KR100337025B1 - Process for Microencapsulat ed Phase Change Material Slurry - Google Patents

Process for Microencapsulat ed Phase Change Material Slurry Download PDF

Info

Publication number
KR100337025B1
KR100337025B1 KR1019990048653A KR19990048653A KR100337025B1 KR 100337025 B1 KR100337025 B1 KR 100337025B1 KR 1019990048653 A KR1019990048653 A KR 1019990048653A KR 19990048653 A KR19990048653 A KR 19990048653A KR 100337025 B1 KR100337025 B1 KR 100337025B1
Authority
KR
South Korea
Prior art keywords
melamine
microcapsule
aqueous solution
phase change
latent heat
Prior art date
Application number
KR1019990048653A
Other languages
Korean (ko)
Other versions
KR20010045384A (en
Inventor
이재구
김재호
박태준
홍재창
김용구
손성근
성준희
신도근
최준규
Original Assignee
손재익
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구원 filed Critical 손재익
Priority to KR1019990048653A priority Critical patent/KR100337025B1/en
Publication of KR20010045384A publication Critical patent/KR20010045384A/en
Application granted granted Critical
Publication of KR100337025B1 publication Critical patent/KR100337025B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2461/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2461/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine

Abstract

본 발명은 마이크로캡슐형 잠열미립자 슬러리의 제조방법에 관한 것이다. 보다 상세하게는 인 시튜(in situ) 중합법을 이용하여 파라핀계 오일과 같은 상변화 물질(Phase Change Material: 이하 PCM이라 한다)을 열저장과 열공급 매체로 동시에 사용할 수 있게 멜라민-포름알데히드 수지로 캡슐화 한 마이크로캡슐형 잠열미립자 슬러리의 제조방법에 관한 것이다.The present invention relates to a method for preparing a microcapsule latent heat particulate slurry. More specifically, by using in situ polymerization method, phase change material such as paraffinic oil (hereinafter referred to as PCM) can be used as a melamine-formaldehyde resin to be used simultaneously as a heat storage and heat supply medium. A method for producing an encapsulated microcapsule latent heat particulate slurry.

상변화 물질을 음이온성 계면활성제인 PSSA(Poly Styrene Sulfonic Acid)를 사용하여 수용액상에서 분산 유화시킨 후 캡슐 벽에 해당하는 멜라민-포름알데히드 (MF) 수지를 인 시튜(in-situ) 중합법으로 반응하여 잠열미립자 슬러리를 제조하는 공정으로 구성되어 있다.The phase change material is dispersed and emulsified in aqueous solution using an anionic surfactant, PSSA (Poly Styrene Sulfonic Acid), and then the melamine-formaldehyde (MF) resin corresponding to the capsule wall is reacted by in-situ polymerization. It is composed of a process for producing a latent heat particulate slurry.

본 방법은 벽물질인 고분자의 사용으로 내구성이 좋은 벽을 갖는 마이크로캡슐형 잠열미립자를 제조하여 내부의 PCM 유출을 최소화하고 열저장 매체로서의 효율을 높이기 위하여 입도 크기가 1∼50㎛ 수준의 미세한 마이크로캡슐을 제조할 수 있다.In this method, microcapsule-type latent heat fine particles having durable walls are manufactured by using a polymer, which is a wall material, to minimize PCM leakage and to increase efficiency as a heat storage medium. Capsules can be prepared.

Description

마이크로캡슐형 잠열미립자 슬러리의 제조방법{Process for Microencapsulat ed Phase Change Material Slurry}Process for producing microcapsule latent heat particulate slurry {Process for Microencapsulated Phase Change Material Slurry}

본 발명은 마이크로캡슐형 잠열미립자 슬러리의 제조방법에 관한 것이다. 보다 상세하게는 인 시튜(in situ) 중합법을 이용하여 파라핀계 오일과 같은 상변화 물질(Phase Change Material: 이하 PCM이라 한다)을 열저장과 열공급 매체로 동시에 사용할 수 있게 멜라민-포름알데히드 수지로 캡슐화 한 마이크로캡슐형 잠열미립자 슬러리의 제조방법에 관한 것이다.The present invention relates to a method for preparing a microcapsule latent heat particulate slurry. More specifically, by using in situ polymerization method, phase change material such as paraffinic oil (hereinafter referred to as PCM) can be used as a melamine-formaldehyde resin to be used simultaneously as a heat storage and heat supply medium. A method for producing an encapsulated microcapsule latent heat particulate slurry.

모든 물질은 온도에 따라 상태(Phase)가 변화하며 상변화시에는 온도 변화없이 물질이 열을 흡수 또는 방출하며 이때 흡수 또는 방출되는 열을 잠열(Latent He at)이라 하는데, 냉방 또는 난방의 경우 운전온도 범위 내에서 상변화가 일어나는 잠열물질을 이용하면 열저장(축열) 밀도를 증가시킬 수 있다.All materials change phase according to temperature, and when phase change, materials absorb or release heat without temperature change. At this time, the heat absorbed or released is called latent heat. The use of latent materials, which cause phase changes within the temperature range, can increase the heat storage density.

잠열이 큰 상변화물질을 내부물질로 하고 치밀한 구조와 내구성을 갖춘 고분자를 사용하여 상변화물질의 외부 유출을 방지하는 마이크로캡슐화 방법은 기존의 상변화 물질을 이용하는 방법과는 다른 새로운 기능을 부가할 수 있다.The microencapsulation method that prevents the outflow of phase change material by using phase change material with high latent heat as internal material and using polymer with compact structure and durability can add new functions different from the method using phase change material. Can be.

마이크로캡슐은 주로 제약, 식품분야에서 주로 사용되며 캡슐화 방법은 물리적인 방법과 기계적인 방법, 물리화학적 방법 등으로 알려져 있으나 기계적 공정방법은 일정크기 이상의 캡슐 생산에 적용되어 왔으며, 미립화를 위해서 물리화학적, 화학적방법들로 많은 접근이 있어왔다.The microcapsules are mainly used in the pharmaceutical and food fields. The encapsulation method is known as physical method, mechanical method, and physicochemical method, but the mechanical process method has been applied to the production of capsules of a certain size. There have been many approaches to chemical methods.

종래 상변화물질의 캡슐화 기술로는 기계적인 방법에 의하여 표피물질을 먼저 제조하고 내부물질을 봉입하는 방법이 초기에 이용되어 왔으며, 이후로는 노즐 분사에 의한 코팅법등으로 캡슐이 제조되었다. 또한 상변화물질의 상변화시 응집 및 응결을 배제하고 미립자 특성을 지속적으로 유지할 수 있도록 신축성이 있는 용기내에 저장하여 이용하는 방법(K. R. Sanjay and S. Sengupta,Int. Comm. Heat M ass Transfer, 18, p495∼507, 1990)이 광범위한 온도 범위에서 냉난방 적용성이 시도되었다. 종래에 제조된 방법들을 이용한 캡슐의 직경은 3∼9cm의 큰 것들이 주류를 이루고 최근에는 스프레이 코터(spray coater)를 이용하여 2∼3mm의 구형입자의 제조기술(H. K. Lee and J. H. Park, United States Patent 5,709,945, Jan. 20 , 1998)이 개발된 바 있다.Conventional encapsulation technology of the phase change material has been used to prepare the epidermal material first by a mechanical method and to encapsulate the internal material, and then the capsule has been manufactured by a coating method by nozzle injection. In addition, it is a method of storing and using in a flexible container so as to exclude the aggregation and condensation during the phase change of the phase change material and to maintain the particulate properties continuously (KR Sanjay and S. Sengupta, Int. Comm. Heat M ass Transfer , 18, p495-507, 1990) have attempted air conditioning applications over a wide temperature range. The diameters of capsules using conventionally manufactured methods are mainly 3 to 9 cm in diameter, and recently, a technique for producing 2 to 3 mm spherical particles using a spray coater (HK Lee and JH Park, United States Patent 5,709,945, Jan. 20, 1998).

현재까지의 상변화물질은 정적(靜的)인 열저장에 이용되어온 반면 잠열미립자는 물과 같은 이송매체와 혼합된 슬러리 형태로 동적(動的)인 개념(H. Takeuchi, A. T. Pyatenko,IEEE96082, 1998)으로 열수송용으로도 사용될 수 있다. 열저장으로 이용되는 경우 캡슐 고유의 특성으로 반복되는 열흡수 및 방출에도 과냉각 및 상분리 현상없이 균일한 용융을 유지할 수 있고 상변화물질간의 응집, 응결을 방지함으로써 지속적인 상변화물질의 특성을 유지할 수 있다. 열 저장과 수송을 위하여 슬러리 상태로 이용시에는 유체내 미세 대류효과를 증가시켜 열전달 효율을 향상시킬 수 있는 효과가 있으며, 입자의 미립화를 통하여 표면적이 증가되므로 열흡수 및 방출속도가 빨라져 열교환기 전열면적이 작아지고, 열수송 밀도가 증가되어 열수송 소요동력이 감소되는 장점이 있다.To date, phase change materials have been used for static heat storage, while latent heat particulates are a dynamic concept in the form of a slurry mixed with a transfer medium such as water (H. Takeuchi, AT Pyatenko, IEEE 96082). , 1998) and can also be used for heat transport. When used for heat storage, it is possible to maintain uniform melt without supercooling and phase separation even after repeated heat absorption and release due to the inherent characteristics of capsules, and to maintain the characteristics of continuous phase change materials by preventing aggregation and condensation between phase change materials. . When used in the slurry state for heat storage and transportation, it has the effect of improving the heat transfer efficiency by increasing the micro-convection effect in the fluid.The surface area is increased through atomization of particles, so the heat absorption and release rate is faster, so the heat exchanger heat transfer area is increased. It is small, there is an advantage that the heat transfer density is increased, the heat transfer power is reduced.

본 발명에서는 마이크로캡슐 제조방법으로 in situ 중합법을 이용하였는데 이러한 제조공정에는 수용액상에 상변화물질인 파라핀계 오일을 분산하는 유화 공정과 유화된 오일의 외부에서 멜라민과 포름알데히드의 축합 반응에 의해 껍질을 형성하는 고분자반응 공정이 포함된다. 제조 공정상 중요한 절차는 멜라민-포름알데히드 프리폴리머가 유화된 에멀젼을 파괴하지 않으면서 내부상 액적 주위에 균일하게 위치하도록 작용할 수 있게 하는 적절한 계면활성제의 선택에 있다. 본 발명에서는 균일한 크기를 유지하면서 입자간의 응집이 발생되지 않는 캡슐을 제조하기 위해 친수성의 음이온성 계면활성제를 사용하였다. 이러한 보호콜로이드는 유화단계에서 내부상/외부상 계면에서 배향함으로써 각 액적 주위에서 입체 및 전하 경계층을 만들어 에멀전을 안정하게 함과 동시에 하며 액적간의 접촉에 의한 응집현상을 방지함으로써 액적을 균일한 크기로 유지시키는 역할을 한다. 또한 벽을 형성하는 중합단계에서는 부분적으로 양전하를 띄는 멜라민-포름알데히드 벽물질과 가교역활을 수행하여 에멀전이 안정적으로 마이크로캡슐이 형성되도록 도와준다. In situ 중합법에 의해서 제조된 캡슐은 내부상(오일)과 연속상(물)의 계면에서 중합이 일어나서 캡슐의 벽을 형성하는 과정은 동일하지만 계면중합에 의해서 만들어진 캡슐과는 반응구조상으로 근본적인 차이가 있다. 계면중합은 서로 다른 상중에 용해된 단량체들이 계면에서 접촉하여 중합이 일어나는 방법이나, 본 발명에서 사용한 in situ 중합법은 수용성 아미노 수지의 단량체와 이량체들이 경계면에서 자기-축합 반응이 급격히 일어나면서 거의 완전한 고분자 껍질구조를 갖는 마이크로캡슐을 형성한다. 현재까지 액상물질의 마이크로캡슐화 방법으로 이용되고 있는 계면중합의 경우 상온에서 단시간에 중합이 가능하지만 벽물질이 약해서 쉽게 깨어지고 내구성이 약하여 장기간 사용이 좋지 못하며 또한, 반응계의 부피가 크다는 불리한 점이 있다. 본 연구에서 사용한 in-situ 중합방법은 높은 농도와 높은 수율의 캡슐화가 가능하며, 계면중합에 비해 반응시간이 오래 걸리지만, 견고하고 내구성이 강한 캡슐을 얻을 수가 있다. 물질의 경화온도에 따라 반응온도가 달라지는데 보통 상온이상이므로 반응온도가 높아서 온도조절을 위한 추가비용이 요구되는 단점이 있다. 반응물 두 가지가 각각 프리폴리머를 형성하기 위해 연속상에서 반응을 하는데 중합이 계속되면서 프리폴리머의 크기는 성장하고 궁극적으로 멜라민-포름알데히드 프리폴리머가 많은 상으로 분리된다. 수용액 중 프리폴리머의 가교와 중합은 보호콜로이드로 둘러싸인 내부물질의 특성에 따라 달라지며, 캡슐 벽 물질이 완성될 때까지 계속 중합한다. 계면 중합에 비교하여 In situ 중합은 높은 수율과 견고하고 튼튼한 벽물질을 갖기 위하여 사용되었는데 내부물질의 상변화에 따르는 부피의 팽창 및 수축에도 신축성을 요구하는 이러한 성질에 적합하도록 in situ 중합방법을 사용하였으며 이러한 이유로 사용된 멜라민-포름알데히드 수지막을 갖는 캡슐은 온도 및 습도와 용매에 대한 내성이 크다는 점에서 다른 요소수지보다 우수한 특징이 있으나, 수용액상에서 반응할 때 점도가 증가하거나 입자간에 응집되는 이유로 캡슐의 제조의 어려움이 있다. 유화단계에서 보호콜로이드 기능과 낮은 점도를 유지하기 위하여 PSSA를 사용하여 마이크로캡슐 슬러리를 제조하였다. 본 발명의 in-situ 중합법은 고농도의 캡슐 슬러리 제조 및 투입된 상변화물질의 캡슐화 수율을 향상시킬 수 있다.In the present invention, in situ polymerization was used as a method for preparing microcapsules. The manufacturing process includes an emulsification process of dispersing a paraffinic oil, which is a phase change material in an aqueous solution, and a condensation reaction of melamine and formaldehyde outside the emulsified oil. A polymer reaction process to form the shell is included. An important procedure in the manufacturing process lies in the selection of a suitable surfactant that allows the melamine-formaldehyde prepolymer to act to be uniformly positioned around the inner phase droplets without destroying the emulsified emulsion. In the present invention, a hydrophilic anionic surfactant was used to prepare a capsule in which agglomeration was not generated while maintaining a uniform size. These protective colloids form a solid and charge boundary layer around each droplet by aligning at the inner phase / outer phase interface in the emulsification step to stabilize the emulsion and prevent the agglomeration caused by the contact between the droplets. It serves to maintain. In addition, the polymerization step of forming the wall crosslinks the partially positively charged melamine-formaldehyde wall material to help the emulsion to stably form the microcapsules. The capsules produced by the in situ polymerization method have the same process of forming the walls of the capsule by polymerization at the interface between the inner phase (oil) and the continuous phase (water), but fundamentally different from the capsules made by the interfacial polymerization. There is. Interfacial polymerization is a method in which polymerization occurs by contacting monomers dissolved in different phases at an interface, but in situ polymerization method used in the present invention is almost carried out by rapid self-condensation reaction at the interface between monomers and dimers of water-soluble amino resins. Microcapsules with a complete polymer shell structure are formed. In the case of interfacial polymerization, which has been used as a microencapsulation method of liquid materials until now, polymerization is possible at a short time at room temperature, but there is a disadvantage in that the wall material is weak and easily broken and the durability is not good for a long time, and the volume of the reaction system is large. The in-situ polymerization method used in this study enables encapsulation of high concentration and high yield, and takes longer reaction time than interfacial polymerization, but obtains a robust and durable capsule. The reaction temperature varies depending on the curing temperature of the material, and usually, since the reaction temperature is higher than the normal temperature, an additional cost for temperature control is required. The two reactants each react in a continuous phase to form a prepolymer, with the polymerization continuing as the size of the prepolymer grows and ultimately the melamine-formaldehyde prepolymer separates into many phases. The crosslinking and polymerization of the prepolymer in aqueous solution depends on the nature of the inner material surrounded by the protective colloid and continues to polymerize until the capsule wall material is completed. In situ polymerization, compared to interfacial polymerization, was used to have high yields and robust and durable wall materials. In situ polymerization was used to suit these properties, which require elasticity in the expansion and contraction of volume due to the phase change of internal materials. The capsules with the melamine-formaldehyde resin film used for this reason are superior to other urea resins in that they are resistant to temperature, humidity, and solvents, but the capsules have an increased viscosity when reacting in aqueous solution or aggregate between particles. There is a difficulty of manufacturing. In order to maintain the protective colloid function and low viscosity in the emulsification step, a microcapsule slurry was prepared using PSSA. The in-situ polymerization method of the present invention can improve the encapsulation yield of a high concentration capsule slurry and injected phase change material.

도 1은 마이크로캡슐형 잠열미립자를 in situ 중합법으로 제조하는 본 발명의 공정도이다.1 is a process chart of the present invention for preparing a microcapsular latent heat particulate by in situ polymerization method.

도 2는 본 발명의 마이크로캡슐 형상을 나타낸 사진이다.2 is a photograph showing a microcapsule shape of the present invention.

도 3은 본 발명의 마이크로캡슐의 입도분포를 나타낸 그래프이다.3 is a graph showing the particle size distribution of the microcapsules of the present invention.

상기한 바와 같은 목적을 달성하고 종래의 문제점을 해결하기 위한 수단으로서 본 발명의 구성을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings as a means for achieving the object as described above and solving the conventional problems as follows.

도 1은 본 발명의 인 시튜(in situ) 중합법에 의한 마이크로캡슐 제조 공정도이다. 반응온도를 조절하기 위하여 쟈켓형 반응기를 사용하였으며, 반응기 내부에 투입되는 증류수와 상변화물질로 사용하는 파라핀계 오일인테트라데칸(tetradec ane)의 부피비는 3:1로 유지한다. 마이크로캡슐 벽을 구성하게 될 멜라민-포르말린수지는 멜라민과 포르말린의 몰비를 1:1.73∼1:2.5로 혼합하고 60℃에서 중합반응이 이루어진다. 본 발명에서 계면활성제는 음이온성 계면활성제이며 분자량이 500,000 이고 상온에서 10wt% 수용액의 pH는 8.0 인 폴리스티렌 설포닌산(poly sty rene sulfonic acid; 이하 PSSA라 한다)을 사용한다. 음이온성 계면활성제인 PSSA는 균일한 크기를 유지하면서 입자간의 응집이 발생되지 않는 캡슐을 제조하기 위해 사용한다.1 is a microcapsules manufacturing process chart by the in situ polymerization method of the present invention. A jacket-type reactor was used to control the reaction temperature, and the volume ratio of paraffinic oil intedecane (tetradec ane) used as a phase change material and distilled water introduced into the reactor was maintained at 3: 1. The melamine-formalin resin, which will form the microcapsule wall, is mixed at a molar ratio of melamine and formalin at 1: 1.73-1: 2.5 and polymerized at 60 ° C. In the present invention, the surfactant is an anionic surfactant, and a polystyrene sulfonic acid (hereinafter referred to as PSSA) having a molecular weight of 500,000 and a pH of 10wt% aqueous solution at room temperature is 8.0. PSSA, an anionic surfactant, is used to prepare capsules that do not generate aggregation between particles while maintaining a uniform size.

PSSA 10g을 물 90g과 혼합하여 80℃에서 30분 정도 교반하여 용해하여 제조한 후 냉각시켜 10wt% PSSA 수용액 100g에 물 100g과 섞은 후 내부물질에 해당하는 테트라데칸(Tetradecane) 오일 70g을 1700rpm에서 3분 동안 충분히 유화시켜 유화(emulsion)용액을 만든다.10 g of PSSA was mixed with 90 g of water, stirred at 80 ° C. for 30 minutes, dissolved, cooled, mixed with 100 g of water in 100 g of 10 wt% PSSA aqueous solution, and 70 g of Tetracanane oil corresponding to the internal substance was used at 3,700 rpm. Emulsify sufficiently for minutes to form an emulsion solution.

그 후 멜라민 단량체(melamine monomer)와 포르말린(Formalin, 일반적인 37% Formaldehyde aqueous solution)을 몰비로 1:1.73∼1:2.5 혼합하고, 글루타르디알데하이드(Glutardialdehyde) 3∼5g을 첨가하여 1분간 교반한 후 HCl 수용액으로 pH를 4∼5로 조절하여 중합한다. 이때의 반응온도는 60℃를 유지하며, 반응시간은 4시간 정도 지속한다.Thereafter, melamine monomer and formalin (formalin, a typical 37% Formaldehyde aqueous solution) were mixed at a molar ratio of 1: 1.73-1: 2.5, and 3-5 g of glutaraldehyde was added thereto, followed by stirring for 1 minute. After polymerization by adjusting the pH to 4-5 with HCl aqueous solution. At this time, the reaction temperature is maintained at 60 ℃, the reaction time lasts about 4 hours.

캡슐벽의 물성에 영향을 주는 멜라민-포르말린 수지에 있어서 일반적으로 멜라민과 포르말린 양을 조절함으로써 벽물질의 내구성을 향상시킨다. 또한 마이크로캡슐에서 벽물질의 내구성을 향상시키기 위하여 경화시키는데 포르말린과 글루타르디알데하이드를 사용한다.Melamine-formalin resins affecting the properties of the capsule wall generally improve the durability of the wall material by controlling the amount of melamine and formalin. In addition, formalin and glutaraldehyde are used to cure the microcapsules to improve the durability of the wall material.

아래의 실시예는 본 발명의 마이크로캡슐을 제조하는 대표적인 공정들로서이들 실시예가 본 발명의 기술적 범위를 한정하는 것은 아니다.The following examples are representative of the processes for preparing microcapsules of the present invention and these examples do not limit the technical scope of the present invention.

본 발명의 반응장치로는 교반과 항온을 유지할 수 있는 1ℓ의 이중 반응기를 준비하고 기계적 교반을 위한 교반기와 4개의 날개로 이루어진 임펠러(impeller)를 사용한다. 이 반응기에 PSSA 수용액에 내부물질인 테트라데칸을 넣고 상온에서 유화를 한 후에 벽물질에 해당하는 멜라민과 포르말린 물질을 부가하고 60℃에서 반응을 진행한다.As a reactor of the present invention, a 1 L dual reactor is prepared to maintain stirring and constant temperature, and an stirrer for mechanical stirring and an impeller composed of four wings are used. Tetradecane, an internal substance, was added to the PSSA aqueous solution in the reactor and emulsified at room temperature. Then, melamine and formalin substances corresponding to wall materials were added and the reaction was performed at 60 ° C.

<실시예 1><Example 1>

1단계: 10g의 폴리스티렌 설포닌산(PSSA)에 90g의 물을 섞고 80℃에서 30분간 교반하여 용해한 후 냉각시킨 10 wt% PSSA 수용액 100g을 준비한다.Step 1: Mix 100 g of 10 g polystyrene sulfonate (PSSA) with 90 g of water, stir at 80 ° C. for 30 minutes, dissolve, and prepare 100 g of cooled 10 wt% PSSA solution.

2단계: 상기 1단계의 10 wt% PSSA 수용액에 물 100g을 첨가하여 1분간 교반시켜 테트라데칸 70g 첨가하고 유화시켜 에멀전상태의 혼합용액을 만든 후 상온에서 교반 속도 1700rpm으로 3분간 오일을 분산시킨다.Step 2: Add 100 g of water to the 10 wt% PSSA aqueous solution of step 1, stir for 1 minute, add 70 g of tetradecane, and emulsify to form an emulsion mixture. The oil is dispersed for 3 minutes at a stirring speed of 1700 rpm at room temperature.

3단계: 상기 2단계의 혼합액(10 wt% PSSA 수용액에 물 100g, 테트라데칸 70g 첨가하고 유화시키고 오일분산된 용액)에 벽물질에 해당하는 멜라민 15g, 포르말린 18g, 글루타르디알데하이드 3g을 첨가하여 1분간 교반시킨다.Step 3: 15 g of melamine corresponding to the wall material, 18 g of formalin, and 3 g of glutaraldehyde were added to the mixed solution of the second step (100 g of water, 70 g of tetradecane, emulsified and oil-dispersed in 10 wt% PSSA aqueous solution). Stir for 1 minute.

4단계: 상기 3단계의 혼합액(10 wt% PSSA 수용액에 물 100g, 테트라데칸 70g 첨가하고 유화시키고 오일분산된 용액에 멜라민 15g, 포르말린 18g, 글루타르디알데하이드 3g을 첨가한 용액)에 0.5N의 HCl 수용액으로 넣어서 멜라민-포르말린 수지의 가교조건에 해당하는 pH값을 조절하여 pH를 4.0 정도로 유지한다.Step 4: 0.5N of the mixed solution of step 3 (100g of water, 70g of tetradecane was added to an aqueous 10 wt% PSSA solution, emulsified, and 15g of melamine, 18g of formalin, and 3g of glutaraldehyde were added to the oil-dispersed solution). Into the aqueous solution of HCl to adjust the pH value corresponding to the crosslinking conditions of the melamine-formalin resin to maintain a pH of about 4.0.

5단계: 상기 4단계의 용액을 교반속도 550rpm을 유지하면서 60℃에서 4시간 동안 중합반응시킨다.Step 5: The solution of step 4 is polymerized at 60 ° C. for 4 hours while maintaining a stirring speed of 550 rpm.

6단계: 상기의 5단계에서 얻은 중합된 슬러리를 분무건조하기 위하여 열풍기의 온도를 200℃에 맞추고 건조 반응기의 온도가 160∼170℃가 될 때까지 예열한 후 마이크로캡슐 슬러리는 펌프에 의해 10㎖/분 이하로 이송하면서 동시에 공기 압축기를 7∼9bar로 공기를 불어넣어 마이크로캡슐형 잠열미립자 슬러리의 제조한다.Step 6: In order to spray dry the polymerized slurry obtained in step 5, the temperature of the hot air fan was set at 200 ° C., and preheated until the temperature of the drying reactor was 160 to 170 ° C., and then the microcapsule slurry was 10 ml by a pump. The microcapsule type latent heat particulate slurry was prepared by blowing air at 7 to 9 bar while simultaneously conveying the air per minute or less.

<실시예 2><Example 2>

1단계: 실시예 1과 동일하게 한다.Step 1: The same procedure as in Example 1.

2단계: 실시예 1과 동일하게 한다.Step 2: The same procedure as in Example 1.

3단계: 실시예 1과 동일하게 한다.Step 3: The same procedure as in Example 1.

4단계: pH 4.0∼5.0 정도로 유지하는 것을 제외하고는 실시예 1과 동일하게 한다.Step 4: The procedure is the same as that in Example 1 except that the pH is maintained at 4.0 to 5.0.

5단계: 실시예 1과 동일하게 한다.Step 5: The same procedure as in Example 1.

6단계: 실시예 1과 동일하게 한다.Step 6: The same procedure as in Example 1.

<실시예 3><Example 3>

1단계: 실시예 1과 동일하게 한다.Step 1: The same procedure as in Example 1.

2단계: 실시예 1과 동일하게 한다.Step 2: The same procedure as in Example 1.

3단계: 벽물질에 해당하는 멜라민 15g, 포르말린 20g과 물 65g을 넣어서 60℃에서 30분간 교반을 하면서 프리폴리머를 만들어놓는다. 이것을 상기 2단계의 혼합액에 첨가하여 1분간 교반시킨다.Step 3: Add 15 g of melamine, 20 g of formalin, and 65 g of water, and mix for 30 minutes at 60 ° C to make a prepolymer. This is added to the mixed solution of the two steps and stirred for 1 minute.

4단계: 상기 3단계의 혼합액에 0.5N의 HCl 수용액으로 넣어서 MF 수지의 가교조건에 해당하는 pH값을 조절하는데 이 값은 pH 4.0∼5.0 정도를 유지한다.Step 4: Adjust the pH value corresponding to the crosslinking condition of the MF resin by adding 0.5N HCl aqueous solution to the mixed solution of step 3, which maintains the pH of about 4.0 to 5.0.

5단계: 실시예 1과 동일하게 한다.Step 5: The same procedure as in Example 1.

6단계: 실시예 1과 동일하게 한다.Step 6: The same procedure as in Example 1.

<실시예 4><Example 4>

1단계: 실시예 1과 동일하게 한다.Step 1: The same procedure as in Example 1.

2단계: 상기 1단계의 용액에 물 100g을 첨가하여 1분간 교반시킨 후 테트라데칸 70g 첨가하여 유화시킨 후 에멀전 상태의 혼합용액을 만든다. 오일분산은 상온에서 교반 속도 1700rpm에서 3분간 실시한다.Step 2: 100g of water is added to the solution of step 1, followed by stirring for 1 minute, followed by emulsification by adding 70g of tetradecane to form an emulsion mixed solution. Oil dispersion is performed at room temperature for 3 minutes at a stirring speed of 1700 rpm.

3단계: 벽물질에 해당하는 멜라민 20g, 포르말린 40g, 글루타르디알데하이드 5g, 물 55g을 넣어서 60℃에서 30분간 교반하면서 프리폴리머를 제조하여 상기 2단계의 혼합액에 첨가하여 1분간 교반시킨다.Step 3: Melamine 20g, formalin 40g, glutaraldehyde, 5g, 55g of water to the wall material was added to the stirred mixture at 60 ℃ for 30 minutes to prepare a prepolymer and stirred for 1 minute.

4단계: 상기 3단계의 혼합액에 0.5N의 HCl 수용액으로 적가하여 MF 수지의 가교조건에 해당하는 pH값을 조절하여 pH 4.0∼5.0 정도로 유지한다.Step 4: The pH value corresponding to the crosslinking condition of the MF resin is adjusted by dropwise addition of 0.5N HCl aqueous solution to the mixed solution of step 3 and maintained at pH 4.0 to 5.0.

5단계: 실시예 1과 동일하게 한다.Step 5: The same procedure as in Example 1.

6단계: 실시예 1과 동일하게 한다.Step 6: The same procedure as in Example 1.

<실시예 5><Example 5>

1단계: 실시예 1과 동일하게 한다.Step 1: The same procedure as in Example 1.

2단계: 상기 1단계의 용액에 물 100g을 첨가하여 1분간 교반시킨 후 테트라데칸 70g 첨가하여 유화시킨 후 에멀전 상태의 혼합용액을 만든다. 오일분산은 상온에서 교반 속도 1700rpm에서 3분간 실시한다.Step 2: 100g of water is added to the solution of step 1, followed by stirring for 1 minute, followed by emulsification by adding 70g of tetradecane to form an emulsion mixed solution. Oil dispersion is performed at room temperature for 3 minutes at a stirring speed of 1700 rpm.

3단계: 상기 2단계의 혼합액에 벽물질에 해당하는 멜라민 20g, 포르말린 35g, 글루타르알데하이드 5g을 첨가하여 1분간 교반시킨다.Step 3: 20 g of melamine, 35 g of formalin, and 5 g of glutaraldehyde are added to the mixed solution of step 2 and stirred for 1 minute.

4단계: 상기 3단계의 혼합액에 0.5N의 HCl 수용액으로 넣어서 MF 수지의 가교조건에 해당하는 pH값을 조절하여 pH 4.0∼5.0 정도로 유지한다.Step 4: The pH mixture corresponding to the cross-linking conditions of the MF resin is maintained by adding 0.5N HCl aqueous solution to the mixed solution of step 3 and maintaining the pH at about 4.0 to 5.0.

5단계: 실시예 1과 동일하게 한다.Step 5: The same procedure as in Example 1.

6단계: 실시예 1과 동일하게 한다.Step 6: The same procedure as in Example 1.

본 발명의 인 시튜(in situ) 중합법에 의해 얻어진 마이크로캡슐형 잠열미립자는 분산된 오일 계면에서는 물이나 친핵성 물질과 반응하여 내부상 주위에서 예비벽(prewall)을 형성하여 안정적이며 강도가 높다. 최종으로 만들어진 마이크로캡슐은 평균크기가 도 2에서 나타낸 것처럼 20㎛내의 크기를 가지며 용이한 제어로 1회에 대량생산이 가능하며 단기간에 캡슐화할 수 있다. 또한 종래의 기계적인 방법으로 제조되는 캡슐보다 아주 미세한 크기로 제조가 가능하며, 화학적 방법으로 제조되는 계면중합법보다도 가교도를 증가시켜 내구성면에서 향상되는 결과를 얻을수 있으며 표면구조가 아주 매끄러운 마이크로캡슐형 잠열미립자는 열저장 또는 수송에서 슬러리 매체로 유동시 표면적이 증가되어 열의 흡수 및 방출속도가 빨라지고 일정 열량 수송을 위한 소요동력이 감소되는 장점이 있다.The microcapsular latent heat particulates obtained by the in situ polymerization method of the present invention react with water or nucleophilic substances at the dispersed oil interface to form a prewall around the inner phase, which is stable and high in strength. . The final microcapsules have an average size of 20 μm as shown in FIG. 2 and can be mass-produced at one time with easy control and encapsulated in a short time. In addition, it can be manufactured in a much finer size than the capsule produced by the conventional mechanical method, and the cross-linking degree is increased compared to the interfacial polymerization method produced by the chemical method, resulting in improved durability and a microcapsule type with a very smooth surface structure. The latent heat fine particles have the advantage that the surface area is increased when flowing from the heat storage or transport to the slurry medium, so that the absorption and release rate of heat is faster and the power required for constant heat transport is reduced.

Claims (5)

마이크로캡슐형 잠열미립자 슬러리를 제조하는 방법에 있어서, 폴리스티렌 설포닌산(poly styrene sulfonic acid; PSSA)과 물을 혼합하고 80℃에서 30분간 교반하여 용해한 후 냉각시킨 PSSA 수용액을 제조하는 단계와, 상기의 PSSA 수용액에 물을 첨가하여 교반시켜 상변화물질로 테트라데칸(Tetradecane)을 첨가하고 유화시켜 에멀전상태의 혼합용액을 만든 후 상온에서 상변화물질을 분산시키는 단계와, 상기의 혼합액에 멜라민, 포르말린, 글루타르디알데하이드 3∼5g을 첨가하여 교반시키는 단계와, 상기의 혼합액에 HCl을 첨가하여 멜라민-포르말린 수지의 가교조건에 적합한 pH를 조절하는 단계와, 상기의 용액을 교반속도 550rpm로 60℃에서 4시간 동안 중합반응시켜 슬러리를 얻는 단계와, 상기의 중합된 슬러리를 분무건조 하는 단계를 포함하는 것을 특징으로 하는 마이크로캡슐형 잠열미립자 슬러리의 제조방법In the method for producing a microcapsule latent thermal particulate slurry, a step of preparing a PSSA aqueous solution that is cooled by mixing polystyrene sulfonic acid (PSSA) and water, stirred at 80 ° C. for 30 minutes, dissolved, and Water was added to the PSSA aqueous solution and stirred to add Tetradecane as a phase change material, followed by emulsification to form an emulsion mixed solution, and then dispersing the phase change material at room temperature. Melamine, formalin, Adding 3 to 5 g of glutaraldehyde and stirring the mixture, adjusting HCl to the pH of the melamine-formalin resin to suit the crosslinking conditions, and stirring the solution at 60 ° C. at a stirring rate of 550 rpm. Obtaining a slurry by polymerization for 4 hours, and spray drying the polymerized slurry. Method for preparing microcapsule latent heat particulate slurry 제 1항에 있어서, PSSA 수용액은 10g의 폴리스티렌 설포닌산에 90g의 물을 섞고 80℃에서 30분간 교반하여 용해한 후 냉각시킨 10 wt% PSSA 수용액인 것을 특징으로 하는 의한 마이크로캡슐형 잠열미립자 슬러리의 제조방법.The microcapsule-type latent heat particulate slurry according to claim 1, wherein the PSSA aqueous solution is a 10 wt% PSSA aqueous solution which is cooled by mixing 90 g of water in 10 g of polystyrene sulfonate and stirring at 80 ° C. for 30 minutes to dissolve. Way. 제 1항에 있어서, 상변화물질인 테트라데칸을 분산시키는 단계는 10 wt% PSSA 수용액에 물 100g을 첨가하여 1분간 교반시켜 테트라데칸 70g을 첨가하고 유화시킨 에멀전상태의 혼합용액을 상온에서 교반속도 1700rpm으로 3분간 테트라데칸을 분산시키는 단계인 것을 특징으로 하는 마이크로캡슐형 잠열미립자 슬러리의 제조방법.The method of claim 1, wherein the step of dispersing tetradecane, a phase change material, adds 100 g of water to a 10 wt% PSSA aqueous solution and stirs for 1 minute to add 70 g of tetradecane and emulsifies the mixed solution in an emulsion state at room temperature. Method for producing a microcapsule type latent heat particulate slurry, characterized in that the step of dispersing tetradecane at 1700rpm for 3 minutes. 제 1항에 있어서, 멜라민-포르말린 수지의 가교조건에 적합한 pH를 조절하는 단계는 전기의 혼합용액에 멜라민, 포르말린, 글루타르디알데하이드 3∼5g을 첨가하여 1분간 교반시킨 혼합용액에 0.5N의 HCl 수용액을 넣고 pH를 4.0∼5.0으로 조절하는 단계인 것을 특징으로 하는 마이크로캡슐형 잠열미립자 슬러리의 제조방법.According to claim 1, wherein the step of adjusting the pH suitable for the crosslinking conditions of the melamine-formalin resin is added to the mixed solution of the melamine, formalin, glutaraldehyde 3-5g and stirred for 1 minute 0.5N of the mixed solution Method of producing a microcapsule-type latent heat particulate slurry, characterized in that the step of adding an aqueous solution of HCl to adjust the pH to 4.0 to 5.0. 제 1항 또는 제 4항에 있어서, 멜라민과 포르말린의 첨가시 멜라민과 포르말린의 몰비가 1:1.73∼1:2.5인 것을 특징으로 하는 마이크로캡슐형 잠열미립자 슬러리의 제조방법.5. The method of claim 1 or 4, wherein the molar ratio of melamine and formalin in the addition of melamine and formalin is 1: 1.73 to 1: 2.5.
KR1019990048653A 1999-11-04 1999-11-04 Process for Microencapsulat ed Phase Change Material Slurry KR100337025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990048653A KR100337025B1 (en) 1999-11-04 1999-11-04 Process for Microencapsulat ed Phase Change Material Slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990048653A KR100337025B1 (en) 1999-11-04 1999-11-04 Process for Microencapsulat ed Phase Change Material Slurry

Publications (2)

Publication Number Publication Date
KR20010045384A KR20010045384A (en) 2001-06-05
KR100337025B1 true KR100337025B1 (en) 2002-05-17

Family

ID=19618560

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990048653A KR100337025B1 (en) 1999-11-04 1999-11-04 Process for Microencapsulat ed Phase Change Material Slurry

Country Status (1)

Country Link
KR (1) KR100337025B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058316B1 (en) 2019-06-14 2019-12-24 힘찬건설 주식회사 Crack reduction type quick-hardening cement concrete composition comprising functional binder and repairing method for road pavement therewith
KR102117062B1 (en) 2019-10-25 2020-06-04 철원건설 주식회사 Crack reduction type quick-hardening cement concrete composition comprising phase change material and functional binder, or repairing method for road pavement therewith
KR102135004B1 (en) 2019-11-13 2020-07-20 형제건설(주) Heat reduction type quick-hardening cement concrete composition comprising functional binder containing and repairing method for road pavement therewith
KR102157517B1 (en) 2019-11-13 2020-09-18 박승종 High functional quick-hardening cement concrete composition comprising latent material and repairing method for road pavement therewith
WO2021071028A1 (en) 2019-10-08 2021-04-15 ㈜바이오제닉스 Core-shell pcm microcapsule having automatic temperature control function and cooling cosmetic composition comprising same for external application to skin

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078220A (en) * 2001-04-06 2002-10-18 케이엔디산업(주) Method for preparing microcapsules containing phase change materials and articles including microcapsules prepared therefrom
KR100481283B1 (en) * 2001-08-27 2005-04-07 주식회사 에네트 Microencapsulation Method of Phase Change Materials(PCM) using Emulsion
KR100741566B1 (en) * 2005-08-04 2007-07-23 에스케이네트웍스 주식회사 LatentHeat powder and preparing method for the same
KR20060001829A (en) * 2005-08-04 2006-01-06 에스케이네트웍스 주식회사 Biodegradable synthetic resin composition and its products
KR100886820B1 (en) * 2006-12-07 2009-03-04 한국식품연구원 Manufacturing method of phase change material
KR102235540B1 (en) * 2019-10-16 2021-04-01 최동호 Low temperature storage container for receiving delivery goods
KR102341733B1 (en) 2021-06-23 2021-12-22 주식회사트라이포드 Sieving device for producing hydration heat reducing agent
CN114989786B (en) * 2022-06-09 2023-08-15 纯钧新材料(深圳)有限公司 Sarin resin phase-change microcapsule and preparation method thereof
CN115069176A (en) * 2022-06-09 2022-09-20 武汉中科先进材料科技有限公司 Modified melamine resin phase change microcapsule and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651238A (en) * 1979-10-02 1981-05-08 Fuji Photo Film Co Ltd Production of microminiature capsule
JPS58124536A (en) * 1982-01-21 1983-07-25 Hodogaya Chem Co Ltd Preparation of microcapsule slurry
JPS61204035A (en) * 1985-03-07 1986-09-10 Sumitomo Chem Co Ltd Production of microcapsule
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule
KR890010618A (en) * 1987-12-03 1989-08-09 데이비드 엘. 산테즈 Method for preparing amine-formaldehyde microcapsules and photosensitive microcapsules prepared by
KR20000010243A (en) * 1998-07-31 2000-02-15 최수현 Encapsulated phase change material(pcm) and heat storage and transport method using the pcm
KR20000010061A (en) * 1998-07-30 2000-02-15 최수현 Production process of microcapsule by surface polymerization method
KR20000031071A (en) * 1998-11-03 2000-06-05 이효진 Heat storage system using fine latent ash

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651238A (en) * 1979-10-02 1981-05-08 Fuji Photo Film Co Ltd Production of microminiature capsule
JPS58124536A (en) * 1982-01-21 1983-07-25 Hodogaya Chem Co Ltd Preparation of microcapsule slurry
JPS61204035A (en) * 1985-03-07 1986-09-10 Sumitomo Chem Co Ltd Production of microcapsule
JPS6415131A (en) * 1987-07-07 1989-01-19 Nippon Petrochemicals Co Ltd Microcapsule
KR890010618A (en) * 1987-12-03 1989-08-09 데이비드 엘. 산테즈 Method for preparing amine-formaldehyde microcapsules and photosensitive microcapsules prepared by
KR20000010061A (en) * 1998-07-30 2000-02-15 최수현 Production process of microcapsule by surface polymerization method
KR20000010243A (en) * 1998-07-31 2000-02-15 최수현 Encapsulated phase change material(pcm) and heat storage and transport method using the pcm
KR20000031071A (en) * 1998-11-03 2000-06-05 이효진 Heat storage system using fine latent ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058316B1 (en) 2019-06-14 2019-12-24 힘찬건설 주식회사 Crack reduction type quick-hardening cement concrete composition comprising functional binder and repairing method for road pavement therewith
WO2021071028A1 (en) 2019-10-08 2021-04-15 ㈜바이오제닉스 Core-shell pcm microcapsule having automatic temperature control function and cooling cosmetic composition comprising same for external application to skin
KR102117062B1 (en) 2019-10-25 2020-06-04 철원건설 주식회사 Crack reduction type quick-hardening cement concrete composition comprising phase change material and functional binder, or repairing method for road pavement therewith
KR102135004B1 (en) 2019-11-13 2020-07-20 형제건설(주) Heat reduction type quick-hardening cement concrete composition comprising functional binder containing and repairing method for road pavement therewith
KR102157517B1 (en) 2019-11-13 2020-09-18 박승종 High functional quick-hardening cement concrete composition comprising latent material and repairing method for road pavement therewith

Also Published As

Publication number Publication date
KR20010045384A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
KR100337025B1 (en) Process for Microencapsulat ed Phase Change Material Slurry
US5277979A (en) Process for microencapsulation
US4409156A (en) Process for producing microcapsules
US4025455A (en) Cross-linked hydroxypropylcellulose microcapsules and process for making
JPS6023859B2 (en) Method for manufacturing microcapsules
US3551346A (en) Method of making dual wall capsules
CN101553305A (en) Microcapsules, their use and processes for their manufacture
JPH0620535B2 (en) Microcapsule manufacturing method
KR910009151A (en) Pest Control Composition
US4089834A (en) Water-resistant micro-capsular opacifier system and products
US4957666A (en) Method of producing a slurry of microcapsules
KR840001591B1 (en) Process of preparing microcapsule for pressure-sensitive recording paper
US4753968A (en) Process for preparing microcapsules
JPS5882785A (en) Micro capsule for pressure-sensitive recording paper and manufacture thereof
AU607532B2 (en) Process for microencapsulation, uses of polymers prepared by said process, and compositions containing polymers prepared by said process
JPH029440A (en) Method for making a microcapsule of a platinum group metal compound
JPH028774B2 (en)
JPS60238140A (en) Preparation of microcapsule
JP2534691B2 (en) Method for producing high-density microcapsules
JPH0551339B2 (en)
JPS5833492A (en) Microcapsule for pressure sensitive recording material and preparation thereof
US4000345A (en) Substrate having coating thereon comprising microcapsular opacifying agents, and method of preparing same
JP2824309B2 (en) Manufacturing method of microcapsules
JP2649796B2 (en) Method for producing sustained-release microcapsules
JPS6111138A (en) Preparation of microcapsule

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130507

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150504

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 18