KR100341020B1 - Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products - Google Patents

Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products Download PDF

Info

Publication number
KR100341020B1
KR100341020B1 KR1020010015124A KR20010015124A KR100341020B1 KR 100341020 B1 KR100341020 B1 KR 100341020B1 KR 1020010015124 A KR1020010015124 A KR 1020010015124A KR 20010015124 A KR20010015124 A KR 20010015124A KR 100341020 B1 KR100341020 B1 KR 100341020B1
Authority
KR
South Korea
Prior art keywords
concrete
water
water purification
cement
aggregate
Prior art date
Application number
KR1020010015124A
Other languages
Korean (ko)
Other versions
KR20010069443A (en
Inventor
박승범
Original Assignee
박승범
박병무
리다산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박승범, 박병무, 리다산업 주식회사 filed Critical 박승범
Priority to KR1020010015124A priority Critical patent/KR100341020B1/en
Publication of KR20010069443A publication Critical patent/KR20010069443A/en
Application granted granted Critical
Publication of KR100341020B1 publication Critical patent/KR100341020B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은 하천 및 호안 등의 수질오염으로 인한 환경피해를 감소시키고 최근 발생량이 크게 증가하고 있는 산업폐기물의 유효이용을 통하여 기존 콘크리트에서는 기대할 수 없었던 수질정화 능력을 갖춘 수질정화콘크리트를 제조하는 방법이다.The present invention is a method for producing water purification concrete with a water purification ability that could not be expected in existing concrete by reducing the environmental damage caused by water pollution such as rivers and lakes and the effective use of industrial waste, which has recently increased significantly .

본 발명의 제조방법은 보통포틀랜드 시멘트를 사용하고 골재는 크기가 5∼13mm, 13∼20mm의 부순돌 또는 폐콘크리트를 파쇄한 재생골재와 천연골재를 사용하며, 물결합재비를 25∼35%, 공극률을 15∼30%로 하고 혼화재는 고로슬래그(furnace slag) 미분말, Fe형 인공제오라이트(Fe type zeolite), 실리카흄(silica fume) 및 플라이애시(fly ash)를 시멘트 중량비로 각각 10∼40%, 5∼30%, 5∼20% 및 5∼20%를 혼입하고 혼화제는 고성능 AE감수제를 시멘트 중량비로 1∼3% 혼입한다. 또한 고내구성·고인성 수질정화콘크리트의 제조를 위하여 인장강도 3.5∼7.7kgf/cm2, 탄성계수 3.5×104 kgf/cm2, 비중 0.91, 길이 5∼40mm의 메쉬형 폴리프로필렌단섬유(Mesh type polypropylene chopped fiber)와 인장강도 7,800kgf/cm2, 탄성계수 3.8×105 kgf/cm2, 비중 1.63, 길이 3∼20mm의 피치계 탄소섬유(Pitch derived carbon fiber)를 시멘트 용적비로 0.5∼4.0%를 혼입하고 점착력 및 내력성능의 향상을 위해서 폴리머 분산제인 SBR(Styrene Butadiene Rubber) Latex를 시멘트 중량비로 5∼20%를 사용하여 제조하는 것을 특징으로 한다.The production method of the present invention is usually used Portland cement and aggregate is 5 ~ 13mm, 13 ~ 20mm of recycled aggregates and natural aggregates of crushed stone or waste concrete, using natural aggregate, water binder ratio of 25 to 35%, The porosity is 15 to 30%, and the admixture is 10 to 40% by weight of cement blast furnace slag (Fenace slag) powder, Fe type zeolite, silica fume and fly ash, respectively. 5 to 30%, 5 to 20%, and 5 to 20% are mixed, and the admixture contains 1 to 3% of a high performance AE water reducing agent in cement weight ratio. In addition, high durability and high tensile strength 3.5~7.7kgf / cm 2, modulus 3.5 × 104 kgf / cm 2, specific gravity of 0.91 and a length of mesh 5~40mm polypropylene short fibers (Mesh type for the production of concrete toughness water purification polypropylene chopped fiber), tensile strength 7,800kgf / cm 2 , elastic modulus 3.8 × 105 kgf / cm 2 , specific gravity 1.63, pitch derived carbon fiber with length of 3-20mm, 0.5 ~ 4.0% Incorporation of SBR (Styrene Butadiene Rubber) Latex, which is a polymer dispersant, in order to improve the adhesive strength and strength resistance is characterized by using 5 to 20% by weight of cement.

상술한 바와 같이 본 발명은 수질정화콘크리트를 제조하는데 있어 폐콘크리트를 파쇄한 재생골재와 산업폐기물인 고로슬래그, 실리카흄 및 플라이애시 등을 이용함으로써 자원의 유효활용을 통한 국가의 에너지절약 및 외화절감과 폐기물의 불법처분에 의한 환경오염의 예방효과가 기대된다. 또한 하천과 호수 및 각종 수질정화시설 또는 해안의 주변에 있는 구조물에 적용함으로써 자정작용에 의하여 수질을 정화시키고, 생물서식지의 확보 및 보호를 통하여 환경부하저감에 기여하고 생태계와 조화를 이루어 쾌적한 환경창조에 기여할 것으로 판단된다.As described above, the present invention utilizes recycled aggregate crushed waste concrete and industrial waste blast furnace slag, silica fume and fly ash to produce water purification concrete. The prevention effect of environmental pollution by illegal disposal of waste is expected. In addition, by applying to rivers, lakes and various water purification facilities or structures around the coast, the water quality is purified by self-cleaning action, contributing to the reduction of environmental load through securing and protecting biological habitats and creating a pleasant environment in harmony with the ecosystem. It is expected to contribute to.

Description

산업부산물을 이용한 수질정화콘크리트의 제조방법{Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products }Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products}

본 발명은 대부분 불법 매립되고 있는 폐콘크리트 및 고로슬래그, 실리카흄,플라이애시 등을 재활용하여 고성능의 수질정화콘크리트를 제조하기 위한 것으로 골재는 폐콘크리트 재생골재 또는 부순돌과 천연골재를 사용하여 시멘트 페이스트에 접착시키고 고로슬래그, 실리카흄, 플라이애시 및 제오라이트를 혼화재로 혼입하고 메쉬형 폴리프로필렌 단섬유 또는 피치계 탄소섬유와 SBR Latex 분산제를 첨가하여 연속공극을 형성시킴으로써 미생물의 부착에 의한 자연적 수질정화의 효율을 높인 고투수성·고인성·고내구성의 환경친화형 수질정화콘크리트를 제조하는 방법에 관한 것이다.The present invention is to manufacture high-quality water purification concrete by recycling waste concrete and blast furnace slag, silica fume, fly ash, etc., which are mostly illegally embedded, and the aggregate is used in the cement paste using waste concrete recycled aggregate or crushed stone and natural aggregate. By adhering and blast furnace slag, silica fume, fly ash and zeolite as admixtures, mesh-type polypropylene short fiber or pitch-based carbon fiber and SBR Latex dispersant are added to form continuous pores to improve the natural water purification efficiency by microbial adhesion. The present invention relates to a method for producing environmentally friendly water-purifying concrete of high permeability, high toughness and high durability.

최근 환경문제가 심각해짐에 따라 생태계에 있어서 물질순환 또는 먹이 사슬의 중요성이 인식되고 있는 반면 기존의 콘크리트는 현대사회환경을 구성하는 주요한 건설재료로서 다량 사용되고 있으나, 그 구조적 측면만 강조하고 있다. 콘크리트 구조물이 건설되면 그 지역의 생태계가 변화하고 생물의 서식을 곤란하게 한다. 이와 같은 콘크리트구조물의 증가로 생물의 서식장이 점차 감소함에 따라 미생물에 의한 강이나 하천 등의 자정능력이 저하되어 수질오염에 막대한 영향을 주고 있다. 지금까지의 수역개발은 편이성 또는 방재기능이 중시되어 왔지만, 앞으로는 생태계에 대한 배려가 수역환경에 대한 회복기술로서 중요한 과제라고 할 수 있다.Recently, the importance of the material circulation or the food chain in the ecosystem has been recognized as the environmental problems become serious, while the existing concrete is used in large quantities as a major construction material constituting the modern social environment, but only the structural aspects are emphasized. The construction of concrete structures changes the ecosystems of the region and makes it difficult to live. As the habitat of living organisms decreases due to the increase of such concrete structures, the self-cleaning ability of rivers and rivers by microorganisms decreases, which greatly affects water pollution. Until now, the development of water bodies has emphasized convenience or disaster prevention functions, but in the future, consideration for ecosystems is an important task as a recovery technology for the water environment.

본 발명은 대부분 불법 매립 또는 처분되고 있는 폐콘크리트, 고로슬래그, 실리카흄, 플라이애시 등의 폐기물을 재활용하며 동시에 하천, 강 등에서 폐수의 유입으로 발생하는 수질오염을 감소시킬 수 있는 환경친화적인 수질정화 능력을 갖춘 다공질의 수질정화콘크리트의 제조개발을 목적으로 한 것이다.The present invention is an environment-friendly water purification ability that can recycle the waste concrete, blast furnace slag, silica fume, fly ash, etc., which are mostly illegally landfilled or disposed of, and at the same time reduce water pollution caused by inflow of wastewater from rivers and rivers. The purpose is to manufacture and develop porous water-purifying concrete.

도 1은 수질정화콘크리트의 제조 흐름도1 is a manufacturing flow chart of water purification concrete

도 2는 수질정화콘크리트의 구조2 is a structure of water purification concrete

도 3는 본 발명에 이용된 실내 수질정화시험용 공시체3 is a specimen for the indoor water purification test used in the present invention

도 4는 본 발명에 이용된 실내 수질정화 시험(일반도)4 is an indoor water purification test (general degree) used in the present invention

도 5는 본 발명에 이용된 실내 수질정화 시험(평면도)5 is an indoor water purification test (top view) used in the present invention

도 6는 본 발명에 이용된 실내 수질정화 시험(측면도)6 is a indoor water purification test (side view) used in the present invention

[도면의 주요부분에 대한 부호의 설명][Explanation of symbols on the main parts of the drawings]

1 : 골재(재생골재, 부순돌, 천연골재) 2 : 혼화재(고로슬래그, 플라이애시, 실리카흄, 제오라이트) 3 : 보강용섬유(메쉬형폴리프로필렌 단섬유, 피치계 탄소섬유) 4 : 연속공극 5 : 미생물 10 : 수중펌프 11 : 고정용저판 12 : 호스 13 : 밸브 14 : 수질정화콘크리트공시체1: Aggregate (recycled aggregate, crushed stone, natural aggregate) 2: Mixed material (blast furnace slag, fly ash, silica fume, zeolite) 3: Reinforcing fiber (mesh type polypropylene short fiber, pitch carbon fiber) 4: Continuous void 5 : Microorganism 10: Submersible pump 11: Fixed bottom plate 12: Hose 13: Valve 14: Water purification concrete specimen

본 발명의 목적을 달성하기 위하여 다음과 같은 재료를 사용한다.In order to achieve the object of the present invention, the following materials are used.

본 발명에 사용된 골재는 표 1과 같이 입도범위 5∼13mm, 13∼20mm를 가지는 부순돌 또는 재생골재, 천연골재를 사용하였고, 고로슬래그는 국내 제철소에서 부산되는 비중 2.91, 비표면적 7910cm2/g 이상, SiO2 함량이 34%인 것을 사용하였다. 실리카흄은 비표면적이 200,000cm2/g 이상, 입자크기 0.1∼0.5㎛, 비중 2.1∼2.2의 것을 사용하였고, 플라이애시는 국내 화력발전소에서 부산되는 비중 1.9∼2.3, 비표면적 3.000cm2/g이상, 입자크기 는 4.2×10-2mm인 것을 사용하였다. 또한 Fe형 제오라이트는 비중 2.56, 비표면적 10000cm2/g 이상, SiO2 함량이 39%인 것을 사용하였다.As the aggregate used in the present invention, as shown in Table 1, used granules or recycled aggregates having natural particle size ranges of 5 to 13 mm and 13 to 20 mm, and natural aggregates, and blast furnace slag has a specific gravity of 2.91 and a specific surface area of 7910 cm 2 / At least g, an SiO2 content of 34% was used. Silica fume has a specific surface area of 200,000cm 2 / g or more, particle size of 0.1 to 0.5㎛, specific gravity of 2.1 to 2.2, and fly ash has a specific gravity of 1.9 to 2.3 and a specific surface area of 3.000cm 2 / g or more from domestic thermal power plants. The particle size was 4.2 × 10 -2 mm. In addition, the Fe-type zeolite used had a specific gravity of 2.56, a specific surface area of 10000 cm 2 / g or more, and a SiO 2 content of 39%.

본 발명에 사용된 배합은 수질정화 콘크리트의 품질특성에 가장 큰 영향을 미치는 공극률을 15∼30%로 변화시키면서 이에 대해 산업부산물인 고순도 플라이애시 및 실리카흄을 시멘트 중량비로 5∼20%를 혼입하고, 고로슬래그는 시멘트 중량비로 10∼40%를 혼입하였으며, Fe형 제오라이트는 시멘트 중량비로 5∼30%를 혼입하였다. 사용된 혼화제는 시멘트 페이스트의 유동성과 내구성을 높이기 위해 AE감수제를 시멘트 중량비로 1∼3%를 사용하였다.The formulation used in the present invention is mixed with 5 to 20% by weight of industrial by-products high-purity fly ash and silica fume with a cement weight ratio, while changing the porosity that has the greatest effect on the quality characteristics of water-purified concrete to 15 to 30%. Blast furnace slag was mixed with 10 to 40% by weight of cement, and Fe-type zeolite was mixed with 5 to 30% by weight of cement. In order to increase the flowability and durability of the cement paste, the admixture used was 1 to 3% by weight of AE reducing agent.

또한 고내구성·고인성 수질정화콘크리트의 제조를 위하여 인장강도 3.5∼7.7kgf/cm2, 탄성계수 3.5×104 kgf/cm2, 비중 0.91 및 길이 5∼40mm의 메쉬형 폴리프로필렌단섬유와 인장강도 7,800kgf/cm2, 탄성계수 3.8×105 kgf/cm2, 비중 1.63, 길이 3∼20mm의 피치계 탄소섬유를 시멘트 용적비로 0.5∼4.0%를 혼입하였으며, 부착력 및 내력성능의 향상을 위해서 폴리머 분산제로서 비중 0.97, 점도 147 cps인 SBR Letex를 시멘트 중량비로 5∼20%를 사용하여 제조하였다.In addition, high durability and high tensile strength 3.5~7.7kgf / cm 2, modulus 3.5 × 104 kgf / cm 2, specific gravity of 0.91 and a length of mesh type 5~40mm polypropylene filament and tensile strength for the preparation of water purification concrete toughness 7,800kgf / cm 2 , elastic modulus of 3.8 × 105 kgf / cm 2 , specific gravity 1.63, pitch-based carbon fiber with length of 3 ~ 20mm were mixed 0.5 ~ 4.0% in cement volume ratio, and polymer dispersant to improve adhesion and bearing performance SBR Letex having a specific gravity of 0.97 and a viscosity of 147 cps was prepared using 5 to 20% by weight of cement.

혼합방법은 시멘트 매트릭스 내에서의 균등분산을 위하여 섬유분산용 고성능 Omni-Mixer를 사용하였고, 혼합시간은 시멘트와 골재, 혼화재를 투입하여 1분 건비빔한 후 물과 고성능 감수제, 폴리머 분산제인 SBR Latex를 첨가하여 1분간 혼합한 다음 보강용 섬유를 투입 하여 1분간 혼합하는 분할 투입 방법을 사용하였다. 양생은 소정의 재령 1일전까지 수중양생(23℃±2℃)을 실시 하였으며, 그 후는 23℃±2℃, 60℃±5%의 상대습도(R.H)의 조건에서 기건양생하였다.The mixing method used high-performance Omni-Mixer for fiber dispersion for uniform dispersion in the cement matrix, and the mixing time was 1 minute dry mixing with cement, aggregate and admixture, followed by water, high-performance sensitizer, and polymer dispersant SBR Latex. Addition was added for 1 minute to mix, then the reinforcing fibers were added and mixed for 1 minute was used. Curing was carried out by water curing (23 ℃ ± 2 ℃) until one day before the prescribed age, and then air-cured under the conditions of 23 ℃ ± 2 ℃, 60 ℃ ± 5% relative humidity (R.H).

본 발명에서는 수질정화콘크리트의 품질특성을 파악하기 위하여 다음과 같은 실험을 수행하였다. 연속공극률은 ψ15×30cm 원주형 공시체를 제작하여 공시체를 옆면과 밑면을 밀봉하고 상부에 넘칠 때까지 물을 부어 주입된 물량을 공시체용적으로 나눈값을 사용하였다. 압축강도시험방법은 ψ15×30cm 원주형 몰드를 제작하여 KS F 2405『콘크리트의 압축강도』시험방법에 준하여 실시하였다. 휨강도 시험은 15×15×55cm의 보(beam) 공시체를 제조하여 KCI-SF-104의 「강섬유보강 콘크리트의 휨강도 및 휨인성 시험방법」에 준하여 일본 S사의 B Type Autograph를 사용하여 재하 하중별 처짐량을 측정한 후 X-Y레코더로 하중-처짐곡선을 구하여 휨강도를 평가하였다. 또한 내동해성을 측정하기 위하여 75×75×335mm의 각주공시체를 제작하여 ASTM C 666-2 및 KS F 2456[급속동결융해에 대한 콘크리트의 저항시험방법]에 준하여 -18℃∼+4℃에서 1일 6∼8사이클로 상대동탄성계수를 측정하여 내동해성을 파악하였으며, 내화학성을 검토하기 위하여 ψ10×20cm 원주형 몰드를 제작하여 시험재령 6개월까지 1%의 황산(H2SO4) 용액에 침지시켜 중량변화율을 측정하여 평가하였다. 또한 pH Meter를 사용하여 공시체의 알칼리 용출량을 평가하였다.In the present invention, the following experiment was carried out to grasp the quality characteristics of the water purification concrete. The continuous porosity was calculated by dividing the injected volume by the volume of specimen prepared by Φ15 × 30cm columnar specimens, pouring water until the specimen was sealed on the side and bottom and poured over the top. The compressive strength test was carried out in accordance with the KS F 2405 "Compressive Strength of Concrete" test method by producing a ψ15 × 30cm cylindrical mold. The flexural strength test is made of beam specimens of 15 × 15 × 55cm, and sag by load according to the B Type Autograph of Japan S Company in accordance with KCI-SF-104's “Bending Strength and Flexural Toughness Test Method of Steel Fiber Reinforced Concrete”. After the measurement, the flexural strength was evaluated by calculating the load-deflection curve with an XY recorder. In addition, a 75 × 75 × 335 mm square specimen was fabricated to measure the resistance to freeze damage, and was tested at -18 ° C to + 4 ° C in accordance with ASTM C 666-2 and KS F 2456 [Method for Testing Resistance to Rapid Freezing]. The relative dynamic modulus was measured at 6 to 8 cycles per day to determine the dynamic resistance. To examine the chemical resistance, a ψ10 × 20cm columnar mold was prepared and immersed in 1% sulfuric acid (H2SO4) solution for 6 months until the test age to change the weight Was measured and evaluated. In addition, the alkali elution amount of the specimen was evaluated using a pH meter.

수질정화콘크리트의 수질정화 성능을 평가하기 위하여 30cm×30cm×10cm의 판형공시체를(도3) 제작하고 재령 14일부터 하천에 60일간 침적하여 수중미생물이 부착된 것을 도4와 같은 정화수로에 설치하였고, 탄소:질소:인이 100:5:1의 농도로 되어 있는 인공오수(표2)를 20ml/min의 유량으로 순환시키고 일조조건은 실외의 상황과 유사하게 하기 위하여 형광등을 사용하여 6000룩스의 빛을 12시간 간격으로 점등, 소등을 반복하면서 침적후 1일, 30일, 60일, 120일, 240에서 종합수질측정기로 정화된 물의 총유기염소량(TOC), 총인량(PN)을 측정하였으며, 인공오수는 증발에 의해 감소하기 때문에 인공오수량이 일정하게 되도록 보충하고 보충된 인공오수중의 총유기염소량 및 총인량을 가감하여 측정치로 하였다. 수질정화 실내실험은 20±2℃로 유지한 항온실내에서 실시하였다.In order to evaluate the water purification performance of the water purification concrete, 30cm × 30cm × 10cm plate-shaped specimens were produced (Fig. 3), and the microorganisms attached to the underwater microorganisms were deposited in the river for 60 days from the age of 14 and installed in the purification channel as shown in FIG. In order to circulate artificial sewage (Table 2) with a concentration of carbon: nitrogen: phosphorus at 100: 5: 1 at a flow rate of 20 ml / min and the sunshine conditions are 6000 lux using fluorescent lamps Lights up at 12-hour intervals, and turns off the lights while the total organic chlorine (TOC) and total phosphorus (P N ) of the water purified by the comprehensive water quality meter at 1, 30, 60, 120, and 240 after deposition. Since the artificial sewage is reduced by evaporation, the artificial sewage is replenished to be constant, and the total organic chlorine and total phosphorus in the replenished artificial sewage are added and subtracted. Water purification laboratory experiment was conducted in a constant temperature room maintained at 20 ± 2 ℃.

다음 표 5는 표 3의 배합 실시예에 대한 수질정화콘크리트의 품질특성을 평가한 것이다.Table 5 shows the quality characteristics of the water purification concrete for the blending examples of Table 3.

다음 표 6는 표 4의 배합 실시예에 대한 수질정화콘크리트의 품질특성을 평가한 것이다.Table 6 shows the quality characteristics of the water purification concrete for the blending examples of Table 4.

실시예에 대한 품질시험결과 연속공극률은 섬유의 종류에 관계없이 쇄석과 재생골재를 사용한 경우는 23∼28% 정도로 나타나 배합설계시의 이론공극률을 만족하는 것으로 나타났으며 천연골재를 사용한 경우는 19∼23%로 나타나 연속공극률이 다소 감소하였는데 이는 천연골재의 입형이 둥글고 실적률이 높기 때문이라 판단된다. 압축강도 시험결과를 고찰하여 보면 메쉬형 폴리프로필단섬유를 혼입한 쇄석,재생골재 및 천연골재의 압축강도는 각각 124∼168kgf/cm2, 122∼165kgf/cm2및 126∼170kgf/cm2로 나타났으며 피치계 탄소섬유를 혼입한 쇄석, 재생골재 및 천연골재의 압축강도는 각각 138∼169kgf/cm2, 139∼168kgf/cm2및 141∼172kgf/cm2로 나타나 골재 종류별 압축강도의 차이는 거의 없는 것으로 나타났다. 휨강도 시험결과를 고찰하여 보면 메쉬형 폴리프로필단섬유를 혼입한 쇄석, 재생골재 및 천연골재의 휨강도는 각각 25.1∼38.1kgf/cm2, 24.8∼37.9kgf/cm2및 25.4∼38.4kgf/cm2로 나타났고 피치계 탄소섬유를 혼입한 쇄석, 재생골재 및 천연골재의 휨강도는 각각 29.9∼39.2kgf/cm2, 29.7∼38.3kgf/cm2, 30.3∼39.3kgf/cm2로 나타나 골재 종류별 휨강도의 차이는 거의 없는 것으로 나타났다. 또한 폴리프로필렌 섬유를 혼입한 수질정화콘크리트와 탄소섬유를 혼입한 수질정화콘크리트의 압축강도 및 휨강도 특성을 비교해 보면 탄소섬유 혼입 수질정화 콘크리트가 다소 우수한 것으로 나타났다. 섬유와 골재의 종류에 관계없이 혼화재의 혼입에 따른 압축강도와 휨강도의 영향을 고찰하여 보면 실리카흄을 20%, 고로슬래그 30%, 플라이애시 20%, 제오라이트 15%를 혼입한 경우가 우수한 압축강도 및 휨강도 특성을 발현하였다. 내동해성 및 내화학성 시험결과를 고찰하여 보면 플라이애시 20%, 고로슬래그 20∼40%, 실리카흄 20%, Fe형 제오라이트 15∼30%를 혼입한 경우가 우수한 내동해성 및 내화학성을 갖는 것으로 나타났으며 알칼리용출량 시험결과를 고찰하여 보면 산업부산물 및 Fe형 제오라이트를 혼입률이 증가할수록 pH가 감소하였는데 이는 산업부산물과 시멘트의수산화칼슘(Ca(OH)2) 간에 포졸란 반응을 일으켜 규산칼슘 수화물(CSH gel)이 생성되어 미생물환경 억제에 악영향을 미치는 유리석회 용출을 억제시켰기 때문인 것으로 판단된다.As a result of the quality test for the examples, the continuous porosity was about 23 to 28% regardless of the type of fiber, and it was found to satisfy the theoretical porosity in the design of the mixture. The continuous porosity decreased slightly, with 23%, which appears to be due to the round shape of natural aggregates and the high performance. The compressive strength test results showed that the compressive strengths of crushed stone, recycled aggregate and natural aggregate containing mesh polypropylene short fibers were 124-168kgf / cm 2 , 122-165kgf / cm 2 and 126-170kgf / cm 2 , respectively. receive born was a pitch-based carbon fibers mixed with the compressive strength of the stone, recycled aggregates and natural aggregate are each 138~169kgf / cm 2, 139~168kgf / cm 2 and indicated by 141~172kgf / cm 2 difference in the aggregate type compressive strength Was found to be virtually absent. When investigated by the bending strength test results from the incorporation of the mesh-type polypropylene monofilament stone, bending strength of the recycled aggregates and natural aggregate are each 25.1~38.1kgf / cm 2, 24.8~37.9kgf / cm 2 and 25.4~38.4kgf / cm 2 It appeared in the pitch-based carbon fibers mixed with a stone, bending strength of the recycled aggregates and natural aggregate are each indicated by 29.9~39.2kgf / cm 2, 29.7~38.3kgf / cm 2, 30.3~39.3kgf / cm 2 aggregate type bending strength There was little difference. In addition, comparing the compressive strength and flexural strength characteristics of the water-purified concrete with polypropylene fiber and the water-purified concrete with carbon fiber, the carbon-fiber mixed water-purified concrete was found to be somewhat superior. Regardless of the type of fibers and aggregates, the compressive strength and flexural strength of mixed admixtures were investigated. 20% of silica fume, 30% of blast furnace slag, 20% of fly ash, and 15% of zeolite contained excellent compressive strength and Flexural strength characteristics were expressed. Examining the results of resistance to corrosion and chemical resistance, 20% of fly ash, 20 to 40% of blast furnace slag, 20% of silica fume, and 15 to 30% of Fe-type zeolite were found to have excellent freeze resistance and chemical resistance. The results of the alkali dissolution test showed that the pH decreased as the incorporation rate of industrial by-product and Fe-type zeolite increased, resulting in a pozzolanic reaction between the industrial by-product and the calcium hydroxide (Ca (OH) 2 ) in the cement, and calcium silicate hydrate (CSH gel). This is believed to be due to the suppression of free lime leaching, which adversely affects the microbial environment inhibition.

위의 결과로부터 우수한 품질특성을 나타낸 실시예에 대하여 수질정화 성능을 평가하였으며 그 결과는 표 7과 같다.From the above results, the water purification performance was evaluated for the example showing the excellent quality characteristics, and the results are shown in Table 7.

하천에 침적시켜 미생물을 부착시킨 수질정화콘크리트를 이용하여 수질정화성능을 평가한 결과 일반콘크리트에 비하여 높은 수질정화 성능을 나타내었다. 특히 시험개시 60일에는 일반콘크리트에 비하여 총유기염소량(TOC) 소거율은 4.3∼4.6배 증가하였으며 총인량(PN)소거율은 12.3∼13.8배 증가하는 것으로 나타났다. 이는 수질정화콘크리트의 연속공극에 수생생물인 조류가 부착되어 유기성 물질을 분해했기 때문이라 판단된다. 또한 골재종류 및 보강용 섬유의 종류에 따른 수질정화콘크리트의 수질정화성능은 큰 차이가 나타나지 않았으며 특히 혼화재를 혼입한 수질정화콘크리트의 수질정화성능이 높은 것으로 나타났는데 이는 포졸란반응에 의해 공시체가 조기 중성화되어 수중미생물이 많이 부착되었기 때문이라고 판단된다.As a result of evaluating the water purification performance by using water purification concrete with microorganisms attached to the stream, the water purification performance was higher than that of general concrete. In particular, on the 60th day of the test, the total organic chlorine (TOC) elimination rate increased 4.3-4.6 times and the total phosphorus (P N ) elimination rate increased 12.3-13.8 times compared to the general concrete. This is because aquatic algae attached to the continuous pores of the water purification concrete decomposed organic matter. In addition, the water purification performance of the water purification concrete did not show a significant difference according to the aggregate type and the type of reinforcing fiber. Especially, the water purification performance of the water purification concrete containing the admixture was high. This may be due to the fact that many aquatic organisms are attached due to neutralization.

상술한 바와 같이 본 발명은 수질정화콘크리트를 제조하는데 있어 폐콘크리트, 고로슬래그 미분말, 실리카흄, 플라이애시 등의 폐자원의 재활용 통한 자원의 유효이용으로 국가의 에너지절약 및 외화절감과 폐기물의 매립에 의한 환경피해의 예방에 크게 기여할 수 있을 뿐만아니라 하천, 강, 호수 등의 자정작용을 대폭 향상시켜 하천, 호수 등의 수질 개선을 통한 쾌적한 생활환경을 조성하고 수질오염 방지에 효과가 있는 것이다.As described above, in the present invention, in the manufacture of water-purifying concrete, energy saving, foreign currency reduction, and landfilling of wastes are made by effectively utilizing resources through recycling of waste resources such as waste concrete, blast furnace slag fine powder, silica fume, and fly ash. Not only can it greatly contribute to the prevention of environmental damage, it also greatly improves the self-cleaning action of rivers, rivers and lakes, creating a pleasant living environment by improving the water quality of rivers and lakes, and is effective in preventing water pollution.

Claims (5)

산업부산물을 이용한 수질정화콘크리트의 제조시 보통포틀랜드 시멘트와 입도범위 5∼13mm, 13∼20mm의 골재(부순돌, 폐콘크리트 재생골재, 천연골재)와 산업부산물, 고성능AE감수제, SBR Latex 및 섬유를 사용하고 물결합재비를 25∼35%로 하여 15∼30%의 공극률을 형성시키는 것을 특징으로 하는 제조방법When manufacturing water-purified concrete using industrial by-products, ordinary portland cement and aggregates of 5 to 13 mm and 13 to 20 mm in particle size (crude, waste concrete recycled aggregate, natural aggregate), industrial by-products, high performance AE water reducing agent, SBR Latex and fiber To form a porosity of 15 to 30% with a water binder ratio of 25 to 35%. 제 1항에 있어서,The method of claim 1, 수질정화콘크리트 제조시 혼화재로 산업부산물인 플라이애시(Fly Ash), 실리카흄(Silica Fume), 고로슬래그(furnace slag) 미분말과 Fe형 제오라이트(zeolite)를 각각 시멘트 중량비로 5∼20%, 5∼20%, 10∼40% 및 5∼30%를 혼입하는 것을 특징으로 하는 제조방법In the preparation of water-purifying concrete, 5 ~ 20% of cement by weight of fly ash, silica fume, blast furnace slag and fe-type zeolite, which are industrial by-products, are 5 ~ 20% and 5 ~ 20, respectively. %, 10 to 40% and 5 to 30% of the production method characterized by mixing 제 1항에 있어서,The method of claim 1, 수질정화콘크리트 제조시 시멘트 페이스트의 유동성과 내구성을 높이기 위하여 고성능AE감수제를 시멘트 중량비로 1.0∼3.0% 혼입하고 부착력과 내구성 향상 및 고강도 확보가 가능하도록 폴리머분산제로 SBR Latex를 시멘트 중량비로 5∼20%를 혼입하는 것을 특징으로 하는 제조방법In order to increase the fluidity and durability of cement paste in manufacturing water-purifying concrete, SBR Latex is used as a polymer dispersant in order to improve adhesion and durability and secure high strength. Method for producing a mixture characterized in that 제 1항에 있어서,The method of claim 1, 수질정화콘크리트의 제조시 휨인성 및 균열저항성을 향상시키기 위하여 섬유길이 5∼40mm의 메쉬형 폴리프로필렌단섬유(Mesh type polypropylene chopped fiber)를 시멘트 부피비로 0.5∼4.0%를 혼입하는 것을 특징으로 하는 제조방법In order to improve the flexural toughness and crack resistance during the production of water-purifying concrete, a mesh type polypropylene chopped fiber having a fiber length of 5 to 40 mm is incorporated in a cement volume ratio of 0.5 to 4.0%. Way 제 1항에 있어서,The method of claim 1, 수질정화콘크리트의 제조시 휨인성 및 균열저항성을 향상시키기 위하여 섬유길이 3∼20mm의 피치계 탄소섬유(Pitch derived carbon fiber)를 시멘트 부피비로 0.5∼4.0%를 혼입하는 것을 특징으로 하는 제조방법In order to improve the flexural toughness and crack resistance during the production of water-purifying concrete, a manufacturing method comprising mixing 0.5 to 4.0% of pitch-derived carbon fibers having a fiber length of 3 to 20 mm by cement volume ratio.
KR1020010015124A 2001-03-23 2001-03-23 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products KR100341020B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010015124A KR100341020B1 (en) 2001-03-23 2001-03-23 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010015124A KR100341020B1 (en) 2001-03-23 2001-03-23 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products

Publications (2)

Publication Number Publication Date
KR20010069443A KR20010069443A (en) 2001-07-25
KR100341020B1 true KR100341020B1 (en) 2002-06-21

Family

ID=19707295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010015124A KR100341020B1 (en) 2001-03-23 2001-03-23 Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products

Country Status (1)

Country Link
KR (1) KR100341020B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040049657A (en) * 2002-12-06 2004-06-12 상익건설주식회사 Concrete blocks using basalt cobble and method therefor
KR20050104156A (en) * 2004-04-28 2005-11-02 주식회사 인트켐 Electro-conductive alumino-silicate type mortar composition with high chemical resistance and fire resistance
WO2006091185A1 (en) * 2005-02-18 2006-08-31 Ogden Technologies, Inc. Fiber reinforced concrete/cement products and method of preparation
KR100878665B1 (en) * 2002-08-30 2009-01-13 주식회사 포스코 Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
KR101138243B1 (en) 2011-12-16 2012-04-24 (주)한일 Composition of ready-mixed concrete using industrial wastes
KR101433650B1 (en) * 2012-07-17 2014-08-25 유한회사 콘원 Highstrength concrete using carbon fiber
KR102310854B1 (en) * 2020-11-28 2021-10-13 (유)미성콘크리트 Concrete manufactured with a salt-resistance enhancing composition capable of self-repairing concrete cracks, and a method for manufacturing concrete structures with improved salt-resistance

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099193A (en) * 2001-09-10 2001-11-09 김무한 A Composites of Porous Concrete for the Habitat of Aquatic Life and the Purification of the Water Quality, and Its Manufacture Method and Its Productions
KR20040014717A (en) * 2002-08-10 2004-02-18 한국토지공사 High durable concrete composition for underdrain
KR100508881B1 (en) * 2002-09-19 2005-08-18 오종민 Environmental friendly concrete for water clarification using recycled aggregates
KR20040039677A (en) * 2002-11-04 2004-05-12 (합)정주산업건설 Ecology Block
KR101365974B1 (en) * 2013-06-11 2014-02-24 (주)에이치비티 Admixture for high viscosity concrete
KR101429463B1 (en) * 2014-02-17 2014-08-13 충남대학교산학협력단 Composition for Concrete Block
CN108558303A (en) * 2018-01-17 2018-09-21 同济大学 A kind of regeneration concrete bulk and its production method
CN108298917A (en) * 2018-04-08 2018-07-20 福建工程学院 Comprehensively utilize the pumping regeneration concrete and preparation method of solid waste
CN112110678A (en) * 2020-09-09 2020-12-22 扬州大学 Mixed-length basalt fiber asphalt mixture and preparation method thereof
CN112430033A (en) * 2020-11-20 2021-03-02 上海浦盈混凝土有限公司 High-strength recycled aggregate concrete and preparation method thereof
CN115140970B (en) * 2022-07-12 2023-06-09 南通交融建设工程有限公司 Vibration-pressure-free self-curing cement stabilized macadam mixture and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442345A (en) * 1987-08-05 1989-02-14 Taisei Corp Slurry for producing fiber reinforced cement mortar or concrete and its production
JPH07315903A (en) * 1994-05-30 1995-12-05 Mitsubishi Materials Corp Concrete for and its production
JPH09227191A (en) * 1996-02-19 1997-09-02 Shimizu Corp Steel fiber-reinforced high-fluidity high-strength concrete
KR19990017453A (en) * 1997-08-23 1999-03-15 김헌출 Concrete composition with zeolite
KR20000014508A (en) * 1998-08-21 2000-03-15 김선배 Concrete block for enabling plant growing
KR100247564B1 (en) * 1998-04-15 2000-03-15 차동천 A concrete block feasible for vegetation growth

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442345A (en) * 1987-08-05 1989-02-14 Taisei Corp Slurry for producing fiber reinforced cement mortar or concrete and its production
JPH07315903A (en) * 1994-05-30 1995-12-05 Mitsubishi Materials Corp Concrete for and its production
JPH09227191A (en) * 1996-02-19 1997-09-02 Shimizu Corp Steel fiber-reinforced high-fluidity high-strength concrete
KR19990017453A (en) * 1997-08-23 1999-03-15 김헌출 Concrete composition with zeolite
KR100247564B1 (en) * 1998-04-15 2000-03-15 차동천 A concrete block feasible for vegetation growth
KR20000014508A (en) * 1998-08-21 2000-03-15 김선배 Concrete block for enabling plant growing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878665B1 (en) * 2002-08-30 2009-01-13 주식회사 포스코 Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
KR20040049657A (en) * 2002-12-06 2004-06-12 상익건설주식회사 Concrete blocks using basalt cobble and method therefor
KR20050104156A (en) * 2004-04-28 2005-11-02 주식회사 인트켐 Electro-conductive alumino-silicate type mortar composition with high chemical resistance and fire resistance
WO2006091185A1 (en) * 2005-02-18 2006-08-31 Ogden Technologies, Inc. Fiber reinforced concrete/cement products and method of preparation
KR101138243B1 (en) 2011-12-16 2012-04-24 (주)한일 Composition of ready-mixed concrete using industrial wastes
KR101433650B1 (en) * 2012-07-17 2014-08-25 유한회사 콘원 Highstrength concrete using carbon fiber
KR102310854B1 (en) * 2020-11-28 2021-10-13 (유)미성콘크리트 Concrete manufactured with a salt-resistance enhancing composition capable of self-repairing concrete cracks, and a method for manufacturing concrete structures with improved salt-resistance

Also Published As

Publication number Publication date
KR20010069443A (en) 2001-07-25

Similar Documents

Publication Publication Date Title
KR100341020B1 (en) Manufacturing Methods of Water Purification Concrete Utilizing Industrial By-Products
Araghi et al. An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack
Berndt Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria
Siddique Utilization (recycling) of iron and steel industry by-product (GGBS) in concrete: strength and durability properties
WO2021109994A1 (en) Ecological concrete and preparation method, and high-durability marine concrete structure construction method
Parande et al. Environmental effects on concrete using Ordinary and Pozzolana Portland cement
KR102173957B1 (en) Mortar composition for reparing and reinforcing concrete structure using acid resistant microorganism and high-sulfate cement and method for reparing and reinforcing concrete structure
Murthi et al. Studies on acid resistance of ternary blended concrete
Madhuri et al. Improved performance of concrete incorporated with natural zeolite powder as supplementary cementitious material
Li et al. Effect of mixed fibers on fly ash-based geopolymer resistance against carbonation
KR100840602B1 (en) Manufacturing method of concrete for purifying water
Bameri et al. Evaluation of Mechanical and Durability Properties of Eco‐Friendly Concrete Containing Silica Fume, Waste Glass Powder, and Ground Granulated Blast Furnace Slag
Idrees et al. Effectiveness of metakaolin and hybrid polymers incorporated mortar for the compressive strength and acid resistance of industrial and wastewater infrastructure
CN111268958A (en) Fiber-reinforced ecological concrete and preparation method thereof
KR102215279B1 (en) Polymer concrete precast drainage trench using industrial by-product with porous filters for reduction of non-point pollutant
Prabhu et al. Durability properties of fly ash and silica fume blended concrete for marine environment
Olivia et al. Properties of plain and blended cement concrete immersed in acidic peat water canal
Gopalakrishnan et al. Mechanical, electrical and microstructural studies on nano-TiO2 admixtured cement mortar cured with industrial wastewater
Joorabchian Durability of concrete exposed to sulfuric acid attack
CN1309677C (en) Corrosion-resisting high-performance concrete suitable for sewage works and its preparation method
EP4071305A1 (en) Construction method for ecological riprap breakwater, induced cement-based coating and preparation method therefor
Dousti et al. Increasing service life of concrete in sewage treatment plants using silica fume and natural zeolite
Azad Application of porous concrete containing adsorbent as a new approach in improving the quality of urban runoff
WO2016067301A1 (en) A chemical composition for concreting with naturally available salty water or hard water or sea water
Olivia et al. The Effects of Using Ground Cockle Seashells as an Additive for Mortar in Peat Environment

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150602

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170524

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190604

Year of fee payment: 18