KR100348157B1 - Nylon tubular film and preparation thereof - Google Patents

Nylon tubular film and preparation thereof Download PDF

Info

Publication number
KR100348157B1
KR100348157B1 KR1019990053331A KR19990053331A KR100348157B1 KR 100348157 B1 KR100348157 B1 KR 100348157B1 KR 1019990053331 A KR1019990053331 A KR 1019990053331A KR 19990053331 A KR19990053331 A KR 19990053331A KR 100348157 B1 KR100348157 B1 KR 100348157B1
Authority
KR
South Korea
Prior art keywords
tenter
heat treatment
nylon
modulus
temperature
Prior art date
Application number
KR1019990053331A
Other languages
Korean (ko)
Other versions
KR20010048598A (en
Inventor
백상현
송기상
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to KR1019990053331A priority Critical patent/KR100348157B1/en
Publication of KR20010048598A publication Critical patent/KR20010048598A/en
Application granted granted Critical
Publication of KR100348157B1 publication Critical patent/KR100348157B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material

Abstract

본 발명은 나일론 튜블라 필름의 초기 MD 모듈러스를 향상시킴으로써 기계적 물성, 화학적 성질 및 후가공성을 향상시키고 결국에는 제품의 부가가치를 크게 향상시키는 것에 관한 것으로, 이러한 고품질의 나일론 튜블라 필름은 환형 다이를 통해 용융 나일론을 압출하고 급냉하여 얻은 미연신 시이트를 Tg∼Tcc의 온도 구간에서 기계방향(MD)으로 2.5∼3.5배, 횡방향(TD)으로 2.5∼3.5배의 배율로 연신하고 텐터 열처리 구간에서 텐터연신율이 2.5∼7.0%인 것을 포함하며, 이러한 방법을 적용하면 초기 MD 모듈러스가 320∼420㎏/㎟인 고품질의 나일론 튜블라 필름을 제조할 수 있게 된다.The present invention is directed to improving the mechanical properties, chemical properties and post-processing properties of the nylon tubular film by improving the initial MD modulus, and ultimately the added value of the product. The unstretched sheet obtained by extruding and quenching the molten nylon is stretched at a magnification of 2.5 to 3.5 times in the machine direction (MD) and 2.5 to 3.5 times in the transverse direction (TD) in the temperature range of Tg to Tcc and tenter in the tenter heat treatment section. Elongation is 2.5 to 7.0%, and applying this method, it is possible to produce a high quality nylon tubular film having an initial MD modulus of 320 to 420 kg / mm 2.

Description

나일론 튜블라 필름 및 그 제조방법{Nylon tubular film and preparation thereof}Nylon tubular film and preparation method thereof

본 발명은 나일론 필름의 제조에 관한 것으로서, 보다 구체적으로는 개선된 초기 인장 기계방향(MD) 모듈러스(Modulus)를 갖는 나일론 튜블라 필름 및 그 제조방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to the manufacture of nylon films, and more particularly to nylon tubular films having improved initial tensile machine direction (MD) modulus and methods of making the same.

나일론 필름은 타 필름에 비해 가스 차단성이 우수하여 주로 진공포장, 가스치환포장 등의 포장재료로 많이 사용되며 이들 필름의 대부분은 나일론 6이고, 일부 나일론 66이 사용되고 있다. 일반적으로 이들의 제조방법으로는 동시이축 텐터(Tenter)법과 축차이축 텐터법, 동시이축 튜블라(Tubular)법 등이 있다.Nylon film has excellent gas barrier properties compared to other films, and is mainly used for packaging materials such as vacuum packaging and gas substitution packaging. Most of these films are nylon 6, and some nylon 66 is used. In general, these manufacturing methods include a coaxial biaxial tenter method, a sequential biaxial tenter method, a coaxial biaxial tubular method, and the like.

표 1은 통상의 튜블라법 및 텐터법에 의한 나일론 동시이축연신필름의 제조공정과 품질특성을 간단히 비교한 것이다.Table 1 briefly compares the manufacturing process and quality characteristics of nylon coaxially oriented films by conventional tubular and tenter methods.

구분division 동시이축 튜블라법Coaxial Tubular Method 동시이축 텐터법Coaxial tenter method 1.공정비교1. Process Comparison 다이die 원형-다이(circular-die)Circular-die 티-다이(T-die)T-die 연신Stretch 버블에 주입된 공기 - 저온Air injected into the bubble-low temperature 텐터 - 고온연신Tenter-High Temperature Stretching 열처리Heat treatment 롤, 텐터Roll, tenter 텐터Tenter 2.제품 특성2. Product Characteristics Balance 성Balance sex 매우 양호Very good 양호Good 두께균일성Thickness uniformity 불량Bad 매우 양호Very good 평면성Flatness 보통∼양호Normal to good 매우 양호Very good 내습성Moisture resistance 불량Bad 매우 양호Very good 초기 MD모듈러스Initial MD Modulus 290∼310㎏/㎟290 ~ 310㎏ / ㎡ 340∼370㎏/㎟340-370kg / mm2

동시이축 튜블라법으로 제조한 필름(이하, "튜블라 필름"이라 합니다.)은 텐터법으로 제조한 필름에 비하여 두께의 균일성과 내습성이 매우 약하며, 초기 기계방향(MD) 모듈러스가 상대적으로 10∼20%정도가 낮다. 이런 차이는 연신공정의 차이에서 비롯된다.Films made by the coaxial tubular method (hereinafter referred to as "tubular films") have a very weak thickness uniformity and moisture resistance compared to films made by the tenter method, and the initial machine direction (MD) modulus is relatively 10-20% lower. This difference comes from the difference in stretching process.

초기 기계방향(MD) 모듈러스가 낮으면 후가공 공정에서 많은 문제점을 유발할 수 있다. 즉, 인쇄공정에서 핀트아웃, 금은사 제조공정에서 절삭 및 늘어남 현상 등의 문제가 발생한다. 튜블라법으로 제조한 필름이 텐터법으로 제조한 필름에 비해 초기 MD모듈러스가 낮았던 이유는 동시이축 튜블라 법은 급냉 미연신 시트를 Tg와 Tcc사이의 온도구간에서 주배향축이 없는 랜덤한 분자배향구조로 연신을 하게 되고, 또 저온 연신 방법이므로 열처리를 통한 열고정 공정을 거치는데 이 과정에서 배향결정들과 작은 결정들은 녹아서 모듈러스감소를 초래하는 반면, 동시이축 텐터법은 Tcc이상 Tm이하의 온도에서 텐터에서 연신을 하므로 주배향축을 가진 아주 균일한 배향결정을 가져 모듈러스가 튜블라법 대비 상대적으로 높게 나타나기 때문이다. 이러한 근본적인 제막방법의 차이 때문에 동시이축 튜블라법이 동시이축텐터법을 극복하기는 힘들다.Low initial machine direction (MD) modulus can cause many problems in post processing. That is, problems such as pint out in the printing process and cutting and elongation in the gold and silver yarn manufacturing process occur. The initial MD modulus of the tubular film was lower than that of the tenter film because the coaxial biaxial tubular method showed that the quenched unstretched sheet had no main orientation axis in the temperature range between Tg and Tcc. It is stretched to the alignment structure and is a low-temperature stretching method, and undergoes heat setting process through heat treatment. In this process, the orientation crystals and small crystals melt to cause modulus reduction, while the co-axial tenter method is more than Tcc and less than Tm. This is because the stretching is carried out in the tenter at temperature, and thus the modulus is relatively higher than the tubular method with a very uniform alignment crystal having a main alignment axis. Due to this fundamental film production method, it is difficult for the biaxial tubular method to overcome the simultaneous biaxial tenter method.

따라서 본 발명은 상기한 바와 같은 선행기술의 문제점을 감안하여 기계적 물성, 화학적 성질 및 후가공성이 우수한 고 품질의 나일론 튜블라 필름을 제공하는 것을 기술적 과제로 한다.Therefore, the present invention is to provide a nylon tubular film of high quality excellent in mechanical properties, chemical properties and post-processing in view of the problems of the prior art as described above.

상기한 과제를 해결하기 위한 연구에서 본 발명자는 튜블라법에 의한 제막공정에서의 연신 및 열처리공정의 특별한 설계에 의하여 나일론 튜블라 필름의 초기 인장 기계방향(MD) 모듈러스를 크게 향상시킬 수 있음을 알게 되었다.In the study to solve the above problems, the present inventors can significantly improve the initial tensile mechanical direction (MD) modulus of the nylon tubular film by the special design of the stretching and heat treatment process in the film forming process by the tubular method. I learned.

그러므로 본 발명에 의하면, 환형 다이를 통해 용융 나일론을 압출하고 급냉하여 튜브상태의 미연신 시이트를 제조하고, 상기 미연신 시이트를 유리전이온도(glass transition temperature: Tg) 이상 냉결정화온도(cold crystallization temperature: Tcc) 이하의 온도 구간에서 기계방향(MD)으로 2.5∼3.5배, 횡방향(TD)으로 2.5∼3.5배의 배율로 연신하고 텐터 열처리 구간에서 텐터연신율이 2.5∼7.0%인 것을 특징으로 하는 나일론 튜블라 필름의 제조방법이 제공된다.Therefore, according to the present invention, the molten nylon is extruded through an annular die and quenched to prepare an unstretched sheet in a tubular state, and the unstretched sheet is cold crystallization temperature above a glass transition temperature (Tg). : Stretched at a magnification of 2.5 to 3.5 times in the machine direction (MD) and 2.5 to 3.5 times in the transverse direction (TD) in a temperature section of Tcc) or less, and a tenter elongation of 2.5 to 7.0% in the tenter heat treatment section. A method of making a nylon tubular film is provided.

또한 본 발명에 의하면 상기한 방법으로 제조되며 MD 모듈러스가 320∼420㎏/㎟인 것을 특징으로 하는 나일론 필름이 제공된다.In addition, according to the present invention there is provided a nylon film, characterized in that the MD modulus is 320 to 420 kg / mm2 produced by the above-described method.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르는 나일론 필름의 제조방법은 환형다이에서 용융 나일론의 압출, 급냉, 동시이축연신, 열처리롤에서 열처리, 텐터에서 열처리 및 연신하는 공정들로 이루어진다. 본 발명은 상기한 공정들 중에서 동시이축연신, 열처리롤에서 열처리, 텐터에서 열처리 및 연신하는 공정을 특별하게 관리하여 나일론 튜블라 필름의 초기 인장 기계방향(MD) 모듈러스를 향상시키는 것에 주된 특징이 있다.The method for producing a nylon film according to the present invention consists of extrusion of molten nylon in an annular die, quenching, coaxial stretching, heat treatment in a heat treatment roll, heat treatment and stretching in a tenter. The present invention has a main feature in improving the initial tensile mechanical modulus (MD) modulus of nylon tubular film by specially managing the processes of coaxial stretching, heat treatment in a heat treatment roll, heat treatment and stretching in a tenter. .

본 제조방법에서는 튜브상 미연신 시이트를 Tg∼Tcc의 온도 구간에서 가열하면서 공기를 주입하여 기계방향(MD)으로 2.5∼3.5배, 횡방향(TD)으로 2.5∼3.5배의 배율로 동시이축연신한다. 일반적으로 이축연신 필름의 경우 파단강도는 연신방향으로 지배받지만 모듈러스는 일정한 연신비 이상에서는 배향보다는 수소결합에 의해 지배받는다. 즉, 한쪽방향으로 배향도가 증가하게 되면 배향이 증가된 방향의 수직방향으로 모듈러스 증가를 보이게 된다. 이것을 분자의 배향으로 수소결합이 용이하게 분자간의 거리를 좁히는 효과가 발생하기 때문이다. 그리고 연신비가 너무 증가하게 되면 파단이 발생하여 현장의 적용에 불리하므로 적당한 연신비가 필요하다.In this production method, the tube-shaped unstretched sheet is heated in the temperature range of Tg to Tcc, and air is injected to simultaneously biaxially stretch at a magnification of 2.5 to 3.5 times in the machine direction (MD) and 2.5 to 3.5 times in the transverse direction (TD). do. In general, in the case of a biaxially stretched film, the breaking strength is controlled in the stretching direction, but the modulus is controlled by hydrogen bonding rather than the orientation above a certain draw ratio. That is, when the degree of orientation increases in one direction, the modulus increases in the vertical direction of the direction in which the orientation is increased. This is because the effect of narrowing the distance between molecules easily occurs due to the hydrogen bond in the orientation of the molecules. If the draw ratio is increased too much, breakage occurs, which is disadvantageous to the application of the site, and therefore, an appropriate draw ratio is required.

이와 같이 동시이축연신된 필름은 열처리공정을 거치게 된다. 열처리공정은 롤 열처리와 텐터 열처리로 구분된다.The biaxially stretched film as described above undergoes a heat treatment process. Heat treatment process is divided into roll heat treatment and tenter heat treatment.

롤 열처리는 150∼190℃정도의 온도를 유지하는 것이 바람직하다. 이 온도 이하의 경우에는 열처리가 부족하여 열수수축율이 4%이상으로 증가하게 되며, 이온도 이상에서는 텐터에서 연신을 하였을 때 파단이 발생하게 된다. 즉 기계방향(MD)으로 배향되었던 분자들이 열처리로 인하여 결정구조가 α-결정이 지배를 하게 되면 텐터에서 연신이 이루어 질 때 응력의 과다한 증가로 파단이 발생하게 된다. 즉 적당한 응력 하에 연신이 용이한 수준의 결정화가 진행되어야 한다.It is preferable that roll heat processing maintains the temperature of about 150-190 degreeC. If the temperature is lower than this temperature, heat shrinkage is insufficient and the heat shrinkage rate is increased to 4% or more. If the temperature is higher than the ionicity, breakage occurs when stretching is performed in the tenter. In other words, if the crystal structure is controlled by α-crystal due to heat treatment of molecules oriented in the machine direction (MD), breakage occurs due to excessive increase of stress when stretching is performed in the tenter. That is, crystallization at an easy stretch level should proceed under moderate stress.

텐터열처리 공정은 다음과 같다. 기존의 튜블라공정에서는 급냉시트를 Tg∼Tcc온도 구간에서만 하였고, 텐터는 열처리만 행해졌다. 본 발명에서는 텐터 열처리구간에서 217℃ 이하의 온도에서 열처리하면서 텐터연신율을 텐터 입구 필름폭에 대해 2.5∼7% 정도 증가하도록 연신을 하게되면, 기계방향(MD)으로 배향의 증가와 동시에 횡방향(TD)으로 수소결합을 증가시킨다. 그리고 텐터에서는 열처리 후에도 무정형으로 남아 있는 폴리머 사슬을 텐터연신으로 인하여 배향결정이 만들어 지게되므로 초기 기계방향(MD) 모듈러스가 향상될 수 있게 된다.The tenter heat treatment process is as follows. In the conventional tubular process, the quench sheet was performed only in the temperature range of Tg to Tcc, and the tenter was heat-treated only. In the present invention, when the tenter elongation is increased by 2.5 to 7% with respect to the tenter inlet film width while heat-treated at a temperature of 217 ° C. or lower in the tenter heat treatment section, the transverse direction ( TD) increases hydrogen bonding. In the tenter, since the orientation crystal is formed by tenter stretching the polymer chain remaining in the amorphous state after the heat treatment, the initial machine direction (MD) modulus can be improved.

본 발명은 튜블라법으로 제조될 수 있는 모든 나일론 필름에 적용할 수 있으며, 특히 나일론 6, 나일론 66 필름에 유리하게 적용할 수 있다. 또한 특별히 제한하기 위한 것은 아니지만 필름의 두께는 통상적으로 제조되는 5∼50㎛범위 내에서 적절한 두께로 제조하여 사용할 수 있다.The present invention is applicable to all nylon films that can be produced by the tubular method, and particularly advantageously to nylon 6 and nylon 66 films. In addition, although not particularly limited, the thickness of the film can be prepared by using a suitable thickness within the range of 5 to 50㎛ usually produced.

이하의 실시예에 의하여 본 발명은 더욱 상세히 설명한다. 단 하기의 실시예는 본 발명의 예시일 뿐 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in more detail by the following examples. However, the following examples are only examples of the present invention and the present invention is not limited thereto.

본 발명의 실시예 및 비교예에서 제조된 필름 및 공정성의 각종 성능평가는 다음의 측정방법으로 실시하였다.Various performance evaluations of the films and processability of the films prepared in Examples and Comparative Examples of the present invention were carried out by the following measuring method.

- 인장 강,신도 : 미국표준시험법(ASTM) D-882에 준하여 측정. 사용기기모델명 - Instron 1123, 측정조건 - 연신속도 300mm/min, 그립간 거리 100mm, 온도23℃, 상대습도50%, 시편크기 - 폭 10mm, 길이 100mm,-Tensile strength, elongation: measured according to American Standard Test Method (ASTM) D-882. Model Name-Instron 1123, Measurement Conditions-Drawing Speed 300mm / min, Grip Distance 100mm, Temperature 23 ℃, Relative Humidity 50%, Specimen Size-Width 10mm, Length 100mm,

- 인장 모듈러스 : ASTM D-882에 준하여 측정. 사용기기 모델명 - Instron 1123, 측정조건 - 연신속도 100mm/min, 그립간 거리 100mm, 온도 20℃, 상대습도 65%, 시편크기 - 폭 10mm, 길이 100mmTensile modulus: measured according to ASTM D-882. Model Name-Instron 1123, Measurement Conditions-Drawing Speed 100mm / min, Grip Distance 100mm, Temperature 20 ℃, Relative Humidity 65%, Specimen Size-Width 10mm, Length 100mm

- 밀도 : ASTM D-1507에 준하여 밀도구배관법 사용용하여 측정.-Density: Measured using density gradient tube method in accordance with ASTM D-1507.

- 결정화도 : 시료의 밀도(), 비정영역의 밀도() 및 결정영역의 밀도()를 하기 식에 대입하여 계산함. 나일론 α-결정 기준으로는 1.084,는 1.235로하여 계산.-Degree of crystallinity: density of the sample ( ), The density of the amorphous region ( ) And the density of the crystal regions ( ) Is calculated by substituting Based on nylon α-crystal Is 1.084, Calculated by 1.235.

- 열풍수축율 : JIS C-2318에 준하여 150℃, 30분 방치 후 치수변화 측정.-Hot air shrinkage: Measured after change of temperature at 150 ℃ for 30 minutes according to JIS C-2318.

[실시예 1]Example 1

260℃에서 용융 나일론 6을 환형 다이를 통해 압출하고, 급냉시켜 무정형 튜브상태의 미연신 시트를 만들고, 이 미연신 시트를 80℃로 가열하면서 튜브속에 에어를 주입시켜 동시이축연신을 실시하였다. 이때 MD연신비는 2.95배, TD연신비는 2.95배로 하였다. 다음, 열처리롤를 통과시켜 150∼170℃로 열처리하고, 텐터에서 198∼215℃로 열처리를 하면서 이 텐터 열처리 구간에서 텐터연신율을 5.15%로 증가시켰다.The molten nylon 6 was extruded through an annular die at 260 ° C., quenched to form an unstretched sheet in an amorphous tubular state, and co-axial stretching was performed by injecting air into the tube while heating the unstretched sheet to 80 ° C. At this time, the MD draw ratio was 2.95 times and the TD draw ratio was 2.95 times. Next, the heat treatment roll was passed through a heat treatment at 150 to 170 ° C., and the tenter elongation was increased to 5.15% in this tenter heat treatment section while performing heat treatment at 198 to 215 ° C. in the tenter.

[실시예 2]Example 2

처리조건들중 열처리 롤온도를 155∼175℃로, 텐터온도를 198∼217℃로, 텐터연신율을 2.94%로 변경한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.Among the treatment conditions, the same procedure as in Example 1 was repeated except that the heat treatment roll temperature was changed to 155 to 175 ° C, the tenter temperature was 198 to 217 ° C, and the tenter elongation was changed to 2.94%.

[실시예 3]Example 3

열처리 롤온도를 155∼180℃, 텐터온도를 201∼215℃로 변경한 것을 제외하고는 실시예 2와 동일한 절차를 반복하였다.The same procedure as in Example 2 was repeated except that the heat treatment roll temperature was changed to 155 to 180 ° C and the tenter temperature to 201 to 215 ° C.

[실시예 4]Example 4

롤열처리온도를 155∼185℃, 텐터열처리온도를 195∼215℃로 변경한 것을 제외하고는 실시예 2와 동일한 절차를 반복하였다.The same procedure as in Example 2 was repeated except that the roll heat treatment temperature was changed to 155 to 185 ° C and the tenter heat treatment temperature to 195 to 215 ° C.

[실시예 5]Example 5

MD연신비를 3.1, TD연신비는 2.95배로 하였고, 열처리롤온도를 150∼180℃, 텐터 열처리온도는 190∼215℃, 텐터연신율은 3.68% 증가시킨 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that the MD draw ratio was 3.1 and the TD draw ratio was 2.95 times, the heat treatment roll temperature was increased from 150 to 180 ° C., the tenter heat treatment temperature was increased from 190 to 215 ° C., and the tenter elongation was 3.68%. .

[실시예 6]Example 6

텐터 열처리 온도를 195∼210℃로 변경한 것을 제외하고는 실시예 4와 동일한 절차를 반복하였다.The same procedure as in Example 4 was repeated except that the tenter heat treatment temperature was changed to 195-210 ° C.

[비교예 1]Comparative Example 1

텐터 열처리온도를 215∼217℃, 텐터연신율을 4.41% 증가시킨 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that the tenter heat treatment temperature was increased from 215 to 217 ° C and the tenter elongation was increased by 4.41%.

[비교예 2]Comparative Example 2

롤열처리 온도를 155∼186℃, 텐터열처리온도를 201∼214℃이며, 텐터연신율은 0.73% 증가로 실시한 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that the roll heat treatment temperature was 155 to 186 占 폚, the tenter heat treatment temperature was 201 to 214 占 폚, and the tenter elongation was increased by 0.73%.

[비교예 3]Comparative Example 3

MD연신비를 3.1배, 롤열처리방법은 긴장 열처리로 실시한 것을 제외하고는 실시예 4와 동일한 절차를 반복하였다.The MD draw ratio was 3.1 times, and the roll heat treatment method was repeated with the same procedure as in Example 4 except that the heat treatment was performed by tension heat treatment.

상기 실시예 및 비교예의 제막공정조건을 표 2에 정리하였으며, 각 예에서 제조한 나일론 필름의 물성을 측정하여 그 결과를 표 3에 나타내었다.The film forming process conditions of the Examples and Comparative Examples are summarized in Table 2, the physical properties of the nylon film prepared in each example was measured and the results are shown in Table 3.

구분division 시험조건Exam conditions 연신구간 연신비(배)Extension section Extension ratio (times) 롤열처리방법Roll heat treatment method 열처리온도(℃)Heat treatment temperature (℃) 텐터연신율(%)Tenter elongation (%) MDMD TDTD 롤열처리Roll heat treatment 텐터열처리Tenter heat treatment 실시예 1Example 1 2.952.95 2.952.95 이완relaxation 150/170150/170 198/215/208198/215/208 4.414.41 실시예 2Example 2 2.952.95 2.952.95 이완relaxation 155/175155/175 198/205/217198/205/217 2.942.94 실시예 3Example 3 2.952.95 2.952.95 이완relaxation 155/180155/180 195/215/215195/215/215 2.942.94 실시예 4Example 4 2.952.95 2.952.95 이완relaxation 155/185155/185 190/212/215190/212/215 2.942.94 실시예 5Example 5 3.103.10 2.952.95 이완relaxation 150/180150/180 190/215/205190/215/205 3.683.68 실시예 6Example 6 3.103.10 2.952.95 이완relaxation 150/180150/180 195/215/210195/215/210 3.683.68 비교예 1Comparative Example 1 2.952.95 2.952.95 이완relaxation 150/170150/170 215/217/215215/217/215 5.155.15 비교예 2Comparative Example 2 3.103.10 2.952.95 긴장Tension 155/180155/180 190/205/205190/205/205 2.942.94 비교예 3Comparative Example 3 3.103.10 2.952.95 긴장Tension 156/187156/187 190/212/215190/212/215 2.942.94 비교예 4Comparative Example 4 3.103.10 2.952.95 긴장Tension 150/175150/175 190/210/215190/210/215 2.942.94 비교예 5Comparative Example 5 2.952.95 2.952.95 이완relaxation 155/186155/186 201/212/214201/212/214 0.730.73 비교예 6Comparative Example 6 3.103.10 2.952.95 긴장Tension 155/186155/186 201/212/214201/212/214 0.730.73

※ 텐터연신율 : 텐터 입구 폭 대비 최대 연신폭※ Tenter elongation: Maximum elongation compared to the tenter width

구 분division 필름특성Film properties 강도(㎏/㎟)Strength (kg / mm2) 초기 모듈러스(㎏/㎟)Initial Modulus (㎏ / ㎠) 신도(%)Elongation (%) 열수수축율(%)Heat Shrinkage (%) 결정화도(%)Crystallinity (%) 밀도density 평면성(외관)Planarity (Appearance) MDMD TDTD MDMD TDTD MDMD TDTD MDMD TDTD 실시예 1Example 1 29.329.3 31.631.6 326326 348348 154154 147147 2.802.80 2.102.10 43.3743.37 1.14951.1495 매우 양호Very good 실시예 2Example 2 28.828.8 31.931.9 323323 297297 167167 157157 2.652.65 2.252.25 44.2344.23 1.15081.1508 매우 양호Very good 실시예 3Example 3 29.629.6 32.032.0 325325 303303 165165 152152 2.552.55 2.152.15 44.6344.63 1.15141.1514 매우 양호Very good 실시예 4Example 4 28.928.9 28.628.6 327327 311311 153153 151151 2.802.80 2.002.00 44.3744.37 1.15101.1510 매우 양호Very good 실시예 5Example 5 33.533.5 31.131.1 329329 346346 137137 137137 3.303.30 1.951.95 44.0344.03 1.15051.1505 매우 양호Very good 실시예 6Example 6 33.133.1 31.331.3 333333 352352 130130 143143 3.403.40 2.152.15 43.6443.64 1.14991.1499 매우 양호Very good 비교예 1Comparative Example 1 26.526.5 27.327.3 295295 306306 164164 167167 1.801.80 1.951.95 44.7644.76 1.15161.1516 불량Bad 비교예 2Comparative Example 2 30.130.1 29.829.8 307307 296296 156156 160160 2.752.75 1.651.65 43.4443.44 1.14961.1496 불량Bad 비교예 3Comparative Example 3 33.033.0 30.630.6 303303 347347 138138 163163 3.253.25 1.651.65 42.4542.45 1.14811.1481 극히 불량Extremely poor

상기 표 3으로부터 알 수 있는 바와 같이, 본 발명에 따르는 실시예 1 내지4의 방법으로 제조한 나일론 튜블라 필름은 초기 기계방향(MD) 모듈러스가 일반 튜블라법으로 제조된 나일론 필름보다 약 20∼30%정도 증가를 보였으며, 열수수축율 또한 3.5% 이하로 열수에 안정한 성질을 보였다. 그리고 실시예 5 내지 6에서는 기계방향(MD) 연신비를 3.1배로 증가시켰는데, 기계방향(MD) 연신비를 증가시킴으로써 신도의 감소가 나타났으며, 기계방향(MD)파단강도의 증가와 약 10%정도의 기계방향(MD) 모듈러스 향상효과를 보였다. 이는 초기에 언급한 연신방향의 수직방향으로 수소결합에 의한 효과를 보이는 것으로 설명할 수 있다. 그러나 비교예 1에서는 텐터연신율을 5.15%로 하였으나 기계방향(MD) 모듈러스 향상효과가 적었다. 이것은 텐터폭이 연신되는 구간에서의 온도가 높아 배향결정이 부분적으로 녹는 효과를 초래하고, 이러한 배향효과의 감소는 열수수축율은 매우 우수하지만 초기 기계방향(MD) 모듈러스 향상에는 오히려 저해하는 효과로 작용한 결과를 보였다. 비교예 2 내지 3은 텐터연신을 0.73%로 TD연신이 거의 이루어지지 않아 기계방향(MD) 모듈러스 향상효과가 없는 것으로 나타났다.As can be seen from Table 3, the nylon tubular film produced by the method of Examples 1 to 4 according to the present invention has an initial machine direction (MD) modulus of about 20 to about 20 parts of the nylon film produced by the general tubular method. It showed an increase of about 30%, and the heat shrinkage rate was also less than 3.5%, which was stable to hot water. In addition, in Examples 5 to 6, the machine direction (MD) draw ratio was increased to 3.1 times, and the elongation was decreased by increasing the machine direction (MD) draw ratio, and the machine direction (MD) breaking strength was increased by about 10%. The degree of machine direction (MD) modulus was improved. This can be explained by showing the effect of hydrogen bonding in the direction perpendicular to the stretching direction mentioned earlier. However, in Comparative Example 1, although the tenter elongation was set to 5.15%, the improvement in machine direction (MD) modulus was small. This results in the effect of partial melting of the orientation crystals due to the high temperature in the stretched tenter width, and the reduction of the orientation effect is very effective in inhibiting the initial mechanical direction (MD) modulus, although the heat shrinkage rate is very good. One result was shown. Comparative Examples 2 to 3 showed no TD stretching to 0.73% of tenter stretching, so that there was no improvement in machine direction (MD) modulus.

이상 설명한 바와 같이 본 발명은 나일론 튜블라 필름의 초기 기계방향(MD) 모듈러스를 향상시킴으로써 기계적 물성, 화학적 성질 및 후가공성을 향상시키고 결국에는 제품의 부가가치를 크게 향상시키는 신규 유용의 발명인 것이다.As described above, the present invention is a novel useful invention that improves the mechanical properties, chemical properties and post-processability of the nylon tubular film by improving the initial mechanical direction (MD) modulus, and eventually greatly increases the added value of the product.

Claims (2)

나일론 튜블라 필름을 제조함에 있어서, 환형 다이를 통해 용융 나일론을 압출하고 급냉하여 얻은 미연신 시이트를 Tg∼Tcc의 온도 구간에서 기계방향(MD)으로 2.5∼3.5배, 횡방향(TD)으로 2.5∼3.5배의 배율로 연신하고 텐터 열처리 구간에서 텐터연신율이 2.5∼7.0%인 것을 포함하는 나일론 튜블라 필름의 제조방법.In manufacturing the nylon tubular film, the unstretched sheet obtained by extruding and quenching molten nylon through an annular die was 2.5 to 3.5 times in the machine direction (MD) and 2.5 in the transverse direction (TD) at a temperature range of Tg to Tcc. A method for manufacturing a nylon tubular film, comprising stretching at a magnification of ˜3.5 times and having a tenter elongation of 2.5 to 7.0% in the tenter heat treatment section. 나일론 튜블라 필름에 있어서, 초기 기계방향(MD) 모듈러스가 320∼420㎏/㎟인 것을 특징으로 하는 나일론 튜블라 필름.The nylon tubular film, wherein the initial machine direction (MD) modulus is 320 to 420 kg / mm 2.
KR1019990053331A 1999-11-27 1999-11-27 Nylon tubular film and preparation thereof KR100348157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990053331A KR100348157B1 (en) 1999-11-27 1999-11-27 Nylon tubular film and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990053331A KR100348157B1 (en) 1999-11-27 1999-11-27 Nylon tubular film and preparation thereof

Publications (2)

Publication Number Publication Date
KR20010048598A KR20010048598A (en) 2001-06-15
KR100348157B1 true KR100348157B1 (en) 2002-08-09

Family

ID=19622301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990053331A KR100348157B1 (en) 1999-11-27 1999-11-27 Nylon tubular film and preparation thereof

Country Status (1)

Country Link
KR (1) KR100348157B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863500B1 (en) * 2003-11-20 2008-10-15 주식회사 코오롱 Manufacturing method for tublar film
WO2015037962A1 (en) * 2013-09-16 2015-03-19 코오롱인더스트리 주식회사 Nylon film

Also Published As

Publication number Publication date
KR20010048598A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
Yamane et al. Mechanical properties and higher order structure of bacterial homo poly (3-hydroxybutyrate) melt spun fibers
JPH07205278A (en) Production of stretched film of polylactic acid polymer
US4667001A (en) Shaped article of vinylidene fluoride resin and process for preparing thereof
KR100348157B1 (en) Nylon tubular film and preparation thereof
TWI705164B (en) Thermoplastic polyurethane fiber and method for producing the same
CN113858597A (en) Preparation method of biaxially oriented polyester film and polyester film
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
KR100601757B1 (en) Process for manufacturing Polytrimethyleneterephthalate films
JP4068249B2 (en) Method for producing biaxially stretched polyamide film
JPS61283527A (en) Manufacture of poly-epsilon-caproamide biaxially oriented film
KR100572086B1 (en) Polyamide tape and preparation thereof
WO2023074268A1 (en) High-strength, high-elongation polypropylene fiber and production method thereof
KR100621142B1 (en) Method for preparing of polyester yarn having high smoothness
KR0173730B1 (en) Manufacturing method of biaxially oriented polyester film
KR0134560B1 (en) Preparation process of polyamide film
JPS63315608A (en) Polyester fiber
JPS59171626A (en) Manufacture of biaxially stretched poly-epsilon-caproamide film
TWI621518B (en) A method for manufacturing retardation film by using dual-axial stretching process and a retardation film
JPH10315319A (en) Biaxially oriented polyamide film
KR100616809B1 (en) High tenacity polyethylene-2, 6-naphthalate fibers for the production thereof of fibers
KR0173731B1 (en) Manufacturing method of biaxially oriented polyester film
JPS634934A (en) Preparation of polyether ether ketone film
KR960002880B1 (en) Manufacturing process of nylon-46 fiber
CN115738749A (en) Preparation process of asymmetric polyolefin hollow fiber membrane for degassing
KR20180048479A (en) The method of producing intensity changed polyester film with uniaxial stretching condition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee