KR100352449B1 - Gas separation membrane and method for producing the same - Google Patents

Gas separation membrane and method for producing the same Download PDF

Info

Publication number
KR100352449B1
KR100352449B1 KR1020010058781A KR20010058781A KR100352449B1 KR 100352449 B1 KR100352449 B1 KR 100352449B1 KR 1020010058781 A KR1020010058781 A KR 1020010058781A KR 20010058781 A KR20010058781 A KR 20010058781A KR 100352449 B1 KR100352449 B1 KR 100352449B1
Authority
KR
South Korea
Prior art keywords
gas separation
separation membrane
acetate
membrane
film
Prior art date
Application number
KR1020010058781A
Other languages
Korean (ko)
Other versions
KR20010103090A (en
Inventor
이완수
김희진
Original Assignee
주식회사 나노포아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노포아 filed Critical 주식회사 나노포아
Priority to KR1020010058781A priority Critical patent/KR100352449B1/en
Publication of KR20010103090A publication Critical patent/KR20010103090A/en
Application granted granted Critical
Publication of KR100352449B1 publication Critical patent/KR100352449B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 질소에 대한 산소의 선택도가 매우 우수하고 고농도의 산소를 발생하는 기체 분리막 및 이의 제조 방법에 관한 것이다. 본 발명의 기체 분리막은 실리콘, 폴리이미드, 폴리아미드, 셀룰로즈아세테이트, 폴리설폰, 폴리비닐알코올, 폴리페닐옥사이드, 폴리부틸아크릴레이트 및 이들의 둘 이상의 혼합물로 이루어진 그룹중에서 선택된 고분자를 용매중에 용해시키고, 생성된 용해물에 니켈, 코발트, 루테늄, 로듐, 팔라듐, 티탄, 철, 구리 또는 크롬의 탄산염, 질산염, 아세트산염, 할로겐화물 또는 아세틸아세토네이트를 첨가하며, 형성된 혼합물을 캐스팅하거나 노즐을 통해 방사시켜 막을 형성하고, 형성된 막을 응고, 세척, 건조의 과정을 차례로 거치고, 임의로 건조된 막을 열처리하거나 코팅함으로써 제조된다.The present invention relates to a gas separation membrane and a method for producing the same, which has a very good selectivity of oxygen to nitrogen and generates a high concentration of oxygen. The gas separation membrane of the present invention dissolves a polymer selected from the group consisting of silicone, polyimide, polyamide, cellulose acetate, polysulfone, polyvinyl alcohol, polyphenyloxide, polybutyl acrylate and a mixture of two or more thereof in a solvent, To the resulting melt is added carbonates, nitrates, acetates, halides or acetylacetonates of nickel, cobalt, ruthenium, rhodium, palladium, titanium, iron, copper or chromium, and the resulting mixture is cast or spun through a nozzle It is prepared by forming a film, solidifying, washing and drying the formed film in sequence, and optionally heat treating or coating the dried film.

Description

기체 분리막 및 이의 제조방법{GAS SEPARATION MEMBRANE AND METHOD FOR PRODUCING THE SAME}GAS SEPARATION MEMBRANE AND METHOD FOR PRODUCING THE SAME}

본 발명은 기체를 분리하기 위한 기능성 막에 관한 것이다. 보다 자세하게는 본 발명은 고분자에 금속화합물이 혼입되어 구성된 기체 분리막 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a functional membrane for separating gases. More particularly, the present invention relates to a gas separation membrane composed of a metal compound mixed with a polymer and a method of manufacturing the same.

가스상 스트림에서 한 성분의 가스를 다른 성분의 가스로부터 분리하는 방법으로서 막 분리법이 있다. 막 분리법에서 사용되는 기체 분리막은 접촉되는 기체 유동물에서 기체간의 투과속도 차이를 이용해서 기체를 분리하는 것으로 그 성능은 투과도 및 선택도에 의해 결정된다. 일반적으로, 기체 분리막으로서 아세테이트 에스테르와 올레핀류로부터 유도된 막이 사용되고 있는데 이들은 질소에 대해 산소를 분리하거나 메탄에 대해 이산화탄소를 분리하는데 유용되고 있다.Membrane separation is a method of separating a gas of one component from a gas of another component in a gaseous stream. The gas separation membrane used in the membrane separation method separates gas using the difference in permeation rate between gases in the gas flow to be contacted, and its performance is determined by permeability and selectivity. In general, membranes derived from acetate esters and olefins are used as gas separation membranes, which are useful for separating oxygen for nitrogen or carbon dioxide for methane.

미국특허 제4542010호에는 산소와 질소를 분리하는 막이 기술되어 있다. 이 막은 고체 필름인 두개의 막 지지체사이에 용매, 축염기(예, 질소 원자를 함유한 루이스 염기) 및 산소 캐리어(예, 금속-함유 착화물)가 액체 상태로 함유되어 있는 액체 막이다.U.S. Patent No. 4542010 describes a membrane that separates oxygen and nitrogen. This membrane is a liquid membrane containing a solvent, a hexabase (e.g., Lewis base containing nitrogen atom) and an oxygen carrier (e.g. metal-containing complex) in a liquid state between two membrane supports which are solid films.

대한민국 특허등록 제10-198198호에는 폴리설폰, 폴리이소설폰, 폴리카보네이트, 폴리이미드, 폴리아미드, 폴리아라미드 및 이들의 혼합물중에 선택된 고분자, N-메틸피롤리돈, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-디메틸설폭사이드 및 이들의 혼합물중에서 선택된 용매와 테트라하이드로푸란, 메틸에틸케톤, 에틸아세테이트, 트리클로로에탄, 2-메틸-1-부탄올, 2-메틸-부탄올 및 2-펜탄올중에서 선택된 첨가의 혼합물을 응고시켜 제조한 기체 분리막이 기술되어 있다.Korean Patent Registration No. 10-198198 discloses a polymer selected from polysulfone, polyisosulfone, polycarbonate, polyimide, polyamide, polyaramid and mixtures thereof, N-methylpyrrolidone, N, N-dimethylformamide, Tetrahydrofuran, methylethylketone, ethyl acetate, trichloroethane, 2-methyl-1-butanol, 2-methyl-butanol, and a solvent selected from N, N-dimethylacetamide, N-dimethylsulfoxide and mixtures thereof Gas separation membranes prepared by solidifying a mixture of additions selected from 2-pentanol are described.

기체 분리막은 향상된 기체 분리능을 위해 선택도 및 투과도가 높고 또한 경제적으로 유리한 새로운 막을 위해 끊임없이 연구 개발되고 있다.Gas separation membranes are constantly being researched and developed for new membranes having high selectivity, high permeability and economic advantages for improved gas separation performance.

본 발명자들은 고분자과 유기금속화합물을 포함한 막을 제조하고 제조된 막에 대해 기체 투과도와 선택도를 측정한 결과 매우 우수한 산소 발생능을 나타낸다는 것을 발견하였다.The present inventors found that the membrane containing the polymer and the organometallic compound was prepared, and the gas permeability and selectivity of the prepared membrane showed very good oxygen generation ability.

도 1은 본 발명에 따른 기체 분리막의 제조 공정도이다.1 is a manufacturing process of the gas separation membrane according to the present invention.

도 2는 본 발명의 방법에 따라 제조된 기체 분리막의 주사전자현미경 (Scanning Electron Microscopy) 사진이다.2 is a scanning electron microscope (Scanning Electron Microscopy) photograph of the gas separation membrane prepared according to the method of the present invention.

한 가지 관점로서, 본 발명은 실리콘, 폴리이미드, 폴리아미드, 셀룰로즈아세테이트, 폴리설폰, 폴리비닐알코올, 폴리페닐옥사이드, 폴리부틸아크릴레이트 및 이들의 둘 이상의 혼합물로 이루어진 그룹중에서 선택된 고분자 및 니켈, 코발트, 루테늄, 로듐, 팔라듐, 티탄, 철, 구리 또는 크롬의 탄산염, 질산염, 아세트산염, 할로겐화물 또는 아세틸아세토네이트를 포함함을 특징으로 하는 기체 분리막을 제공한다.In one aspect, the invention provides a polymer selected from the group consisting of silicone, polyimide, polyamide, cellulose acetate, polysulfone, polyvinyl alcohol, polyphenyloxide, polybutyl acrylate and mixtures of two or more thereof and nickel, cobalt It provides a gas separation membrane comprising a carbonate, nitrate, acetate, halide or acetylacetonate of ruthenium, rhodium, palladium, titanium, iron, copper or chromium.

다른 관점으로서, 본 발명은 실리콘, 폴리이미드, 폴리아미드, 셀룰로즈아세테이트, 폴리설폰, 폴리비닐알코올, 폴리페닐옥사이드, 폴리부틸아크릴레이트 및 이들의 둘 이상의 혼합물로 이루어진 그룹중에서 선택된 고분자를 용매중에 용해시키고, 생성된 용해물에 니켈, 코발트, 루테늄, 로듐, 팔라듐, 티탄, 철, 구리 또는 크롬의 탄산염, 질산염, 아세트산염, 할로겐화물 또는 아세틸아세토네이트를 첨가하며, 형성된 혼합물을 캐스팅하거나 노즐을 통해 방사시켜 막을 형성하고, 형성된 막을 응고시키며, 응고된 막을 세척하고 건조시키고, 임의로 건조된 막을 열처리하거나 코팅함을 특징으로 하여 기체 분리막을 제조하는 방법을 제공한다.In another aspect, the present invention is a polymer selected from the group consisting of silicone, polyimide, polyamide, cellulose acetate, polysulfone, polyvinyl alcohol, polyphenyloxide, polybutyl acrylate and mixtures of two or more thereof, To the resulting melt, add carbonates, nitrates, acetates, halides or acetylacetonates of nickel, cobalt, ruthenium, rhodium, palladium, titanium, iron, copper or chromium, and cast the formed mixture or spin through a nozzle To form a membrane, to solidify the formed membrane, to wash and dry the solidified membrane, and optionally to heat or coat the dried membrane.

본 발명에 따른 신규한 기체 분리막은 어떠한 형태로도 가능하다. 즉, 본 발명의 분리막은 단일막(균질막), 복합막 또는 비대칭막 등으로 제조할 수 있다. 이들 막은 평판, 중공관, 중공섬유 등의 형태로 할 수 있다. 이러한 형태로 막을 제조하는 것은 잘 알려져 있다(참조: 도 1).The novel gas separation membrane according to the invention can be in any form. That is, the separation membrane of the present invention can be prepared as a single membrane (homogeneous membrane), a composite membrane or an asymmetric membrane. These membranes can be in the form of flat plates, hollow tubes, hollow fibers and the like. It is well known to produce membranes in this form (see FIG. 1).

본 발명의 방법에 따라 제조된 막은 산소, 질소, 수소, 일산화탄소, 이산화탄소, NO, NOx 등의 다양한 기체를 분리하는데 매우 유용하게 사용할 수 있다.Membranes prepared according to the method of the present invention can be very useful for separating various gases such as oxygen, nitrogen, hydrogen, carbon monoxide, carbon dioxide, NO, NOx.

본 발명에서 고분자는 용매에 대하여 10 내지 40중량%, 바람직하게는 15 내지 25중량%를 사용할 수 있다.In the present invention, the polymer may be used in an amount of 10 to 40% by weight, preferably 15 to 25% by weight, based on the solvent.

본 발명에서 유기금속화합물은 용매에 대하여 0.1 내지 10중량%, 바람직하게는 0.5 내지 5중량%을 사용할 수 있다.In the present invention, the organometallic compound may be used in an amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the solvent.

본 발명에서 사용되는 용매로는 테트라하이드로푸란, 알코올(예, 1,2-부탄올, 1,2-펜탄올, 1,3-펜탄올) 또는 이의 유도체, 알킬 아세테이트(예, 에틸 아세테이트, 메틸 아세테이트) 또는 이의 유도체, 트리클로로에틸 아세테이트 등이 포함된다.Solvents used in the present invention include tetrahydrofuran, alcohols (eg 1,2-butanol, 1,2-pentanol, 1,3-pentanol) or derivatives thereof, alkyl acetates (eg ethyl acetate, methyl acetate). ) Or derivatives thereof, trichloroethyl acetate and the like.

본 발명의 막을 제조할 때 막의 분리능을 향상시키기 위해 첨가제로서 계면활성제가 추가로 사용될 수 있다. 계면활성제로는 예를 들면 폴리옥시에틸렌과 폴리옥시프로필렌의 공중합체, 폴리옥시에틸렌 알킬 페닐 에테르, 폴리옥시에틸렌 알킬 에테르 등이 포함된다. 이의 사용량은 약 0.1 내지 10 중량%이다.In preparing the membranes of the present invention, surfactants may additionally be used as additives to improve the resolution of the membranes. Surfactants include, for example, copolymers of polyoxyethylene and polyoxypropylene, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl ethers, and the like. Its use amount is about 0.1 to 10% by weight.

이하 실시예로 본 발명을 보다 구체적으로 설명한다. 그러나, 이들 실시예가 본 발명을 한정하는 것으로 이해되어서는 아니된다.The present invention will be described in more detail with reference to the following Examples. However, these examples should not be understood as limiting the present invention.

실시예Example

실시예 1Example 1

500ml 반응조에 방사원액으로 폴리설폰(PS, BASF사 S6010) 25g을 용매인 테트라하이드로퓨란(THF, Aldrich) 78.7ml중에 용해시키고 용해물에 금속 화합물로서 로듐아세테이트[Rh(CH3COO)3, Aldrich) 5g을 첨가하였다. 혼합물을 자동 막 제조장치(IMOTO 301)을 사용하여, 드라이빙 스트로크 150 mm, 어플리케이션 속도 30 mm/sec, 55번 바(125.7 μm)의 조건 하에 캐스팅하였다. 제조된 막을 건조기 내에서 서서히 증발, 건조시킨 후, 잔류용매제거를 위하여 진공오븐에서(80℃)에서 24시간이상 건조시켰다. 건조시킨 막에 상기한 자동 막 제조장치를 이용하여(3번 바(6.86 μm)) 5중량% 실리콘 용액으로 코팅한 후, 상기 건조 과정과 동일한 조건에서 건조시켜 제조하였다. 이와 같이 얻어진 막의 두께는 약 88 μm이었다.In a 500 ml reactor, 25 g of polysulfone (PS, S6010 from BASF) was dissolved in 78.7 ml of tetrahydrofuran (THF, Aldrich) as a solvent. Rhodium acetate [Rh (CH 3 COO) 3 , Aldrich as a metal compound was dissolved in the melt. ) 5 g was added. The mixture was cast using an automatic membrane making machine (IMOTO 301) under conditions of driving stroke 150 mm, application speed 30 mm / sec, 55 bar (125.7 μm). The film was evaporated and dried slowly in a dryer and then dried in a vacuum oven (80 ° C.) for at least 24 hours to remove residual solvent. The dried membrane was coated with a 5 wt% silicone solution using the above automatic membrane manufacturing apparatus (3 bar (6.86 μm)), and then dried under the same conditions as the above drying process. The film thus obtained had a thickness of about 88 μm.

실시예 2Example 2

500ml 반응조에 방사 원액으로 폴리설폰(PS, BASF사 S6010) 25g을 용매인 N-메틸피롤리돈(NMP, Aldrich) 76.5ml중에 용해시키고 용해물에 금속화합물로서 코발트아세테이트(Co(CH3COO)3, Aldrich사) 5g을 첨가하였다. 혼합물을 자동 막 제조장치(IMOTO 301)을 사용하여, 드라이빙 스트로크 150 mm, 어플리케이션 속도 30 mm/sec, 55번 바(125.7 ??m)의 조건 하에 캐스팅하였다. 제조된 막을 건조기 내에서 서서히 증발, 건조시킨 후, 잔류용매제거를 위하여 진공오븐에서(80℃)에서 24시간이상 건조시켰다. 건조시킨 막에 상기한 자동 막 제조장치를 이용하여(3번 바(6.86 μm)) 5중량% 폴리에틸렌이민(PEI) 용액으로 코팅한 후, 상기 건조 과정과 동일한 조건에서 건조시켜 제조하였다.In a 500 ml reactor, 25 g of polysulfone (PS, S6010 from BASF) was dissolved in 76.5 ml of N-methylpyrrolidone (NMP, Aldrich) as a solvent, and cobalt acetate (Co (CH 3 COO)) as a metal compound was dissolved in the solution. 3 , 5 g of Aldrich) was added. The mixture was cast using an automatic membrane making machine (IMOTO 301) under the conditions of driving stroke 150 mm, application speed 30 mm / sec, bar 55 (125.7 ?? m). The film was evaporated and dried slowly in a dryer and then dried in a vacuum oven (80 ° C.) for at least 24 hours to remove residual solvent. The dried membrane was coated with a 5 wt% polyethyleneimine (PEI) solution using the above automatic membrane manufacturing apparatus (3 bar (6.86 μm)), and then dried under the same conditions as the above drying process.

실시예 3Example 3

방사원액으로 폴리아크릴로니트릴(PAN, Aldrich사) 25g을 사용한 것을 제외하고 실시예 1에 기술된 바와 동일한 조건으로 막을 제조하였다.The membrane was prepared under the same conditions as described in Example 1 except that 25 g of polyacrylonitrile (PAN, Aldrich) was used as the spinning stock solution.

실시예 4Example 4

방사원액으로 폴리아크릴로니트릴(PAN, Aldrich사) 25g으로 사용한 것을 제외하고 실시예 2에 기술된 바와 동일한 조건으로 막을 제조하였다.The membrane was prepared under the same conditions as described in Example 2 except that 25 g of polyacrylonitrile (PAN, Aldrich) was used as the spinning stock solution.

실시예 5Example 5

방사원액으로 폴리이미드(PI, Aldrich사 MW=86000) 25g을 사용한 것을 제외하고 실시예 1에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 1 except that 25 g of polyimide (PI, MW = 86000 from Aldrich) was used as the spinning stock solution.

실시예 6Example 6

방사원액으로 폴리이미드(PI, Aldrich사 MW=86000) 25g을 사용한 것을 제외하고 실시예 2에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 2 except that 25 g of polyimide (PI, MW = 86000 from Aldrich) was used as the spinning stock solution.

비교예 1Comparative Example 1

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 1에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 1 except that no metal compound was added to the solution of the spinning stock solution and the solvent.

비교예 2Comparative Example 2

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 2에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 2 except that no metal compound was added to the solution of the spinning stock solution and the solvent.

비교예 3Comparative Example 3

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 3에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 3 except that no metal compound was added to the lysate of the spinning stock solution and the solvent.

비교예 4Comparative Example 4

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 4에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 4 except that no metal compound was added to the solution of the spinning stock solution and the solvent.

비교예 5Comparative Example 5

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 5에 기술된 바와 동일한 조건으로 막을 제조하였다.The membrane was prepared under the same conditions as described in Example 5 except that no metal compound was added to the lysate of the spinning stock solution and the solvent.

비교예 6Comparative Example 6

방사원액과 용매의 용해물에 금속화합물을 첨가하지 않은 것을 제외하고 실시예 6에 기술된 바와 동일한 조건으로 막을 제조하였다.Membranes were prepared under the same conditions as described in Example 6 except that no metal compound was added to the solution of the spinning stock solution and the solvent.

실험실시예 1Laboratory Example 1

질소에 대한 산소의 막 투과도 및 선택도 실험Membrane Permeability and Selectivity of Oxygen to Nitrogen

상기 실시예 1 내지 6 및 비교예 1 내지 6에서 제조된 막의 투과도 및 선택도를 기체 투과장치(밀리포아 필름 홀더 90mm, YY3009000)와 기체투과량 측정장치(Dwyer, RMA-23SSV)와 가스 크로마토그래피(GC-17A, Shimadzu)를 이용하여 측정하였다. 이의 결과는 하기 표 1 및 표 2에 수록되어 있다.The permeability and selectivity of the membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were measured using a gas permeation apparatus (Millipoa film holder 90mm, YY3009000), a gas permeation measuring apparatus (Dwyer, RMA-23SSV) and gas chromatography ( GC-17A, Shimadzu). The results are listed in Tables 1 and 2 below.

표 1. 본 발명에 따른 기체 분리막의 투과도 및 선택도Table 1. Permeability and Selectivity of Gas Separation Membranes According to the Present Invention

실시예Example 고분자Polymer 용매menstruum 도입 금속화합물Introduction metal compound 2차고분자2nd polymer 산소기체투과도Oxygen Gas Permeability 산소/질소선택도Oxygen / nitrogen selectivity 1One PSPS THFTHF Rh(CH3COO)2 Rh (CH 3 COO) 2 실리콘silicon 2.102.10 3.83.8 22 PSPS NMPNMP Co(CH3COO)3 Co (CH 3 COO) 3 PEIPEI 1.851.85 4.244.24 33 PANPAN THFTHF Rh(CH3COO)2 Rh (CH 3 COO) 2 실리콘silicon 2.432.43 4.304.30 44 PANPAN NMPNMP Co(CH3COO)3 Co (CH 3 COO) 3 PEIPEI 2.672.67 4.104.10 55 PIPI THFTHF Rh(CH3COO)2 Rh (CH 3 COO) 2 실리콘silicon 3.253.25 3.903.90 66 PIPI NMPNMP Co(CH3COO)3 Co (CH 3 COO) 3 PEIPEI 2.982.98 4.514.51

투과도 단위: GPU, x10-4cm3/cm2.s.cmHgTransmittance Unit: GPU, x10 -4 cm 3 / cm 2 .s.cmHg

선택도(selectivity) = 산소투과도/질소투과도Selectivity = oxygen permeability / nitrogen permeability

표 2. 비교군으로 금속화합물이 함유되지 않은 기체 분리막의 투과도 및 선택도Table 2. Permeability and Selectivity of Gas Separators without Metal Compounds in Comparative Group

비교예Comparative example 고분자Polymer 용매menstruum 2차고분자2nd polymer 산소기체투과도Oxygen Gas Permeability 산소/질소선택도Oxygen / nitrogen selectivity 1One PSPS THFTHF 실리콘silicon 2.122.12 2.422.42 22 PSPS NMPNMP PEIPEI 2.012.01 2.322.32 33 PANPAN THFTHF 실리콘silicon 2.452.45 2.502.50 44 PANPAN NMPNMP PEIPEI 2.672.67 2.312.31 55 PANPAN THFTHF 실리콘silicon 3.303.30 3.53.5 66 PIPI NMPNMP PEIPEI 3.213.21 3.43.4

투과도 단위: GPU, ×10-4cm3/cm2.sec.cmHgTransmittance Unit: GPU, × 10 -4 cm 3 / cm 2 .sec.cmHg

선택도(selectivity) = 산소투과도/질소투과도Selectivity = oxygen permeability / nitrogen permeability

상기 표 1 및 표 2의 결과로부터 본 발명에 따른 신규한 기체 분리막은 금속화합물이 함유되지 않은 기체 분리막에 비해 산소/질소 선택도가 현저히 향상되어 있음을 알 수 있다.From the results of Table 1 and Table 2, the novel gas separation membrane according to the present invention can be seen that the oxygen / nitrogen selectivity is significantly improved compared to the gas separation membrane containing no metal compound.

실험실시예 2Laboratory Example 2

본 발명에 따른 기체분리막의 산소 발생 성능을 평가하기 위해 실시예 1의 막으로 제조한 모듈에 의한 산소 농도를 측정하였다. 대조용으로 일본 우베사 제품(UBE, NM-CO5A)을 사용하였다. 산소농도의 측정은 4 kgf/cm2로의 운전압력하에 가스유량계 MFM Mass Flowmeter(BROOKS 제품)로 실시하였다. 이의 결과는 하기 표3에 기술되어 있다.In order to evaluate the oxygen generating performance of the gas separation membrane according to the present invention, the oxygen concentration by the module prepared with the membrane of Example 1 was measured. A Japanese Ubesa product (UBE, NM-CO5A) was used as a control. The oxygen concentration was measured with a gas flow meter MFM Mass Flowmeter (manufactured by Brookes) under an operating pressure of 4 kgf / cm 2 . The results are shown in Table 3 below.

표 3. 본 발명의 기체분리막모듈과 우베사 제품으로 발생한 산소농도변화 측정 결과Table 3. Measurement result of oxygen concentration change caused by the gas separation membrane module and Ubesa products of the present invention

시간(hour)Hour 본 발명 모듈Invention module 우베사 제품Ubesa Products 0.50.5 38.038.0 37.037.0 1One 38.238.2 37.437.4 22 38.538.5 38.238.2 33 38.538.5 38.038.0 44 38.538.5 38.038.0 55 38.638.6 37.437.4 88 38.438.4 37.637.6 1010 38.438.4 36.636.6 1212 38.438.4 36.636.6

상기 결과로부터 본 발명에 따른 기체 분리막은 공지된 기체 분리막에 비해 산소발생능이 우수함을 알 수 있다.From the above results, it can be seen that the gas separation membrane according to the present invention has an excellent oxygen generating ability compared to the known gas separation membrane.

본 발명에 따른 기체 분리막은 산소/질소 선택도가 매우 우수하고 또한 본 발명의 기체 분리막으로 제조한 모듈은 종래의 기체 분리막 모듈에 비해 고농도의 산소를 발생하므로 여러 산업 분야에서 유용하게 사용될 것으로 기대된다.The gas separation membrane according to the present invention has excellent oxygen / nitrogen selectivity, and the module manufactured with the gas separation membrane of the present invention generates high concentration of oxygen as compared to the conventional gas separation membrane module, and thus is expected to be useful in various industrial fields. .

Claims (9)

실리콘, 폴리이미드, 폴리아미드, 셀룰로즈아세테이트, 폴리설폰, 폴리비닐알코올, 폴리페닐옥사이드, 폴리부틸아크릴레이트 및 이들의 둘 이상의 혼합물로 이루어진 그룹중에서 선택된 고분자 및 니켈, 코발트, 루테늄, 로듐, 팔라듐, 티탄, 철, 구리 또는 크롬의 탄산염, 질산염, 아세트산염, 할로겐화물 또는 아세틸아세토네이트를 포함함을 특징으로 하는 기체 분리막.Nickel, cobalt, ruthenium, rhodium, palladium, titanium and polymers selected from the group consisting of silicones, polyimides, polyamides, cellulose acetates, polysulfones, polyvinyl alcohols, polyphenyloxides, polybutylacrylates and mixtures of two or more thereof Gas separation membrane comprising a carbonate, nitrate, acetate, halide or acetylacetonate of iron, copper or chromium. 제1항에 있어서, 고분자가 폴리아크릴로니트릴 또는 폴리이미드인 기체 분리막.The gas separation membrane according to claim 1, wherein the polymer is polyacrylonitrile or polyimide. 실리콘, 폴리이미드, 폴리아미드, 셀룰로즈아세테이트, 폴리설폰, 폴리비닐알코올, 폴리페닐옥사이드, 폴리부틸아크릴레이트 및 이들의 둘 이상의 혼합물로 이루어진 그룹중에서 선택된 고분자를 용매중에 용해시키고, 생성된 용해물에 니켈, 코발트, 루테늄, 로듐, 팔라듐, 티탄, 철, 구리 또는 크롬의 탄산염, 질산염, 아세트산염, 할로겐화물 또는 아세틸아세토네이트를 첨가하며, 형성된 혼합물을 캐스팅하거나 노즐을 통해 방사시켜 막을 형성하고, 형성된 막을 응고시키며, 응고된 막을 세척하고 건조시킴을 특징으로 하여 기체 분리막을 제조하는 방법.A polymer selected from the group consisting of silicone, polyimide, polyamide, cellulose acetate, polysulfone, polyvinyl alcohol, polyphenyloxide, polybutyl acrylate and mixtures of two or more thereof is dissolved in a solvent, and nickel is dissolved in the resulting melt. , Add carbonates, nitrates, acetates, halides or acetylacetonates of cobalt, ruthenium, rhodium, palladium, titanium, iron, copper or chromium, cast the formed mixture or spun through a nozzle to form a film, and form a film Coagulating, washing and drying the coagulated membrane to prepare a gas separation membrane. 제3항에 있어서, 고분자가 폴리아크릴로니트릴 또는 폴리이미드인 방법.The method of claim 3 wherein the polymer is polyacrylonitrile or polyimide. 제3항에 있어서, 상기 용매가 테트라하이드로푸란, 알코올, 알킬 아세테이트 및 트리클로로에틸 아세테이트으로 이루어진 그룹중에서 선택되는 방법.4. The process of claim 3 wherein said solvent is selected from the group consisting of tetrahydrofuran, alcohols, alkyl acetates and trichloroethyl acetate. 제3항에 있어서, 상기 혼합물에 폴리옥시에틸렌과 폴리옥시프로필렌의 공중합체, 폴리옥시에틸렌 알킬 페닐 에테르, 폴리옥시에틸렌 알킬 에테르가 추가로 첨가되는 방법.4. The method of claim 3, wherein a copolymer of polyoxyethylene and polyoxypropylene, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether is further added to the mixture. 제5항에 있어서, 알코올이 1,2-부탄올, 1,2-펜탄올 또는 1,3-펜탄올인 방법.The method of claim 5, wherein the alcohol is 1,2-butanol, 1,2-pentanol or 1,3-pentanol. 제5항에 있어서, 알킬 아세테이트가 에틸 아세테이트 또는 메틸 아세테이트인 방법.The method of claim 5 wherein the alkyl acetate is ethyl acetate or methyl acetate. 제3항에 있어서, 건조된 막을 열처리하거나 코팅하는 단계를 추가로 수행하는 방법.The method of claim 3, further comprising heat treating or coating the dried film.
KR1020010058781A 2001-09-21 2001-09-21 Gas separation membrane and method for producing the same KR100352449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010058781A KR100352449B1 (en) 2001-09-21 2001-09-21 Gas separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010058781A KR100352449B1 (en) 2001-09-21 2001-09-21 Gas separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
KR20010103090A KR20010103090A (en) 2001-11-23
KR100352449B1 true KR100352449B1 (en) 2002-09-11

Family

ID=45789092

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010058781A KR100352449B1 (en) 2001-09-21 2001-09-21 Gas separation membrane and method for producing the same

Country Status (1)

Country Link
KR (1) KR100352449B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380707B1 (en) * 2007-06-19 2014-04-07 (주)에어레인 Preparation method of complex membrane for gas seperation and complex membrane for gas seperation prepared therefrom
KR102177251B1 (en) * 2019-08-14 2020-11-10 한국화학연구원 Transition metal supported acidic polymer complex membrane and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394167B1 (en) * 2012-07-31 2014-05-14 경희대학교 산학협력단 Method of manufacturing ultrafiltration using metal organic frameworks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380707B1 (en) * 2007-06-19 2014-04-07 (주)에어레인 Preparation method of complex membrane for gas seperation and complex membrane for gas seperation prepared therefrom
KR102177251B1 (en) * 2019-08-14 2020-11-10 한국화학연구원 Transition metal supported acidic polymer complex membrane and method for producing the same

Also Published As

Publication number Publication date
KR20010103090A (en) 2001-11-23

Similar Documents

Publication Publication Date Title
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
CA2666101C (en) Hollow fiber and polymer dope derived from polyamic acid
JP2885712B2 (en) Polymer solution for asymmetric single membrane and asymmetric single membrane using the same
JPS5827963B2 (en) Method for manufacturing selectively permeable membrane
JPH08501977A (en) Gas separation membranes made from aromatic polyimide, polyamide or blends of polyamide-imide polymers
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
EP0447971A2 (en) Gas separation material
JPH07251050A (en) Blend of aromatic polyimide, polyamide or polyamide-imide with polyether sulfone and gas separation membrane made of it
CN106794430A (en) Carbon molecular sieve (CMS) hollow-fibre membrane and its preparation for starting from pre-oxidation polyimides
US4919865A (en) Composite membranes of poly (methyl methacrylate) blends, their manufacture and their use
KR100352449B1 (en) Gas separation membrane and method for producing the same
JP6880485B2 (en) Asymmetric membrane
EP0354937B1 (en) Composite membranes of poly(methyl methacrylate) blends
JPS6178402A (en) Separation of organic liquid mixture
US20180339275A1 (en) Gas separation membrane, gas separation module, gas separator, and gas separation method
JP5359914B2 (en) Polyimide gas separation membrane and gas separation method
JPH07251051A (en) Aromatic polyether sulfone gas separation membrane
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JPH0112530B2 (en)
KR102223044B1 (en) Polyimide blend, each manufacturing method and method of use
JPS5959220A (en) Preparation of composite permeable membrane for separating gas
WO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
KR100308525B1 (en) Perfluoroalkyl group-containing polymers for separation membranes
KR0183458B1 (en) Asymmetric hollow fiber and its manufacturing method
JP6060715B2 (en) Polyimide gas separation membrane and gas separation method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070830

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee