[발명의 효과][Effects of the Invention]

본 발명의 고체 촉매를 이용하여 제조된 중합체는 입자형상이 균일하여 슬러리 공정에서 중합체의 분리와 건조공정에서 분리와 여과를 용이하게 할 수 있으며, 특히 촉매의 제조 조건에 따라 중합체의 입자크기 및 벌크밀도를 용이하게 조절할 수 있다. 또한 고체 촉매는 중합활성이 높아 잔류촉매를 제거하기 위한 별도의 탈회공정이 필요하지 않으므로 생산공정에서 제조원가를 절감할 수 있다.The polymer produced using the solid catalyst of the present invention has a uniform particle shape to facilitate separation and filtration in the separation and drying of the polymer in the slurry process, and in particular, the particle size and bulk of the polymer according to the preparation conditions of the catalyst The density can be easily adjusted. In addition, since the solid catalyst has a high polymerization activity, a separate deliming process is not required to remove the residual catalyst, thereby reducing manufacturing costs in the production process.

Claims (8)

올레핀 중합용 고체 촉매에 있어서, 전자 주게를 함유하는 화합물(A), 금속과 알콕시기가 조합된 금속화합물(B), 마그네슘할라이드(C)가 상호 접촉반응을 일으키면서 반 재결정화가 형성되고 알킬 금속화합물(D)을 첨가하여 완전한 반 재결정화를 거쳐 티타늄 할라이드 유도체(E)를 반응시켜 용매로 세정하여 고체촉매를 얻는 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.In the solid catalyst for olefin polymerization, a compound (A) containing an electron donor, a metal compound (B) and a magnesium halide (C) in which a metal and an alkoxy group are combined with each other cause a semi-recrystallization, and an alkyl metal compound is formed. A method for producing a solid catalyst for olefin polymerization, comprising adding (D) to complete semi-recrystallization and reacting titanium halide derivative (E) to wash with a solvent to obtain a solid catalyst. 제1항에 있어서, 구성성분(A)는 주기율표 제 VA 및 VIA족의 원소로 구성된 알코올 유도체, 아민과 인 유도체, 에테르 및 설파이드 유도체 혹은 산 유도체로서 전자주게 화합물은 다음의 일반식으로 표시되는 화합물로써 구성성분(C)의 몰당 구성성분(A)의 몰 범위가 1×10-4내지 30인 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The compound (A) is an alcohol derivative, an amine and phosphorus derivative, an ether and sulfide derivative or an acid derivative composed of elements of Groups VA and VIA of the periodic table, and the electron donor compound is represented by the following general formula The molar range of the component (A) per mole of the component (C) is 1 × 10 -4 to 30, the method for producing a solid catalyst for olefin polymerization. 일반식: ROH, RSH, RNH2, R2NH, R3N, R3P, R3PO, ROR, RSR, RCOOH, RCOSHFormula: ROH, RSH, RNH 2 , R 2 NH, R 3 N, R 3 P, R 3 PO, ROR, RSR, RCOOH, RCOSH (식중 R은 탄소원자수 1내지 10개의 알킬기를 나타낸다.)(Wherein R represents an alkyl group having 1 to 10 carbon atoms) 제1항에 있어서, 구성성분(B)는 주기율표 제 IB~IVB족의 금속과 알콕시기가 조합된 금속화합물(B)로서 알콕시 금속화합물은 다음의 일반식으로 표시되는 화합물로써 구성성분(C)의 몰당 구성성분(B)의 몰 범위가 1×10-2내지 10인 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The compound (B) according to claim 1, wherein component (B) is a metal compound (B) in which a metal and an alkoxy group of the group IB to IVB of the periodic table are combined, and the alkoxy metal compound is a compound represented by the following general formula Method for producing a solid catalyst for olefin polymerization, characterized in that the molar range of the component (B) per mole is 1 × 10 -2 to 10. 일반식: M(OR)n Formula: M (OR) n (식중 M은 주기율표 제 IB~IVB족의 금속을 나타내고, R은 탄소 원자수 1 내지 16개의 알킬기를 나타낸다.)(Wherein M represents a metal of Groups IB to IVB of the periodic table, and R represents an alkyl group having 1 to 16 carbon atoms). 제1항에 있어서, 구성성분(C)의 마그네슘할라이드류는 다음의 일반식으로 표시되는 화합물인 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The method for producing a solid catalyst for olefin polymerization according to claim 1, wherein the magnesium halides of the component (C) are compounds represented by the following general formula. 일반식: MgXYFormula: MgXY (식중 X는 할로겐 원소를 나타내고, Y는 할로겐 원소 혹은 탄소 원자수 1 내지 5개의 알킬기 혹은 알콕시기를 나타낸다.)(Wherein X represents a halogen element and Y represents a halogen element or an alkyl group or an alkoxy group having 1 to 5 carbon atoms.) 제1항에 있어서, 구성성분(D)의 알킬금속화합물은 다음의 일반식으로 표시되는 화합물로써 구성성분(C)의 몰당 구성성분(D)가 단독 또는 2종이상의 혼합물로서 몰 범위가 1×10-1내지 10인 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The alkyl metal compound of the component (D) is a compound represented by the following general formula, and the molar range is 1 × per mole of the component (C) alone or as a mixture of two or more thereof. 10 -1 to 10, characterized in that the method for producing a solid catalyst for olefin polymerization. 일반식: M(R)n Formula: M (R) n (식중 M은 Mg, B, Al, Zn 등을 나타내고, R은 탄소 원자수 1 내지 16개의 알킬기를 나타내며 n은 금속 원자가를 나타낸다.)(Wherein M represents Mg, B, Al, Zn, etc., R represents an alkyl group having 1 to 16 carbon atoms and n represents a metal valence.) 제1항에 있어서, 구성성분(E)의 티타늄할라이드 유도체는 다음의 일반식으로 표시되는 화합물인 것을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The method for producing a solid catalyst for olefin polymerization according to claim 1, wherein the titanium halide derivative of component (E) is a compound represented by the following general formula. 일반식: Ti(OR)4-nXn Formula: Ti (OR) 4-n X n (식중 R은 탄소원자수 1내지 10개의 알킬기를 나타내고, X는 할로겐 원소를 나타내며 n은 티타늄의 원자가를 만족하는 0<n4를 나타낸다.)(Wherein R represents an alkyl group having 1 to 10 carbon atoms, X represents a halogen element and n represents 0 <n satisfying the valence of titanium) 4). 제1항에 있어서, 구성성분(A), (B), (C)가 불균일한 용액상태에서 0 내지 150℃의 온도에서 10분 내지 6시간 동안 접촉 반응을 일으키면서 반재결정화 과정이 형성됨을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.According to claim 1, wherein the components (A), (B), (C) is formed in a semi-recrystallization process with a contact reaction for 10 minutes to 6 hours at a temperature of 0 to 150 ℃ in a non-uniform solution state Method for producing a solid catalyst for olefin polymerization, characterized in that. 제1항 또는 제5항에 있어서, 구성성분(D)가 단독 또는 2종이상인 구성성분(D)의 혼합물을 0 내지 100℃의 온도에서 5분내지 12시간 동안 반응시켜 반 재결정화 과정이 형성됨을 특징으로 하는 올레핀 중합용 고체촉매의 제조방법.The semi-recrystallization process according to claim 1 or 5, wherein the component (D) alone or a mixture of two or more components (D) is reacted at a temperature of 0 to 100 ° C. for 5 minutes to 12 hours. Method for producing a solid catalyst for olefin polymerization, characterized in that.
KR1019980010041A 1998-03-24 1998-03-24 The precess for the preparation of solid catalysts for olefin polymerization KR100270512B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980010041A KR100270512B1 (en) 1998-03-24 1998-03-24 The precess for the preparation of solid catalysts for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980010041A KR100270512B1 (en) 1998-03-24 1998-03-24 The precess for the preparation of solid catalysts for olefin polymerization

Publications (2)

Publication Number Publication Date
KR19990075692A KR19990075692A (en) 1999-10-15
KR100270512B1 true KR100270512B1 (en) 2000-11-01

Family

ID=19535257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980010041A KR100270512B1 (en) 1998-03-24 1998-03-24 The precess for the preparation of solid catalysts for olefin polymerization

Country Status (1)

Country Link
KR (1) KR100270512B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353120B1 (en) * 1999-12-10 2002-09-18 대한유화공업 주식회사 Method for Preparing a Supported Metallocene Catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712874A1 (en) * 2012-09-26 2014-04-02 Basell Poliolefine Italia S.r.l. Catalyst components for the polymerization of olefins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910005663B1 (en) * 1984-10-04 1991-08-01 짓소 가부시끼가이샤 Catalysis for olefin polymerization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910005663B1 (en) * 1984-10-04 1991-08-01 짓소 가부시끼가이샤 Catalysis for olefin polymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353120B1 (en) * 1999-12-10 2002-09-18 대한유화공업 주식회사 Method for Preparing a Supported Metallocene Catalyst

Also Published As

Publication number Publication date
KR19990075692A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US5747405A (en) Catalyst compositions and process for preparing polyolefins
US7427653B2 (en) Catalyst components for the polymerization of olefins
CA2113601A1 (en) Catalyst compositions and process for preparing polyolefins
KR20010041815A (en) Polymerisation catalyst
KR101795748B1 (en) Method for preparing polyolefin
US6653254B1 (en) Ziegler-Natta catalyst with metallocene for olefin polymerization
US20080132406A1 (en) Catalyst system for producing ethylene (co) polymer with improved branch distribution
WO1999058582A1 (en) Olefin polymerization catalysts with specific silica supports
US6500906B1 (en) Olefin polymerization chelate catalyst and olefin polymerization method using the same
EP1461151A1 (en) Method of making mixed ziegler-natta/metallocene catalysts
EP0652904B1 (en) Catalyst component for ethylene polymerization
US20090143549A1 (en) Catalyst Components for the Polymerization of Olefins
KR100270512B1 (en) The precess for the preparation of solid catalysts for olefin polymerization
US6841498B2 (en) Catalyst system for ethylene (co)polymerization
KR100421552B1 (en) Catalyst and olefin polymerization method using the same
EP1380601B1 (en) Supported Ziegler - metallocene catalyst composition and process for olefin polymerization and olefin copolymerization with alpha olefins using novel catalyst systems
EP1330476B1 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
AU8071587A (en) Ethylene polymerization catalyst
US6559088B1 (en) Ziegler-Natta catalyst with amine for polymerization
US7273913B2 (en) Process for the preparation of ethylene copolymers
KR100353120B1 (en) Method for Preparing a Supported Metallocene Catalyst
US20020155945A1 (en) Supported single-site catalysts useful for olefin polymerization
KR20030055636A (en) Method of polymerization and copolymerization of ethylene using carbodiimde ligand chelated catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090701

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20120803

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee