KR100352606B1 - Manufacturing method of oriented electrical steel sheet - Google Patents

Manufacturing method of oriented electrical steel sheet Download PDF

Info

Publication number
KR100352606B1
KR100352606B1 KR1019980058738A KR19980058738A KR100352606B1 KR 100352606 B1 KR100352606 B1 KR 100352606B1 KR 1019980058738 A KR1019980058738 A KR 1019980058738A KR 19980058738 A KR19980058738 A KR 19980058738A KR 100352606 B1 KR100352606 B1 KR 100352606B1
Authority
KR
South Korea
Prior art keywords
temperature
annealing
steel sheet
electrical steel
present
Prior art date
Application number
KR1019980058738A
Other languages
Korean (ko)
Other versions
KR20000042518A (en
Inventor
김재관
우종수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019980058738A priority Critical patent/KR100352606B1/en
Publication of KR20000042518A publication Critical patent/KR20000042518A/en
Application granted granted Critical
Publication of KR100352606B1 publication Critical patent/KR100352606B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 저온재가열 방향성 전기강판의 제조방법에 관한 것으로, 그 목적은 압연이 용이하면서도 용융스케일이 발생하지 않는 1200-1280℃의 온도로 저온재가열하면서 자기적특성이 우수한 방향성 전기강판의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing a low-temperature reheat oriented electrical steel sheet, the object of the present invention is to provide a method for producing a oriented electrical steel sheet having excellent magnetic properties while reheating at a temperature of 1200-1280 ℃ easy to roll and does not generate a scale of melting. In providing.

이러한 목적을 갖는 본 발명은, 중량%로 Si: 2.0-4.5%, C:0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45%를 함유하는 규소강 슬라브를 압연성과 용융스케일의 발생을 고려한 1200∼1280℃의 최적의 온도로 저온재가열하면서, 석출소둔공정에서 (1) 1차 재결정립의 제어와 (2)1차 재결정 집합조직의 제어 및 (3) 인히비터의 석출물 분산상태의 제어를 적절히 할 수 있도록 그 공정변수를 관리함으로써 자기적특성을 개선하는데, 그 기술적요지가 있다.The present invention having this purpose contains, in weight percent, Si: 2.0-4.5%, C: 0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45% In the precipitation annealing process, (1) control of primary recrystallization and (2) control of primary recrystallization texture, while the silicon steel slab is reheated at an optimum temperature of 1200 to 1280 ° C in consideration of rolling property and melting scale generation. (3) The magnetic characteristics are improved by managing the process variables so that the precipitate dispersion of the inhibitor can be properly controlled.

이러한 본 발명은, 용융스케일의 문제를 해결하면서 압연성을 모두 확보할 수 있는 저온재가열온도의 설정과 함께 이에 따른 자기적성질의 저하문제를 석출소둔조건을 포함한 공정변수의 제어로 해결함으로써, 최대 1.95Tesla의 자속밀도를 갖는 전기강판을 경제적으로 제조할 수 있는 방법을 제공하는 유용한 효과가 있다.The present invention solves the problem of melting scale and solves the problem of deterioration of magnetic properties by setting the low temperature reheating temperature which can secure all the rolling properties, and by controlling the process variables including the precipitation annealing condition, up to 1.95. There is a useful effect to provide a method for economically manufacturing electrical steel sheet having a magnetic flux density of Tesla.

Description

방향성 전기강판의 제조방법Manufacturing method of oriented electrical steel sheet

본 발명은 저온재가열 방향성 전기강판의 제조방법에 관한 것으로, 보다 상세하게는 압연이 용이하면서도 용융스케일이 발생하지 않는 1200-1280℃의 온도로 저온재가열하면서 자기적특성이 우수한 방향성 전기강판의 제조방법을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing low-temperature reheating oriented electrical steel sheet, and more particularly, to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties while being reheated at a temperature of 1200-1280 ° C. that is easy to roll and does not generate a scale of melting. It relates to a method of manufacturing.

방향성 전기강판을 제조함에 있어 자성이 우수한 제품을 제조하기 위해서는 최종고온소둔전에 1차 재결정립이 성장을 억제하는 소위 인히비터를 존재시키는 것이 필수적이다. 인히비터를 확보하는 방법으로서는 열연공정에서 재가열온도를 1400℃ 부근의 고온으로 가열하여 연주공정에서 생성된 조대한 AlN, MnS 등이 석출물을 고용시켜 열연 및 석출소둔과정에서 미세하게 분산, 석출시키는 것이 일반적인 방법이다. 그런데, 이와 같이 재가열온도를 높게 하면 재가열중에 슬라브의 표면이 용융하여 녹아내리는 소위 위성현상의 발생으로 실수율이 낮아지고 또한 온도를 높이기 위한 에너지의 사용량도 많을 뿐만 아니라 주기적으로 가열로를 수리해야 하므로 비경제적이다. 또한, 열연중에 압연길이방향으로의 온도편차 때문에 자성이 길이방향으로의 편차가 발생하는 등 큰 문제가 되고 있다.In manufacturing a grain-oriented electrical steel sheet, in order to manufacture a product having excellent magnetic properties, it is essential to have a so-called inhibitor whose primary recrystallized grains inhibit growth before the final high temperature annealing. As a method of securing the inhibitor, the reheating temperature is heated to a high temperature of about 1400 ° C. in the hot rolling process, and coarse AlN and MnS produced in the casting process employ precipitates to be finely dispersed and precipitated in the hot rolling and precipitation annealing processes. It's a common way. However, if the reheating temperature is increased, the error rate is lowered due to the so-called satellite phenomenon in which the surface of the slab is melted and melted during reheating, and the energy consumption to increase the temperature is not only high, but also the furnace must be repaired periodically. It is economical. In addition, due to the temperature deviation in the rolling length direction during hot rolling, the magnetism is a big problem, such as a deviation in the longitudinal direction occurs.

따라서, 이와 같은 열연공정에서의 문제점을 적극적으로 개선하려는 노력이 진행되어 현재 여러 가지 기술이 제안되어 있으며, 대표적인 기술을 나열하면 다음과 같다.Therefore, efforts have been made to actively improve the problems in the hot rolling process, and various technologies have been proposed at present, and representative technologies are listed as follows.

먼저, 일본 공개특허공보 소 57-89433호에는 S, Se, Sb, Bi, Pb, Sn, B을 함유한 슬래브의 주상정율과 냉연율을 조합하여 재가열온도를 1100-1250℃를 실현하는 기술이 제안되어 있다. 또한, 동공보 소 57-158332호에는 Mn을 낮추고 Mn/S의 비율을 2.5이하로 함으로써 재가열온도를 하향하고, Cu를 첨가함으로써 자성을 안정화하는 방법이 제안되어 있다. 동공보 소 57-190324호에는 MnS와 AlN을 인히비터로 이용하는 강에 저C 및 S, Se, B를 첨가하고 1차 재결정소둔시 펄스소둔을 실시함으로써 1300℃이하로 재가열온도를 낮출 수 있는 방법이 개시되어 있다. 또한, 동공보 소 59-56522호에는 Mn을 0.08-0.45%, S를 0.007% 이하로 하여 [Mn][S] 용해도적을 1200℃ 이하로 하고, P를 0.015-0.045% 첨가하고 고온소둔시의 승온속도를 15℃/hr로 함으로써 저온재가열이 가능하다고 밝히고 있다. 상기 제안된 종래기술은 성분의 조정을 통하여 재가열화를 시도한 것들인데, 이들 방법들은 우수한 자성을 확보한다는 측면에서 공업화되기는 어려운 문제를 안고 있다.First, Japanese Laid-Open Patent Publication No. 57-89433 discloses a technique for realizing a reheating temperature of 1100-1250 ° C by combining the columnar rate and cold rolling rate of slabs containing S, Se, Sb, Bi, Pb, Sn, and B. It is proposed. In addition, Japanese Patent Application Laid-Open No. 57-158332 proposes a method of lowering the reheating temperature by lowering Mn and lowering the Mn / S ratio to 2.5 or lower, and stabilizing the magnetism by adding Cu. Dong-A Publication 57-190324 discloses a method for lowering the reheating temperature below 1300 ° C by adding low C, S, Se, and B to the steel using MnS and AlN as an inhibitor and performing pulse annealing during the first recrystallization annealing. Is disclosed. In addition, Pub. No. 59-56522 has Mn of 0.08-0.45%, S of 0.007% or less, [Mn] [S] solubility of 1200 ° C or less, and P of 0.015-0.045% of P. It is revealed that low-temperature reheating is possible by increasing the temperature increase rate to 15 ° C / hr. The proposed prior arts have attempted reheating through adjustment of components, and these methods have a problem that is difficult to industrialize in terms of securing excellent magnetic properties.

한편, 일본 공개특허공보 소 62-40515호에는 NH3를 이용하여 탈탄소둔 종료시점부터 2차 재결정개시구간 사이에서 질소를 강중에 침입시킴으로써 재가열온도를 하향하면서도 우수한 자성을 확보할 수 있다고 밝히고 있다. 이 방법은 상기한 기술들 보다는 진일보한 기술이라고 할 수 있지만, 질화처리를 위하여 질화로의 설치 등 비경제적인 요소를 포함하고 있다. 이러한 측면을 반영하여 질화로를 설치하지 않고 침질하는 제조방법이 동공보 평 2-294428호와 평 3-22324호에 제안된 바 있다. 그러나, 이 기술은 슬래브가열온도를 1200℃이하의 극히 저온으로 할 필요가 있으므로 특별히 강력한 열간압연기가 필요하고 설사 열간압연이 가능하다고 하더라도 강판과 압연롤간의 압력이 높기 때문에 표면에 흠(표면결함)이 발생한다. 뿐만 아니라, 일관제철소에서 일반강과 방향성전기강판을 동시에 처리하는 경우 일반강과 방향성전기강판의 압연온도가 상이함에서 오는 열간압연 조업상에 여러 가지 문제점들이 수반된다.On the other hand, Japanese Patent Application Laid-Open No. 62-40515 discloses that NH 3 can be used to infiltrate nitrogen between the end of decarbonization and the second recrystallization start period to infiltrate the steel, thereby lowering the reheating temperature and securing excellent magnetic properties. This method is an advanced technology than the above-mentioned techniques, but includes an uneconomical factor such as installation of a nitriding furnace for nitriding treatment. Reflecting this aspect, a manufacturing method for settling without installing a nitriding furnace has been proposed in Dongbu Publication Nos. 2-294428 and 3-22324. However, this technology requires the slab heating temperature to be extremely low, below 1200 ° C, so a particularly powerful hot rolling machine is needed, and even if hot rolling is possible, the surface is damaged due to the high pressure between the steel sheet and the rolling roll. This happens. In addition, in the case of simultaneous processing of the general steel and the grain-oriented electrical steel sheet in an integrated steelworks, there are various problems in the hot rolling operation due to the different rolling temperatures of the plain steel and the grain-oriented electrical steel sheet.

따라서, 본 발명자들은 이러한 문제를 해결할 목적으로 1000℃ 이상 1250℃ 이하에서 재가열(조압연)하더라도 우수한 자성을 확보할 수 있는 방법을 발명하고 이 기술을 대한민국 공개특허공보 97-43184호에 개시한 바 있다. 그러나, 본 발명자들은 이 발명과 관련하여 계속적인 연구결과, 압연온도를 1250℃까지 상향하기는 하였으나 압연온도가 낮을수록 자기특성이 우수하고 압연온도가 높아질수록 자기특성이 불안정해져 1200℃ 이상에서는 우수한 자성이 얻어지기 어려운 결함이 존재함을 알게 되었다.Therefore, the present inventors have invented a method for securing excellent magnetic properties even after reheating (crude rolling) at 1000 ° C or more and 1250 ° C or less for the purpose of solving such a problem, and disclosed the technique in Korean Patent Laid-Open Publication No. 97-43184. have. However, the present inventors have continued to study this invention, but the rolling temperature is increased to 1250 ℃, but the lower the rolling temperature is excellent magnetic properties, the higher the rolling temperature is unstable magnetic properties excellent than 1200 ℃ It was discovered that there were defects that were difficult to obtain.

이상에서 살펴본 바와 같이, 우수한 자성의 방향성전기강판을 제조함에 있어 문제로 되어있는 점은 고온에서 슬래브가열을 행하면 용융스케일의 발생이 많아져서 가열로의 조업에 지장을 가져오고 또 슬래브 가열온도가 1200℃ 이하의 경우에는 전기강판슬래브의 변형저항이 커지기 때문에 통상의 열간압연기로는 힘이 약하여 압연하기가 곤란하고 또 압연이 되더라도 열연판 표면에 표면흠이라고 불리는 결함이 발생할 확률이 증가한다는 것이다.As described above, a problem in manufacturing excellent magnetic oriented electrical steel sheet is that when slab heating is performed at high temperature, the generation of melt scale increases, which hinders the operation of the heating furnace and the slab heating temperature is 1200. When the temperature is lower than or equal to 0 ° C, the deformation resistance of the steel sheet slab increases, so that the strength of the conventional hot rolling mill is weak, making it difficult to roll, and even when rolling, the probability of occurrence of defects called surface defects on the surface of the hot rolled sheet increases.

본 발명자들은 이들의 결점을 극복하기 위하여 연구와 실험을 계속 수행하고 그 해결방안을 찾아내어 본 발명을 제안하게 이르렀다.In order to overcome these drawbacks, the inventors continue to conduct research and experiments, find solutions, and propose the present invention.

본 발명은 상기한 결함이 생기지 않는 통상의 슬래브 가열온도에서 열간압연하면서도 자기적특성이 우수한 방향성 전기강판을 염가로 제조하는 방법을 제공하는데, 그 목적이 있다.SUMMARY OF THE INVENTION The present invention provides a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties while hot rolling at a conventional slab heating temperature at which the above-described defects do not occur, and an object thereof is provided.

상기 목적을 달성하기 위한 본 발명은, 중량%로 Si: 2.0-4.5%, C:0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지는 규소강 슬라브를 저온재가열하고 열간압연하여 열연판을 만든 다음, 석출소둔하고, 냉간압연하여 최종두께로 한 다음, 침질을 포함한 탈탄소둔하고, 소둔분리제를 도포한 다음, 마무리소둔공정을 포함한 방향성전기강판의 제조방법에 있어서, 상기 저온재가열은 1200∼1280℃에서 행하고;The present invention for achieving the above object, Si: 2.0-4.5%, C: 0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45%, Silicon steel slab composed of the remaining Fe and other unavoidable impurities is reheated at low temperature and hot rolled to form a hot rolled sheet, followed by precipitation annealing, cold rolling to a final thickness, and then decarbonization including sedimentation and annealing separator. In the method for producing a grain-oriented electrical steel sheet including a finish annealing step, the low temperature reheating is performed at 1200 to 1280 ° C;

상기 석출소둔은, 800±50℃에서 980℃이상∼1250℃이하의 균열온도까지 2∼10℃/sec의 속도로 승온하고 이 균열온도에서 1∼120초 동안 유지한 다음 900℃이상∼980℃미만 온도까지의 냉각을 20∼500초범위내에서 완료하고, 이어 10℃/sec 이상의 속도로 상온까지 급냉하는 것을 포함하여 구성된다.The precipitation annealing is performed at 800 ± 50 ° C. to a cracking temperature of 980 ° C. or higher and 1250 ° C. or lower at a rate of 2 to 10 ° C./sec, and maintained at this cracking temperature for 1 to 120 seconds, followed by 900 ° C. to 980 ° C. The cooling to below temperature is completed within the range of 20 to 500 second, and then quenched to room temperature at a rate of 10 degrees C / sec or more.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 용융스케일의 발생이 없으면서도 통상의 압연기로도 압연이 가능한 재가열온도에서도 자기적특성이 우수한 방향성 전기강판을 개발하기 위한 방안을 모색하던 중, 재가열온도의 최적화와 관련하여 자기적특성의 저하문제를 석출소둔공정에서 (1) 1차 재결정립의 제어, (2)1차 재결정 집합조직의 제어, (3) 인히비터의 석출물 분산상태의 제어 등을 적절히 한다면 그 해결이 가능하리라는 것을 실험을 통해 확인하고, 이 실험결과에 근거하여 본 발명의 석출소둔조건을 도출할 수 있었다.The inventors of the present invention are seeking to develop a directional electrical steel sheet having excellent magnetic properties even at a reheating temperature that can be rolled by a conventional rolling mill without the occurrence of a melt scale, and in view of the optimization of the reheating temperature. Experiments show that deterioration problem can be solved if (1) control of primary recrystallization grain, (2) control of primary recrystallization texture structure, and (3) control of dispersion state of precipitate in inhibitor. Confirmed through, based on the experimental results it was possible to derive the precipitation annealing conditions of the present invention.

즉, 상기 (1)(2)(3)의 관점하에서 도출한 본 발명의 석출소둔은, 800℃에서 980℃이상∼1250℃이하의 균열온도까지 2∼10℃/sec의 속도로 승온하고 이 균열온도에서 1∼120초 동안 유지한 다음 900℃이상∼980℃미만 온도까지의 냉각을 20∼500초 범위내에서 완료하고, 이어 10℃/sec 이상의 속도로 실온까지 급냉하는 것이다. 보다 구체적으로 본 발명의 석출소둔공정에서 제어하고자 하는 인자와 그 조건의 상관성을 다음이하에 설명한다.That is, the precipitation annealing of the present invention derived from the viewpoint of the above (1) (2) (3) is heated at a rate of 2 to 10 ° C / sec from 800 ° C to a cracking temperature of 980 ° C or more and 1250 ° C or less. It is maintained at the cracking temperature for 1 to 120 seconds and then completes the cooling from 900 ° C to more than 980 ° C in the range of 20 to 500 seconds, followed by quenching to room temperature at a rate of 10 ° C / sec or more. More specifically, the correlation between the factors to be controlled in the precipitation annealing process of the present invention and the conditions will be described below.

(1)1차재결정립의 제어(1) control of primary recrystallized grains

본 발명에서는 1차재결정립의 제어를 위해 석출소둔공정에서의 균열온도를 980-1250℃ 보다 바람직하게는 Sol-Al량(ppm)과 슬래브가열온도(Ts)에 따른 아래의 관계식 (1)에 의해 균열온도를 제어함으로써, 1차재결정립을 작게 하여 자기적특성을 확보한다.In the present invention, in order to control the primary recrystallized grain, the cracking temperature in the precipitation annealing process is more preferably 980-1250 ° C. according to the following equation (1) according to the amount of Sol-Al (ppm) and the slab heating temperature (Ts). By controlling the crack temperature by this, the primary recrystallized grains can be made small to secure magnetic properties.

[관계식 1][Relationship 1]

1.04Ts-0.6Al-50≤Tk≤1.04Ts-0.6Al-101.04Ts-0.6Al-50≤Tk≤1.04Ts-0.6Al-10

(여기서, Ts는 슬라브 가열온도(℃), Al: Sol-Al의 함량(ppm))Where Ts is slab heating temperature (℃) and Al is the content of Sol-Al (ppm).

즉, 위 관계식(1)은 실험결과에 기초하여 도출한 식으로서, 그 이론적 배경은, 슬래브가열온도가 높을수록 또 Sol-Al량이 적을수록 1차재결정입경이 작게 되는 경향이 있으므로 이들의 값에 따라서 균열온도(Tk)를 제어할 필요가 있다는 것에 기인한다. 1차 재결정 소둔후의 입경은 이 이외에 슬래브의 질소량, S량, 마무리열간압연 개시온도, 1차재결정소둔 조건이 영향을 미치므로 이들을 고려하여 최적온도를 선택할 수 있다. 균열온도가 980-1250℃의 범위보다 낮은 온도 또한, 높은 온도에서는 2차 재결정방위의 집적도가 저하하고 자속밀도가 저하하게 된다.In other words, the above equation (1) is derived based on the experimental results. The theoretical background is that the higher the slab heating temperature and the smaller the amount of Sol-Al, the smaller the primary recrystallized grain size. Therefore, it is due to the need to control the crack temperature Tk. The particle size after primary recrystallization annealing is influenced by the nitrogen content, S content, finish hot rolling start temperature, and primary recrystallization annealing conditions of the slab. The temperature at which the crack temperature is lower than the range of 980-1250 ° C. In addition, at high temperatures, the degree of integration of the secondary recrystallization direction is lowered and the magnetic flux density is lowered.

(2)1차재결정 집합조직의 제어(2) control of the primary recrystallization group;

본 발명에서 1차재결정집합조직의 제어인자는 980∼1250℃의 온도에서 균열한 다음 일정속도로 냉각을 정지하는 900∼980℃의 온도이다. 이 온도(980℃)가 높을수록 2차 재결정후의 자속밀도는 높아지는 반면, 2차 재결정의 발현이 불안정하게 되므로, 상한을 980℃미만으로 한 것이다. 하한을 900℃로 한 것은 이 온도 미만에서는 2차 재결정 형성은 안정되게 일어나지만 자속밀도가 낮은 2차 재결정립이 성장할 가능성이 커지기 때문이다.In the present invention, the control factor of the primary recrystallized texture structure is a temperature of 900 ~ 980 ° C that cracks at a temperature of 980 ~ 1250 ° C and then stops cooling at a constant rate. The higher the temperature (980 ° C), the higher the magnetic flux density after the secondary recrystallization, while the unstable expression of the secondary recrystallization becomes unstable, so the upper limit is less than 980 ° C. The lower limit is 900 ° C because secondary recrystallization occurs stably below this temperature, but secondary recrystallized grains with low magnetic flux density are more likely to grow.

또한, 상기 온도에서 실온까지 10℃/sec이상의 속도로 급냉하여 1차 재결정 집합조직을 제어한다. 이 속도가 10℃/초 보다 늦어지면 이상적인 고스방위가 감소하고 또 이상적인 고스방위외의 2차 재결정립이 성장하기 쉽게 되는 집합조직으로 되기 때문에 자속밀도가 저하하기 때문이다.Further, the primary recrystallized texture is controlled by quenching at a temperature of 10 ° C./sec or more from the temperature to room temperature. This is because the magnetic flux density is lowered when this rate is slower than 10 DEG C / sec, because the ideal goth orientation is reduced and the secondary recrystallized grains outside the ideal goth orientation are easily grown.

(3) 인히비터의 석출물 분산상태의 제어(3) Control of dispersed state of precipitate in inhibitor

석출소둔공정에서 인히비터의 석출물 분산상태는 아래의 3가지 조건에 의해 제어된다. 먼저, 상기 (1)란에서 설명한 균열온도에서 1초에서 120초동안 유지하는데, 이는 이 범위를 벗어나면 석출물 분산상태가 나빠져 발현하는 2차 재결정의 방위의 분산이 나빠져 자속밀도가 저하하기 때문이다. 또한, 상기 (1)란에서의 균열온도까지의 승온속도를 2℃이상 10℃이하로 한정한 것은, 이 승온속도를 벗어나면 인히비터의 분산이 나쁘게 되기 때문에 탈탄공정에서 질화처리하여 인히비터를 강화하더라도 2차재결정방위의 집적도가 저하하여 자속밀도가 낮게 되기 때문이다. 그리고, 상기 (1)란에서 균열한 온도(980-1250℃)에서 900-980℃까지의 냉각하는 시간을 20-500초 사이에 냉각하는데, 그 이유는 이 시간이 길수록 2차 재결정에 유리한 석출물이 1차재결정소둔공정 및 2차재결정 소둔공정의 앞단계에서 발달하기 때문이고, 그 때문에 적어도 20초이상의 시간이 필요하다. 또 이 시간을 500초 이하로 한 것은 그 이상 길게 하더라도 효과는 없어지지 않으므로 무방하지만 소둔시간이 불필요하게 길게 되어 경제적으로 불리해지기 때문에 500초로 제한하였다.The precipitate dispersion state of the inhibitor in the precipitation annealing process is controlled by the following three conditions. First, it is maintained for 1 to 120 seconds at the cracking temperature described in the above (1), because if it is out of this range, the dispersion state of the precipitate becomes worse and the dispersion of the orientation of the secondary recrystallization, which is expressed, becomes worse and the magnetic flux density decreases. . In addition, the temperature increase rate up to the cracking temperature in column (1) is limited to 2 ° C. or more and 10 ° C. or less. Since the dispersion of the inhibitor becomes worse when the temperature rises outside this temperature, the inhibitor is subjected to nitriding in a decarburization process. This is because the density of the secondary recrystallization direction is lowered even if it is strengthened, so that the magnetic flux density is low. In addition, the cooling time from the cracked temperature (980-1250 ° C.) to 900-980 ° C. is cooled between 20-500 seconds in the column (1), because the longer the time, the more favorable the precipitate for secondary recrystallization. This is because it develops in the preceding steps of the primary recrystallization annealing process and the secondary recrystallization annealing process, and therefore, at least 20 seconds or more is required. In addition, if the time is set to 500 seconds or less, the effect is not lost even if it is longer than that. However, the annealing time is unnecessarily long, so it is economically disadvantageous and limited to 500 seconds.

이상의 이유에서 열연판의 석출처리조건을 세밀하게 규정하여 본 발명의 목적을 달성하였는데, 이러한 본 발명의 목적은 이외에도 규소강슬라브의 성분과 그에 따른 제조공정의 유기적인 결합으로 달성되는 바, 이를 다음이하에 세분하여 설명한다.For this reason, the object of the present invention was achieved by precisely defining the precipitation treatment conditions of the hot rolled sheet, and the object of the present invention was achieved by the organic combination of the components of the silicon steel slab and the manufacturing process accordingly. It explains in full detail below.

[규소강 슬라브의 성분][Components of Silicon Steel Slabs]

상기 C는 0.010% 이하의 경우 2차 재결정은 일어나지만 자속밀도가 낮으며, 0.095% 이상으로 첨가되는 경우 2차 재결정이 일어나고 자속밀도도 높지만 1차 재결정 소둔공정에서 탈탄에 장시간이 요하여 경제적이지 못하므로, 0.010-0.095%로 첨가한다.When C is less than 0.010%, secondary recrystallization occurs, but the magnetic flux density is low, and when it is added more than 0.095%, secondary recrystallization occurs and magnetic flux density is high, but it is economical because it takes a long time for decarburization in the primary recrystallization annealing process. As such, it is added at 0.010-0.095%.

Si는 함유량이 많을수록 고유저항이 증가하여 제품의 와전류손을 감소시키기 때문에 와전류손을 감소시키기 위해서는 Si는 많을수록 좋다. Si를 2% 이상으로 한정한 것은 이 이하에서는 와전류손이 크게 되어 바람직하지 않기 때문이다. 그러나, Si의 첨가량이 많아질수록 냉간압연과정에서 판파단이 발생하기 쉽게 되어 4.5%이상에서는 냉간압연을 함에 있어 특별한 배려가 요하므로 경제적으로 제조한다고 하는 본 발명의 목적에 벗어나므로 상한을 4.5%로 한다.The higher the Si content, the higher the resistivity, which reduces the eddy current loss of the product, so the more Si, the better. The reason for limiting Si to 2% or more is that the eddy current loss becomes large below this, which is not preferable. However, as the amount of Si added increases, plate breakage is more likely to occur in the cold rolling process, and the upper limit is 4.5% because it is beyond the object of the present invention to manufacture economically, since special consideration is required in cold rolling at 4.5% or more. Shall be.

Al은 질화처리 이후에(Al, Si)N을 형성하여 인히버터로서 작용하나, 이 경우 Sol-Al로서 0.010% 이상 존재하지 않으면 1차 재결정과정에서 결정립의 성장이 어렵게 되어, 높은 자속밀도가 얻어지기 어렵기 때문에 하한을 0.010%로 하였다. 상한을 0.04%로 한 것은 이 이상의 Al이 존재하면 석출물이 너무 조대화되어 오히려 인히비터로서 유효하게 작용하기 어렵게 되기 때문이다.Al forms (Al, Si) N after nitriding and acts as an inverter, but in this case, if it is not 0.010% or more as Sol-Al, it becomes difficult to grow crystal grains in the first recrystallization process, resulting in high magnetic flux density. Since it was hard to lose, the minimum was made into 0.010%. The upper limit is made 0.04% because if more than Al is present, the precipitate becomes too coarse, making it difficult to act effectively as an inhibitor.

상기 N은 인히비터의 분산을 위해 일정량 첨가한다. 즉, 발명에 있어서의 인히비터는 석출소둔공정과 1차 재결정 소둔공정에서 주로 만들어지는데, 0.002% 이상의 N가 열간압연 이전에 포함되어 있지 않는 경우에는 인히비터의 분산이 나쁘게 되어 높은 자속밀도가 얻어지지 않는 경우가 있기 때문에 하한을 0.002%로 한 것이다. 또한, 질소는 0.02%이상 포함되면 브리스터라고 하는 표면불량이 발생한다.N is added in an amount to disperse the inhibitor. That is, the inhibitor in the invention is mainly produced in the precipitation annealing process and the primary recrystallization annealing process. When N or more than 0.002% is not included before the hot rolling, the dispersion of the inhibitor becomes bad and high magnetic flux density is obtained. The lower limit was made 0.002% because it may not be obtained. In addition, when nitrogen is contained 0.02% or more, surface defects called blisters occur.

S은 본 발명에 있어서의 주로 위에서 열거한 (3)과 관련되어 질화Al의 석출핵으로서의 MnS를 석출시켜 그곳에 AlN을 석출시키는 것으로서, AlN의 석출물 분산상태를 균일하게 하여 이상적인 고스방위를 우선적으로 일어나게 하고, MnS를 직접 인히비터로서 작용시켜 이상적인 고스방위의 우선성장을 돕는 역할과 (1)의 1차재결정립경에 미치는 영향의 2가지가 있다. (1)의 1차재결정립경 제어에 미치는 역할로서 S는 입경을 작게 하는 작용이 있기 때문에 1차재결정립경을 높게 하기 위해서는 S은 적을수록 좋다. S첨가의 상한을 0.2%로 한 것은 이 이상 S의 첨가량이 증가하면 1차 재결정립결을 크게 하기 위하여 특별한 조치가 필요하고 경제적으로 유리하지 않기 때문에 상한을 설정한 것이다. 다음으로 인히비터로서의 역할에 있어서는 S이 0.002% 이하에서는 석출물의 수가 너무 적어 인히비터 그 자체로서 작용하는 경우에 있어서도 또한 AlN의 석출핵으로서 작용하는 경우에 있어서도 불충분하기 때문에 하한을 0.002%로 한 것이다.S is mainly related to (3) listed above in the present invention to precipitate MnS as precipitate nuclei of Al nitride and to precipitate AlN therein, so that the dispersion state of AlN is uniform, so that an ideal goth orientation occurs first. In addition, MnS acts directly as an inhibitor to help the ideal growth of the ideal goth defense, and has an effect on the primary recrystallized grain of (1). As S plays a role in controlling the primary recrystallized grain of (1), S has a function of reducing the particle size, so that S is better for increasing the primary recrystallized grain size. The upper limit of S addition is 0.2% because the upper limit of S addition is set because special measures are necessary to increase primary recrystallization and it is not economically advantageous if the amount of S added is increased. Next, in the role of an inhibitor, when S is 0.002% or less, since the number of precipitates is too small to act as the inhibitor itself, and also when it acts as precipitation nuclei of AlN, the lower limit is set to 0.002%. .

Mn을 0.05%에서 0.45%로 한 이유는 상술한 S의 석출물 형성원소로서의 역할과 관련된 것으로 Mn이 0.05% 이하에서도 석출물로서의 MnS는 형성되지만, 이 이하의 Mn의 경우는 석출물 수가 너무 적어서 인히비터로서의 역할을 다하지 못하여 자속밀도가 높은 2차 재결정이 생겨나지 않기 때문이다. Mn의 상한을 0.45%로 한 것은 석출물로서의 MnS의 크기가 너무 커서 인히비터로서 작용하지 않기 때문이다.The reason for setting Mn from 0.05% to 0.45% is related to the above-described role of S as a precipitate forming element. Although MnS as a precipitate is formed even when Mn is 0.05% or less, in the case of Mn below this, the precipitate count is too small to serve as an inhibitor. This is because secondary recrystallization with high magnetic flux density does not occur because it does not play a role. The upper limit of Mn is 0.45% because the size of MnS as a precipitate is too large to act as an inhibitor.

[제조공정][Manufacture process]

상기와 같이 조성되는 슬라브를 저온재가열하는데, 이때의 재가열온도는 1200-1280℃로 하는 것이 바람직하다. 그 이유는 재가열온도가 1280℃이상으로 되면 본 발명 성분에서는 제품의 자속밀도가 1.90T 이하로 될 확률이 증가하여 공업적인 제조방법으로서 채용하기 어렵기 때문이다. 재가열온도에 따라 자속밀도가 낮게 되는 것은 고온가열에 기인하여 1차재결정립이 작게 되고, 그 결과 2차 재결정온도가 저하하여 방위가 나쁜 2차 재결정립이 생겨나는 것에 기인한다. 또한, 재가열온도가 1200℃이하에서는 MnS를 인히비터로서 직접적으로 활용하기가 어려워지며, 압연에 요하는 에너지가 많이 필요하고, 또한 압연시에 강판 표면에 흠이 발생되기 쉬워 경제적이지 못하게 되기 때문이다.The slab formed as described above is reheated at a low temperature, wherein the reheating temperature is preferably set to 1200-1280 ° C. The reason for this is that when the reheating temperature is higher than 1280 ° C, the probability of the magnetic flux density of the product being 1.90T or less increases in the component of the present invention, which makes it difficult to employ it as an industrial manufacturing method. The lower magnetic flux density with the reheating temperature is due to the lower temperature of the primary recrystallization due to the high temperature heating, and as a result, the secondary recrystallization temperature is lowered, resulting in the secondary recrystallization with poor orientation. In addition, it is difficult to utilize MnS directly as an inhibitor when the reheating temperature is lower than 1200 ° C, and it requires a lot of energy required for rolling, and it is not economical because flaws are easily generated on the surface of the steel sheet during rolling. .

상기와 같이 재가열한 다음, 통상의 방법으로 열간압연한 다음, 본 발명에 따라 석출소둔한다. 구체적으로 설명하면, 석출석둔은 800±50℃에서 980℃이상∼1250℃이하의 균열온도까지 2∼10℃/sec의 속도로 승온하고 이 균열온도에서 1∼120초 동안 유지한 다음 900℃이상∼980℃미만의 온도까지는 20∼500초 동안에 냉각하고 이어 10℃/sec 이상의 속도로 상온까지 급냉한다. 이러한 석출소둔의 한정이유는 전술한 바와 같으므로 중복설명을 피한다. 여기서, 균열온도까지 본 발명의 승온을 시작하는 온도를 800±50℃로 설정한 것은, 재결정이 일어나는 구간이 대략 800℃ 부근임을 고려하여 설정한 것이다.After reheating as above, hot rolling in a conventional manner, followed by precipitation annealing according to the present invention. Specifically, the precipitation precipitate is heated at a rate of 2 to 10 ° C./sec from 800 ± 50 ° C. to a crack temperature of more than 980 ° C. to 1250 ° C. and maintained at this crack temperature for 1 to 120 seconds, and then 900 ° C. The temperature is cooled to 20 ° C to 980 ° C or lower for 20 to 500 seconds, followed by rapid cooling to room temperature at a rate of 10 ° C / sec or more. The reason for the limitation of the precipitation annealing is as described above, and thus the overlapping explanation is avoided. Here, the temperature at which the temperature rise of the present invention starts up to the crack temperature is set to 800 ± 50 ° C in consideration of the fact that the section in which recrystallization takes place is approximately 800 ° C.

석출소둔한 다음, 냉간압연하는데, 이때의 압하율 바람직하게는 방향성을 좋게 하기 위해 81-95%의 압하율로 냉간압연한다.Precipitation annealing is followed by cold rolling. The rolling reduction rate at this time is preferably cold rolling at a reduction ratio of 81-95% in order to improve the orientation.

이어 침질을 포함한 탈탄소둔 바꿔말하면, 질화처리를 탈탄소둔공정에서 행한다. 소둔은 850-1100℃의 온도에서 행하는 것이 바람직한데, 이는 850℃이하의 온도에서는 결정립이 작아 자속밀도가 낮아지기 때문이고 가열온도가 1100℃ 보다 높아지면 이 온도에서도 2차재결정이 일어나고 높은 자속밀도가 얻어지는 경우도 있지만, 불안정하게 되는 것과 이 이상의 고온으로 가열하는 것은 비경제적이기 때문이다.Then, decarbonization including sedimentation, in other words, nitriding is performed in the decarbonization annealing process. The annealing is preferably performed at a temperature of 850-1100 ° C., because the crystal grains are small at a temperature below 850 ° C. and the magnetic flux density is lowered. When the heating temperature is higher than 1100 ° C., the secondary recrystallization occurs at this temperature and a high magnetic flux density is obtained. Although it may be obtained, it is because it becomes uneconomical to become unstable and to heat at above this high temperature.

이때의 침질은 탈탄과 침질량이 제어되는 조건이라면, 탈탄이 적정수준으로 완료된 후 침질을 행하는 방식과 탈탄과 동시에 소둔 초기부터 침질을 행하는 방식의 어떤 것도 적용할 수 있다. 이때, 분위기가스로는 적정수준의 탈탄 및 본 발명범위의 침질을 동시에 가능하게 하는 어떠한 혼합분위기도 사용할 수 있으나, 바람직하게는 공업적으로 침질량의 제어가 용이한 습윤 암모니아 + 수소 + 질소의 혼합가스 분위기를 사용하는 것이 좋다. 또한, 이때의 강판의 내부에 들어가는 질소의 양은 소둔온도, 소둔시간, 분위기중의 암모니아 분율에 의해 영향을 받으며 소강성분에 따라 적절한 질소량으로 제어된다. 이들 변수중 가장 큰 영향을 미치는 암모니아(NH3)의 농도는 안정되게 높은 자속밀도를 얻기 위한 측면에서 0.05-5%로 한다.At this time, if the decarburization is a condition under which the decarburization and the settling mass are controlled, any one of the method of performing acupuncture after the decarburization is completed to an appropriate level and of the method of deburring from the initial stage of annealing simultaneously with decarburization can be applied. At this time, the atmosphere gas may be any mixed atmosphere that enables the decarburization of the appropriate level and the sedimentation of the present invention at the same time, but preferably a mixed gas of wet ammonia + hydrogen + nitrogen for industrial control of the sediment mass easily. It is good to use the atmosphere. In addition, the amount of nitrogen that enters the inside of the steel sheet at this time is influenced by the annealing temperature, the annealing time, the ammonia fraction in the atmosphere and is controlled to an appropriate amount of nitrogen according to the steel composition. The concentration of ammonia (NH 3 ) which has the greatest influence among these variables is 0.05-5% in terms of obtaining a stable high magnetic flux density.

상기와 같이 침질을 포함한 탈탄소둔하고 소둔분리제를 도포한 다음, 마무리소둔한다.As described above, after the decarbonization annealing including the sedimentation and applying the annealing separator, and then finish annealing.

마무리소둔은 통상의 방법대로 하여도 무방하다. 그러나, 고온소둔 승온과정의 질소를 50% 이상으로 하여 소둔하면 안정하고 양호한 자기특성이 얻어지므로 마무리소둔의 승온과정에 있어서의 800℃이상의 영역에서 질소 50% 이상의 분위기로 가열하는 것이 바람직하다. 이 경우 800℃이상의 영역으로 한정한 것은 이 이하의 온도에서는 영향이 적기 때문이다. 질소량은 100%라도 좋지만 전혀 수소를 포함하지 않는 경우 분위기중에 산소 등이 혼힙되면 강판이 산화되는 경우도 있고 글래스피막의 형성에 악영향을 끼치므로 수%의 수소를 혼입시켜 처리하는 것이 바람직하다.Finishing annealing may be carried out as usual. However, when the annealing is carried out at 50% or more in the high temperature annealing temperature rising process, stable and good magnetic properties are obtained. Therefore, heating in an atmosphere of 50% or more nitrogen in an area of 800 ° C or more during the temperature rising process of the finish annealing is preferable. In this case, the reason for limiting the temperature to 800 ° C. or higher is because the influence is less at this temperature. The amount of nitrogen may be 100%, but if it does not contain hydrogen at all, oxygen or the like may be oxidized in the atmosphere, and the steel sheet may be oxidized, and since it adversely affects the formation of the glass film, it is preferable to mix and process several percent hydrogen.

이하, 본 발명을 실시를 통해 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

[실시예 1]Example 1

C: 0.024%, Si: 3.20%, Mn:0.2%, Al:0.025%, S:0.009%, N:0.009%를 슬라브를 1280℃의 온도에서 2시간 가열한 후 1270℃에서 조압연을 개시하고, 마무리압연을 거쳐 두께 2.3mm의 열연판을 만들었다. 이 열연판을 석출소둔하고 최종두께인 0.290mm로 냉간압연하였다. 석출소둔은 균열온도를 1050℃부터 1210℃사이에서 20℃간격으로 변화시키고, 승온과정의 800℃에서 각 균열온도까지를 5℃/초의 승온속도로 승온하고 균열온도에서 60초간 유지한 후 냉각을 개시하여 950℃에 달할 때까지의 시간을 120초로 하고, 이후 실온까지를 30℃/초의 속도로 급냉하였다.C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009% after heating the slab at a temperature of 1280 ° C for 2 hours, and rough rolling was started at 1270 ° C. After the finish rolling, a hot rolled sheet having a thickness of 2.3 mm was made. The hot rolled sheet was precipitated and annealed and cold rolled to a final thickness of 0.290 mm. Precipitation annealing changes the cracking temperature at 20 ℃ intervals between 1050 ℃ and 1210 ℃, and raises the temperature of each cracking temperature from 800 ℃ to the temperature of 5 ℃ / sec and maintains it at the cracking temperature for 60 seconds. The time from starting to reaching 950 degreeC was made into 120 second, and then quenched to room temperature at the speed of 30 degreeC / sec.

이어 냉간압연판은 NH3를 2.0% 함유하는 N2-H2-NH 3 분위기, 930℃의 온도에서 2분간 가열에서 연속적으로 1차재결정, 질화 및 탈탄처리를 실시하였다. 다음에 MgO를 도포하고 50%N2-H2의 분위기에서 승온속도 15℃/hr로 1200℃까지 가열후 100%H2분위기에서 20시간 가열후 냉각하였다. 다음에 응력제거소둔을 한 후 자성을 측정하였다. 그 결과를 표1에 나타내었다.Subsequently, the cold rolled plate was subjected to primary recrystallization, nitriding and decarburization treatment continuously in a N 2 -H 2 -NH 3 atmosphere containing 2.0% of NH 3 at a temperature of 930 ° C for 2 minutes. Next, MgO was applied and heated to 1200 ° C. at a heating rate of 15 ° C./hr in an atmosphere of 50% N 2 -H 2 , followed by cooling after heating for 20 hours in an atmosphere of 100% H 2 . Next, after the stress relief annealing, the magnetic properties were measured. The results are shown in Table 1.

시편Psalter 석출소둔시의 균열온도(℃)Crack temperature at precipitation annealing (℃) 자속밀도(Tesla)Magnetic flux density (Tesla) 1One 10501050 1.861.86 22 10701070 1.881.88 33 10901090 1.891.89 44 11101110 1.901.90 55 11301130 1.931.93 66 11501150 1.951.95 77 11701170 1.941.94 88 11901190 1.901.90 99 12101210 1.891.89 최적의 석출처리균열온도:1131.2-1171.2(980-1250)Optimum precipitation treatment cracking temperature: 1131.2-1171.2 (980-1250)

표 1에 나타난 바와 같이, 5-7번 시편에서 가장 우수한 자속밀도를 얻을 수 있었으며, 이때의 균열온도는 본 발명에서 제시한 균열온도식으로 구한 온도와 거의 일치함을 알 수 있었다.As shown in Table 1, it was found that the best magnetic flux density was obtained in specimens 5-7, and the crack temperature at this time was found to be almost identical to the temperature determined by the crack temperature equation presented in the present invention.

[실시예 2]Example 2

C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009%를 함유하는 슬라브를 1280℃의 온도에서 2시간 가열한 후 1270℃에서 조압연을 개시하고, 마무리압연을 거쳐 두께 2.3mm의 열연판을 만들었다. 이 열연판을 석출처리과정을 거친 후 최종두께인 0.290mm로 냉간압연하였다. 석출처리공정에서는 승온과정의 800℃에서 균열온도 1150℃까지 아래 표 2에 나타난 바와 같이 승온하고 이 온도에서 60초간 유지한 후 냉각을 개시하여 950℃에 달할 때까지의 실시예 1과 같은 방법으로 2차 재결정, 질화 및 탈탄처리와 MgO를 도포, 최종 고온소둔을 실시하였다. 다음에 응력제거소둔을 한 후 자성을 측정하였다. 그 결과를 표2에 나타내었다.A slab containing C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009% was heated at a temperature of 1280 ° C for 2 hours, and then rough rolling was carried out at 1270 ° C. The hot rolled sheet having a thickness of 2.3 mm was made through finishing rolling. After the hot rolled sheet was subjected to precipitation treatment, it was cold rolled to a final thickness of 0.290 mm. In the precipitation treatment process, the temperature was raised from 800 ° C. to the crack temperature of 1150 ° C. as shown in Table 2 below, and maintained at this temperature for 60 seconds, and then started cooling to reach 950 ° C. in the same manner as in Example 1. Secondary recrystallization, nitriding and decarburization, MgO were applied and final high temperature annealing was performed. Next, after the stress relief annealing, the magnetic properties were measured. The results are shown in Table 2.

구 분division 석출소둔시의 승온속도(℃/sec)Temperature increase rate during precipitation annealing (℃ / sec) 자속밀도(Tesla)Magnetic flux density (Tesla) 비교재Comparative material 1One 1.871.87 발명재Invention 33 1.921.92 55 1.941.94 77 1.951.95 99 1.941.94 비교재Comparative material 1111 1.901.90 1313 1.881.88

표 2에 나타낸 바와 같이, 본 발명의 범위에서 자속밀도가 매우 높은 방향성 전기강판의 제조가 가능하다는 것을 알 수 있다.As shown in Table 2, it can be seen that it is possible to manufacture a grain-oriented electrical steel sheet having a very high magnetic flux density within the scope of the present invention.

[실시예 3]Example 3

C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009%를 함유하는 슬라브를 1280℃의 온도에서 2시간 가열한 후 1270℃에서 조압연을 개시하고 마무리압연을 거쳐 두께 2.3mm의 열연판을 만들었다. 이 열연판을 석출처리한 다음, 최종두께인 0.290mm로 냉간압연하였다. 석출처리공정에서는 승온과정의 800℃에서 초당 5℃이 승온속도로 균열온도 1150℃까지 승온하고 균열온도에서 유지시간을 아래 표 3과 같이 변화시킨 다음, 950℃에 달할 때까지의 냉각시간을 120초로 하고 이후 실온까지를 30℃/초의 속도로 급냉하였다. 냉간압연판은 실시예 1과 같은 방법으로 1차 재결정, 질화 및 탈탄처리와 MgO를 도포, 최종 고온소둔을 실시하였다. 다음에 유력제거소둔을 한 후 자성을 측정하였다. 그 결과를 표 3에 나타내었다.A slab containing C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009% was heated at a temperature of 1280 ° C for 2 hours, and then rough rolling was carried out at 1270 ° C. The hot rolled sheet having a thickness of 2.3 mm was made by starting and finishing rolling. The hot rolled sheet was deposited and then cold rolled to a final thickness of 0.290 mm. In the precipitation treatment process, the temperature rises from 800 ° C. to 5 ° C. per second at a temperature rising rate to the crack temperature of 1150 ° C., and the holding time at the cracking temperature is changed as shown in Table 3 below, and then the cooling time until reaching 950 ° C. is 120. Seconds and then quenched to room temperature at 30 ° C / sec. The cold rolled plate was subjected to primary recrystallization, nitriding and decarburization, MgO, and final high temperature annealing in the same manner as in Example 1. Next, after removal of annealing, magnetic properties were measured. The results are shown in Table 3.

구 분division 석출소둔시의 유지시간(초)Holding time (seconds) during precipitation annealing 자속밀도(Tesla)Magnetic flux density (Tesla) 비교재Comparative material 00 1.891.89 발명재Invention 55 1.921.92 2020 1.941.94 4040 1.941.94 6060 1.951.95 8080 1.931.93 100100 1.941.94 120120 1.931.93 비교재Comparative material 140140 1.901.90

표 3에 나타낸 바와 같이, 본 발명의 범위에서 자속밀도가 매우 높은 방향성전기강판의 제조가 가능하다는 것을 알 수 있다.As shown in Table 3, it can be seen that it is possible to manufacture a grain-oriented electrical steel sheet having a very high magnetic flux density within the scope of the present invention.

[실시예 4]Example 4

C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009%를 함유하는 슬라브를 제조하고 1280℃의 온도에서 2시간 가열한 후 1270℃에서 조압연을 개시하고, 마무리압연을 거쳐 두께 2.3mm의 열연판을 만들었다. 이 열연판을 석출처리하고 이어 최종두께인 0.290mm로 냉간압연하였다. 석출처리공정에서는 승온과정의 800℃에서 초당 5℃의 승온속도로 균열온도 1150℃까지 승온하고 균열온도에서 60초간 유지시킨 다음 950℃까지 아래의 표 4와 같은 시간에 냉각한 다음, 실온까지 30℃/초의 속도로 급냉하였다. 냉간압연판은 실시예1과 같은 방법으로 1차재결정, 질화 및 탈탄처리와 MgO를 도포, 최종 고온소둔을 실시하였다. 다음에 응력제거소둔을 한 후 자성을 측정하였다. 그 결과를 표 4에 나타내었다.A slab containing C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009% was prepared, heated at a temperature of 1280 ° C for 2 hours, and then crude at 1270 ° C. Rolling was started and hot rolled sheet having a thickness of 2.3 mm was made through finish rolling. The hot rolled sheet was precipitated and then cold rolled to a final thickness of 0.290 mm. In the precipitation treatment process, the temperature of the temperature rises from 800 ° C. to 5 ° C. per second, the crack temperature is increased to 1150 ° C., maintained at the crack temperature for 60 seconds, and then cooled to 950 ° C. in the time shown in Table 4 below. It was quenched at a rate of ° C / sec. The cold rolled plate was subjected to primary recrystallization, nitriding and decarburization, MgO, and final high temperature annealing in the same manner as in Example 1. Next, after the stress relief annealing, the magnetic properties were measured. The results are shown in Table 4.

구 분division 석출소둔시의 냉각시간(900-980℃온도까지)(초)Cooling time during precipitation annealing (up to 900-980 ° C) (seconds) 자속밀도(Tesla)Magnetic flux density (Tesla) 비교재Comparative material 1010 1.861.86 발명재Invention 3030 1.911.91 6060 1.941.94 120120 1.931.93 180180 1.941.94 280280 1.951.95 480480 1.931.93 비교재Comparative material 600600 1.931.93

표 4에 나타낸 바와 같이, 본 발명의 범위에서 자속밀도가 매우 높은 방향성전기강판의 제조가 가능하다는 것을 알 수 있다.As shown in Table 4, it can be seen that it is possible to manufacture a grain-oriented electrical steel sheet having a very high magnetic flux density within the scope of the present invention.

[실시예 5]Example 5

C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009%를 함유하는 슬라브를 제조하고, 1280℃의 온도에서 2시간 가열한 후 1270℃에서 조압연을 개시하고 마무리압연을 거쳐 두께 2.3mm의 열연판을 만들었다. 이 열연판을 석출처리하고 이어 최종두께인 0.290mm로 냉간압연하였다. 석출처리공정에서는 승온과정의 800℃에서 초당 5℃의 승온속도로 균열온도 1150℃까지 승온하고 균열온도에서 60초간 유지시킨 다음, 950℃에 달할 때까지의 냉각시간을 60초로 하고, 이후 냉각속도를 아래 표 5와 같이 변화시켜 실온까지 냉각하였다. 냉간압연판은 실시예 1과 같은 방법으로 1차재결정질화 및 탈탄처리와 MgO를 도포, 최종 고온소둔을 실시하였다. 다음에 응력제거소둔을 한 후 자성을 측정하였다. 그 결과를 표5에 나타내었다.A slab containing C: 0.024%, Si: 3.20%, Mn: 0.2%, Al: 0.025%, S: 0.009%, N: 0.009% was prepared, heated at a temperature of 1280 ° C for 2 hours, and then at 1270 ° C. Rough rolling was started and finish rolling was performed to produce a hot rolled sheet having a thickness of 2.3 mm. The hot rolled sheet was precipitated and then cold rolled to a final thickness of 0.290 mm. In the precipitation treatment process, the temperature of the temperature rises from 800 ° C. to 5 ° C. per second to the crack temperature of 1150 ° C. and is maintained at the crack temperature for 60 seconds. Then, the cooling time until the temperature reaches 950 ° C. is 60 seconds. Was changed as shown in Table 5 below and cooled to room temperature. The cold rolled plate was subjected to primary recrystallization, decarburization, MgO, and final high temperature annealing in the same manner as in Example 1. Next, after the stress relief annealing, the magnetic properties were measured. The results are shown in Table 5.

구 분division 석출소둔시의 실온까지냉각속도(℃/sec)Cooling rate to room temperature during precipitation annealing (℃ / sec) 자속밀도(Tesla)Magnetic flux density (Tesla) 비교재Comparative material 55 1.861.86 발명재Invention 1010 1.931.93 2020 1.951.95 3030 1.941.94

표 5에 나타낸 바와 같이, 본 발명의 범위인 초당 10℃이상의 냉각속도에서 자속밀도가 매우 높은 방향성전기강판의 제조가 가능하다는 것을 알 수 있다.As shown in Table 5, it can be seen that it is possible to produce a grain-oriented electrical steel sheet having a very high magnetic flux density at a cooling rate of 10 ° C or more per second, which is the scope of the present invention.

상술한 바와 같이, 본 발명은 압연이 용이하면서도 용융스케일이 발생하지 않는 1200-1280℃의 온도로 저온재가열하면서 자기적특성이 우수한 방향성 전기강판의 제조방법을 제공하는 유용한 효과가 있다.As described above, the present invention has a useful effect of providing a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties while being reheated at a temperature of 1200-1280 ° C. that is easy to roll and does not generate a scale of melting.

Claims (4)

중량%로 Si: 2.0-4.5%, C:0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45%, S:0.002-0.20%, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어지는 규소강 슬라브를 저온재가열하고 열간압연하여 열연판을 만든 다음, 석출소둔하고, 냉간압연하여 최종두께로 한 다음, 침질을 포함한 탈탄소둔하고, 소둔분리제를 도포한 다음, 마무리소둔공정을 포함한 방향성전기강판의 제조방법에 있어서, 상기 저온재가열은 1200∼1280℃에서 행하고; 상기 석출소둔은, 800±50℃의 온도에서 980℃이상∼1250℃이하의 균열온도까지 2∼10℃/sec의 속도로 승온하고 이 균열온도에서 1∼120초 동안 유지한 다음 900℃이상∼980℃미만의 온도까지는 20∼500초로 냉각하고 이어 실온까지는 10℃/sec 이상의 속도로 급냉하는 것을 포함하여 이루어짐을 특징으로 하는 방향성전기강판의 제조방법By weight Si: 2.0-4.5%, C: 0.010-0.095%, Sol-Al: 0.010-0.040%, N: 0.002-0.020%, Mn: 0.05-0.45%, S: 0.002-0.20%, remaining Fe and The silicon steel slab made of other inevitable impurities is reheated at low temperature and hot rolled to make a hot rolled sheet, followed by precipitation annealing, cold rolling to a final thickness, decarbonization including sedimentation, and application of annealing separator. Next, in the method for producing a grain-oriented electrical steel sheet including a finish annealing step, the low temperature reheating is performed at 1200 to 1280 ° C; The precipitation annealing is performed at a temperature of 800 ± 50 ° C. to a crack temperature of 980 ° C. or more and 1250 ° C. or less at a rate of 2 to 10 ° C./sec, and maintained at this cracking temperature for 1 to 120 seconds, and then to 900 ° C. or more. Method for producing a grain-oriented electrical steel sheet characterized in that it comprises cooling to a temperature of less than 980 ℃ 20 to 500 seconds and then quenching at a rate of 10 ℃ / sec or more to room temperature 제 1항에 있어서, 상기 냉간압연은 81∼95%의 압하율로 행함을 특징으로 하는 방법The method according to claim 1, wherein the cold rolling is performed at a reduction ratio of 81 to 95%. 제 1항에 있어서, 상기 침질을 포함한 탈탄소둔은 NH3를 0.05-5% 함유하는 탈탄성분위기에서 850∼1100℃의 온도구역에서 행함을 특징으로 하는 방법.The method of claim 1, wherein said decarburization annealing including chimjil is characterized in the works in a temperature zone of 850~1100 ℃ in deionized elastic atmosphere containing 0.05-5% and NH 3. 제1항에 있어서, 상기 석출소둔의 균열온도(Tk)는 아래의 식으로 구함을 특징으로 하는 방법. 1.04Ts-0.6Al-50≤Tk≤1.04Ts-0.6Al-10The method according to claim 1, wherein the cracking temperature (Tk) of the precipitation annealing is obtained by the following equation. 1.04Ts-0.6Al-50≤Tk≤1.04Ts-0.6Al-10 (여기서, Ts는 슬라브 가열온도(℃), Al: Sol-Al의 함량(ppm))Where Ts is slab heating temperature (℃) and Al is the content of Sol-Al (ppm).
KR1019980058738A 1998-12-26 1998-12-26 Manufacturing method of oriented electrical steel sheet KR100352606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980058738A KR100352606B1 (en) 1998-12-26 1998-12-26 Manufacturing method of oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980058738A KR100352606B1 (en) 1998-12-26 1998-12-26 Manufacturing method of oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
KR20000042518A KR20000042518A (en) 2000-07-15
KR100352606B1 true KR100352606B1 (en) 2002-10-19

Family

ID=19565765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980058738A KR100352606B1 (en) 1998-12-26 1998-12-26 Manufacturing method of oriented electrical steel sheet

Country Status (1)

Country Link
KR (1) KR100352606B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544615B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
KR101131729B1 (en) * 2004-12-28 2012-03-28 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheet having high permeability
KR100817168B1 (en) * 2006-12-27 2008-03-27 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR100825306B1 (en) * 2006-12-28 2008-04-28 주식회사 포스코 Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties

Also Published As

Publication number Publication date
KR20000042518A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
KR100721822B1 (en) The grain-oriented electrical steel sheet manufacturing method with low iron core loss, high magnetic induction
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR950013286B1 (en) Method of making non-oriented magnetic steel strips
KR100352606B1 (en) Manufacturing method of oriented electrical steel sheet
KR101408230B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101506677B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR20130071969A (en) Grain-oriented electrical steel sheet and manufacturing method for the same
WO2008078915A1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR20200076515A (en) Grain oriented electrical steel sheet and method for manufacturing therof
KR100817168B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR101667617B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
KR101141279B1 (en) method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
KR20130014889A (en) Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
KR101351955B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
KR100399221B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR100368235B1 (en) Manufacturing method of oriented electrical steel sheet
KR100347597B1 (en) Method for manufacturing grain oriented electric steel sheet with high magnetic density
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
KR100360101B1 (en) A method for manufacturing grain oriented electrical steel sheets having superior glass film
KR101539752B1 (en) Oriented electrical steel sheet and method for manufacturing the same
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101408231B1 (en) Method for manufacturing the grain-oriented electrical steel sheets with excellent magnetic properties
KR100501005B1 (en) A method for manufacturing grain oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120723

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130821

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160825

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee