KR100335649B1 - Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same - Google Patents

Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same Download PDF

Info

Publication number
KR100335649B1
KR100335649B1 KR1019990029697A KR19990029697A KR100335649B1 KR 100335649 B1 KR100335649 B1 KR 100335649B1 KR 1019990029697 A KR1019990029697 A KR 1019990029697A KR 19990029697 A KR19990029697 A KR 19990029697A KR 100335649 B1 KR100335649 B1 KR 100335649B1
Authority
KR
South Korea
Prior art keywords
lithium
polymer electrolyte
parts
polymer
acrylate
Prior art date
Application number
KR1019990029697A
Other languages
Korean (ko)
Other versions
KR20010010676A (en
Inventor
박정기
이영기
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019990029697A priority Critical patent/KR100335649B1/en
Publication of KR20010010676A publication Critical patent/KR20010010676A/en
Application granted granted Critical
Publication of KR100335649B1 publication Critical patent/KR100335649B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트계 고분자에유기용매, 리튬염 및 무기물을 첨가하여 제조되는 고분자 전해질 조성물에 관한 것이다. 본 발명에 의해 제조된 젤 고분자 전해질은, 종래의 비닐리덴플루오라이드 계열의 고분자로만 구성된 젤 고분자 전해질에 비하여, 넓은 온도 범위에서 이온전도특성이 우수하고, 계면 안정성이 현저히 향상되었다. 따라서, 본 발명에서 제조된 젤 고분자 전해질은 리튬 고분자 이차전지용 고분자 전해질의 재료로서 유용하게 사용될 수 있을 것이다.The present invention relates to a polymer electrolyte composition prepared by adding an organic solvent, a lithium salt and an inorganic substance to a vinylidene fluoride-based polymer and an acrylate-based polymer. The gel polymer electrolyte prepared according to the present invention has excellent ion conductivity and wider interface stability than a gel polymer electrolyte composed of only a vinylidene fluoride-based polymer. Therefore, the gel polymer electrolyte prepared in the present invention may be usefully used as a material of the polymer electrolyte for lithium polymer secondary batteries.

Description

비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자를 포함하는 젤 고분자 전해질 조성물 및 그의 제조방법{Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same}Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same}

본 발명은 신규한 젤 고분자 전해질에 관한 것이다. 좀 더 구체적으로, 본 발명은 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트계 고분자 블렌드에 유기용매, 리튬염 및 무기물을 첨가하여 제조한, 이온전도 특성이 우수하고 전극과의 계면 안정성이 향상된 젤 고분자 전해질 및 그의 제조방법에 관한 것이다.The present invention relates to a novel gel polymer electrolyte. More specifically, the present invention is a gel polymer prepared by adding an organic solvent, a lithium salt, and an inorganic material to a vinylidene fluoride-based polymer and an acrylate polymer blend, and having excellent ion conductivity and improved interface stability with an electrode. An electrolyte and a method for producing the same.

전기, 전자, 통신 및 컴퓨터 산업이 급속히 발전함에 따라, 고성능, 고안전성의 이차전지에 대한 수요는 점차 증가되어 왔고, 특히 전기, 전자 제품의 경박 단소화 및 휴대화 추세에 따라, 이 분야의 핵심 부품인 이차전지도 경량화 및 소형화가 요구되고 있다. 또한, 자동차의 대량보급에 따른 대기오염과 소음 등의 환경공해 문제 및 석유 고갈에 따른 새로운 형태의 에너지 수급원의 필요성이 대두됨에 따라 이를 해결할 수 있는 전기 자동차 개발의 필요성이 증가되어 왔으며, 이들의 동력원으로서 고출력, 고에너지 밀도를 갖는 전지의 개발이 요구되어지고 있다.With the rapid development of the electrical, electronics, telecommunications and computer industries, the demand for high-performance, high-safety secondary batteries has been gradually increasing, especially in light of the shortening and portability of electrical and electronic products. Secondary batteries, which are components, are also required to be lighter and smaller. In addition, as the necessity of a new form of energy supply and demand due to the exhaustion of oil and environmental pollution, such as air pollution and noise, due to the mass distribution of automobiles, the need for the development of electric vehicles that can solve this has increased. As a power source, development of a battery having high power and high energy density is required.

이와 같은 요구에 부응하여, 최근 가장 많은 각광을 받고 있는 고성능 차세대 첨단 신형 전지 중의 하나가 리튬 고분자 이차전지(lithium polymer battery,LPB)이다. LPB는 크게 부극(anode), 고분자 전해질(polymer electrolyte), 정극 (cathode)으로 구성되는데, 부극 활물질로는 리튬, 탄소 등이 사용되고, 고분자 전해질은 고분자와 염, 비수계 유기용매 및 기타 첨가제 등으로 구성되며, 정극 활물질로는 전이금속산화물, 금속칼코겐 화합물, 전도성 고분자 등이 사용된다.In response to these demands, one of the latest high-performance, next-generation new batteries that has received the most attention in recent years is a lithium polymer battery (LPB). LPB is largely composed of an anode, a polymer electrolyte, and a cathode. Lithium and carbon are used as the anode active material, and the polymer electrolyte is composed of a polymer, a salt, a non-aqueous organic solvent, and other additives. The positive electrode active material is composed of a transition metal oxide, a metal chalcogen compound, a conductive polymer, and the like.

액체 전해질을 이용한 종래의 리튬 이온전지는 안전성에 문제가 제기되고 있어, 이를 보완하는 전극물질과 안전장치를 장착하는 방법 등이 개발되고 있으나, 제조단가가 비싸고 대형 이차전지로 적용하기 어려운 문제점이 있다. 이에 반하여, 고분자 전해질을 사용하는 LPB는 보다 저렴하게 제조할 수 있고, 크기나 모양을 원하는 대로 조절할 수 있으며, 안전할 뿐만 아니라, 단위 무게당 에너지 밀도가 크다는 장점을 가지고 있다. 따라서, 유연성을 갖는 박막의 LPB는 휴대용 코드리스 전자제품 이외에도 적층에 의한 고전압 대용량의 전지 개발이 용이하여 전기 자동차용 전원으로도 개발이 가능하다.Conventional lithium ion batteries using liquid electrolytes have raised safety problems, and methods for mounting electrode materials and safety devices have been developed. However, manufacturing costs are expensive and difficult to apply to large secondary batteries. . On the contrary, LPB using a polymer electrolyte can be manufactured more inexpensively, can be adjusted in size or shape as desired, is safe, and has an energy density per unit weight. Accordingly, the flexible thin film LPB can be easily developed as a power source for an electric vehicle because it is easy to develop a high-voltage large-capacity battery by stacking in addition to portable cordless electronic products.

이러한 우수한 장점을 가지는 LPB를 상업화하기 위하여, 우수한 이온 전도 특성, 전기화학적 안정성 및 우수한 전극과의 계면특성 등을 만족시키는 고분자 전해질을 개발하려는 많은 연구가 진행되어 왔다. 초기에는 주로 폴리에틸렌옥사이드, 폴리프로필렌옥사이드 등을 근간으로 하는 무용매계 고분자 전해질에 관한 연구가 오랫동안 진행되어 왔으나(참조: 유럽특허 제 78505호; 미국특허 제 5,102,752호), 상온 전도도가 매우 낮은 문제점때문에, 현재에는 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리비닐리덴플루오라이드 또는 폴리메틸메타크릴레이트 등의 고분자에 에틸렌카보네이트 또는 프로필렌카보네이트 등의 유기용매를 염과함께 첨가하여 10-3S/cm 이상의 높은 이온전도도를 나타내는 젤 형태의 가소화된 고분자 전해질들에 관한 연구가 진행되고 있다(참조: O. Bohnke et al., Solid State Ionics, 66, 97(1993); 미국특허 제 5,219,697호). 이중, 폴리아크릴로니트릴, 폴리비닐클로라이드 또는 폴리비닐리덴플루오라이드를 기초로 한 젤 고분자 전해질 필름은 기계적 물성은 우수하나 첨가된 유기용매와 고분자간의 상용성이 좋지 않아서, 유기용매의 새어나옴(leakage) 현상에 따른 이온 전도 특성 및 전극과의 계면 안정성 등에 문제점이 있는 반면, 폴리메틸메타크릴레이트와 같은 아크릴레이트 계열의 고분자를 기초로 한 젤 고분자 전해질의 경우에는, 가소제와의 상용성은 우수하나 기계적 물성이 취약하여 유기용매의 함량에 따라 필름이 열화되는 단점이 있다.In order to commercialize LPB having such excellent advantages, many studies have been conducted to develop polymer electrolytes satisfying excellent ion conducting properties, electrochemical stability, and excellent interfacial properties with electrodes. Initially, studies on solvent-free polymer electrolytes mainly based on polyethylene oxide, polypropylene oxide, and the like have been conducted for a long time (see European Patent No. 78505; US Patent No. 5,102,752), due to a problem of low temperature conductivity. Currently, high ions of 10 -3 S / cm or more are added to a polymer such as polyacrylonitrile, polyvinyl chloride, polyvinylidene fluoride or polymethyl methacrylate by adding an organic solvent such as ethylene carbonate or propylene carbonate together with a salt. Research is underway on gelated plasticized polymer electrolytes that exhibit conductivity (O. Bohnke et al., Solid State Ionics, 66, 97 (1993); US Pat. No. 5,219,697). Among them, the gel polymer electrolyte film based on polyacrylonitrile, polyvinyl chloride or polyvinylidene fluoride has excellent mechanical properties but poor compatibility between the added organic solvent and the polymer, so that the organic solvent leaks out. ), Gel ionic electrolytes based on acrylate-based polymers such as polymethyl methacrylate have excellent compatibility with plasticizers, but have problems with ion conducting properties and interfacial stability with electrodes. Due to the weak physical properties, there is a disadvantage that the film is deteriorated according to the content of the organic solvent.

따라서, 리튬 고분자 이차전지에 사용할 수 있는, 기계적 물성, 이온 전도 특성 및 전극과의 계면 안정성이 우수한 새로운 고분자 전해질의 개발에 대한 필요성이 끊임없이 대두되었다.Therefore, there is a continuous need for the development of a new polymer electrolyte having excellent mechanical properties, ion conducting properties, and interfacial stability with an electrode, which can be used in a lithium polymer secondary battery.

이에, 본 발명자들은 리튬 고분자 이차전지에 사용할 수 있는 기계적 물성, 이온전도 특성 및 전극과의 계면 안정성이 우수한 새로운 고분자 전해질을 개발하고자 예의 노력한 결과, 이온전도 특성이 우수한 비닐리덴플루오라이드 계열의 고분자에 유기용매와의 상용성이 우수한 아크릴레이트 계열의 고분자를 혼합함으로써, 젤 고분자 전해질에서 발생하는 유기용매의 새어나옴(leakage) 현상에 따른 고분자 전해질내의 내부저항의 증가 및 그로 인한 이온 전도도의 감소를 억제하며, 고분자 전해질과 전극간의 반응성을 억제하여 계면에서의 안정성을 증대시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to develop a new polymer electrolyte having excellent mechanical properties, ion conductivity, and interfacial stability with an electrode that can be used in a lithium polymer secondary battery. By mixing the acrylate-based polymer having excellent compatibility with the organic solvent, it is possible to suppress the increase in internal resistance and the decrease in ionic conductivity due to the leakage of the organic solvent generated in the gel polymer electrolyte. In addition, it was confirmed that the stability at the interface can be increased by suppressing the reactivity between the polymer electrolyte and the electrode, thereby completing the present invention.

결국, 본 발명의 주된 목적은 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자를 포함하며, 이온전도 특성이 우수하고, 계면안정성이 향상된 젤 고분자 전해질 조성물을 제공하는 것이다.As a result, a main object of the present invention is to provide a polymer of a vinylidene fluoride-based polymer and an acrylate-based polymer, and to provide a gel polymer electrolyte composition having excellent ion conductivity and improved interfacial stability.

본 발명의 다른 목적은, 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자를 포함하는 젤 고분자 전해질 조성물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a gel polymer electrolyte composition comprising a vinylidene fluoride-based polymer and an acrylate-based polymer.

도 1은 폴리비닐리덴플루오라이드 및 폴리메틸메타크릴레이트를 각각 10:0 또는 7:3의 중량비로 포함하는 젤 고분자 전해질의 온도에 따른 이온전도특성을 나타낸 그래프이다.1 is a graph showing ionic conductivity characteristics of a gel polymer electrolyte containing polyvinylidene fluoride and polymethyl methacrylate in a weight ratio of 10: 0 or 7: 3, respectively.

도 2는 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체 및 폴리메틸메타크릴레이트를 각각 10:0 또는 7:3의 중량비로 포함하는 젤 고분자 전해질의 온도에 따른 이온전도특성을 나타낸 그래프이다.FIG. 2 is a graph showing ion conductivity characteristics of a gel polymer electrolyte having a copolymer of vinylidene fluoride and hexafluoropropylene and a polymethyl methacrylate in a weight ratio of 10: 0 or 7: 3, respectively.

도 3은 폴리비닐리덴플루오라이드 및 폴리메틸메타크릴레이트를 각각 10:0 또는 7:3의 중량비로 포함하는 젤 고분자 전해질의 리튬 전극과의 계면저항을 나타낸 그래프이다.3 is a graph showing interfacial resistance with a lithium electrode of a gel polymer electrolyte containing polyvinylidene fluoride and polymethyl methacrylate in a weight ratio of 10: 0 or 7: 3, respectively.

도 4는 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체 및 폴리메틸메타크릴레이트를 각각 10:0 또는 7:3의 중량비로 포함하는 젤 고분자 전해질의 리튬 전극과의 계면저항을 나타낸 그래프이다.4 is a graph showing interfacial resistance with a lithium electrode of a gel polymer electrolyte including a copolymer of vinylidene fluoride and hexafluoropropylene and a polymethyl methacrylate in a weight ratio of 10: 0 or 7: 3, respectively.

본 발명의 젤 고분자 전해질 조성물은, 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자로 조성된 고분자 블렌드에, 유기용매, 리튬염 및 무기물을 혼합하여 제조된다.The gel polymer electrolyte composition of the present invention is prepared by mixing an organic solvent, a lithium salt, and an inorganic substance in a polymer blend composed of a vinylidene fluoride polymer and an acrylate polymer.

전기 고분자 블렌드는 비닐리덴플루오라이드 계열의 고분자와 아크릴레이트 계열의 고분자가 99:1 내지 20:80 중량비, 바람직하게는 90:10 내지 50:50중량비로 혼합하여 공용매인 테트라하이드로퓨란에 용해시겨 수득한다. 이때, 비닐리덴플루오라이드 계열의 고분자는, 중량평균 분자량이 100,000 내지 350,000인 폴리비닐리덴플루오라이드, 헥사플루오로프로필렌의 조성비가 5 내지 25몰%인 헥사플루오로프로필렌 및 비닐리덴플루오라이드의 공중합체, 트리플루오로에틸렌의 조성비가 5 내지 25몰%인 트리플루오로에틸렌 및 비닐리덴플루오라이드의 공중합체 또는 테트라플루오로에틸렌의 조성비가 5 내지 25몰%인 테트라플루오로에틸렌 및 비닐리덴플루오라이드의 공중합체 등의 고분자가 사용될 수 있다. 또한, 아크릴레이트 계열의 고분자로서는 중량평균 분자량이 100,000 내지 500,000인 폴리메틸아크릴레이트, 폴리에틸아크릴레이트, 폴리메틸메타크릴레이트, 폴리에틸메타크릴레이트, 폴리부틸아크릴레이트 또는 폴리부틸메타크릴레이트 등이 사용될 수 있다.The polymer blend is a vinylidene fluoride-based polymer and an acrylate-based polymer in a 99: 1 to 20:80 weight ratio, preferably 90:10 to 50:50 weight ratio, and dissolved in tetrahydrofuran as a cosolvent. To obtain. At this time, the vinylidene fluoride-based polymer is a copolymer of polyvinylidene fluoride having a weight average molecular weight of 100,000 to 350,000, hexafluoropropylene and vinylidene fluoride having a composition ratio of 5 to 25 mol% of hexafluoropropylene. A copolymer of trifluoroethylene and vinylidene fluoride having a composition ratio of trifluoroethylene of 5 to 25 mol%, or tetrafluoroethylene and vinylidene fluoride having a composition ratio of 5 to 25 mol% of tetrafluoroethylene. Polymers, such as a copolymer, can be used. Examples of the acrylate-based polymer include polymethyl acrylate, polyethyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl acrylate or polybutyl methacrylate having a weight average molecular weight of 100,000 to 500,000. Can be used.

또한, 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마부틸로락톤 및 메틸에틸카보네이트 등으로 구성되는 그룹으로부터 선택되는 1종 이상의 용매가, 중량비로 고분자 블렌드 100부에 대하여, 50 내지 500부, 바람직하게는 100 내지 350부가 사용된다.In addition, the organic solvent is one or more solvents selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma butyrolactone, methyl ethyl carbonate, etc. To 500 parts, preferably 100 to 350 parts are used.

그리고, 리튬염은 리튬퍼클로레이트, 리튬헥사플루오로포스페이트, 리튬트리플레이트, 리튬비스트리플루오로메틸설포닐이미드 또는 리튬테트라플루오로보레이트 가운데 하나의 염이, 중량비로 고분자 블렌드 100부에 대하여, 리튬염 1 내지 50부, 바람직하게는 2 내지 25부가 사용된다.And, the lithium salt is a salt of one of lithium perchlorate, lithium hexafluorophosphate, lithium triplate, lithium bistrifluoromethylsulfonylimide or lithium tetrafluoroborate, based on the weight ratio of 100 parts of the polymer blend, lithium Salts from 1 to 50 parts, preferably from 2 to 25 parts are used.

마지막으로, 무기물은 알루미늄옥사이드, 리튬알루미늄옥사이드, 실리카 또는 제올라이트 등의 무기물이, 중량비로 고분자 블렌드 100부에 대하여, 1 내지 50부, 바람직하게는 5 내지 25부가 사용된다.Finally, the inorganic material is an inorganic material such as aluminum oxide, lithium aluminum oxide, silica or zeolite, 1 to 50 parts, preferably 5 to 25 parts by weight relative to 100 parts of the polymer blend.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 1: Example 1 :

폴리비닐리덴플루오라이드 및 폴리메틸메타크릴레이트를 7:3의 중량비로 혼합하여 공용매인 테트라하이드로퓨란에 용해시키고, 혼합된 고분자에 대하여 1:1 몰비의 에틸렌카보네이트와 프로필렌카보네이트의 혼합유기용매, 리튬퍼클로레이트 및 실리카를 100:300:10:10의 중량비로 첨가하여 균일한 용액을 제조한 다음, 테프론판에 캐스팅하고 공용매를 증발시켜 필름 형태의 젤 고분자 전해질을 제조하였다.Polyvinylidene fluoride and polymethyl methacrylate are mixed in a weight ratio of 7: 3 and dissolved in tetrahydrofuran, a cosolvent, and a mixed organic solvent of ethylene carbonate and propylene carbonate in a 1: 1 molar ratio based on the mixed polymer, lithium Perchlorate and silica were added in a weight ratio of 100: 300: 10: 10 to prepare a uniform solution, which was then cast on Teflon plate and the cosolvent was evaporated to prepare a gel polymer electrolyte in the form of a film.

실시예 2: Example 2 :

헥사플루오로프로필렌의 함량이 12몰%인 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체 및 폴리메틸메타크릴레이트를 7:3의 중량비로 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 필름 형태의 젤 고분자 전해질을 제조하였다.The same method as in Example 1, except that a copolymer of vinylidene fluoride having a hexafluoropropylene content of 12 mol%, hexafluoropropylene, and polymethyl methacrylate were mixed at a weight ratio of 7: 3. To prepare a gel polymer electrolyte in the form of a film.

비교실시예 1: Comparative Example 1 :

폴리비닐리덴플루오라이드를 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 젤 고분자 전해질을 제조하였다.A gel polymer electrolyte was prepared in the same manner as in Example 1, except that polyvinylidene fluoride was used alone.

비교실시예 2: Comparative Example 2 :

비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체를 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 젤 고분자 전해질을 제조하였다.A gel polymer electrolyte was prepared in the same manner as in Example 1, except that a copolymer of vinylidene fluoride and hexafluoropropylene was used alone.

이온전도도의 측정: Measurement of Ion Conductivity :

실시예 1, 2, 비교실시예 1 및 2에서 제조된 젤 고분자 전해질에 대하여 이온전도도를 측정하였다. 이온전도도는 각각의 고분자 전해질 필름을 스테인레스 스틸 전극과 접착시킨 다음, 폴리에틸렌이 코팅된 알루미늄 포장재로 진공밀봉하여, 주파수 응답 분석기(frequency response analyzer; FRA)를 이용하여 높은 주파수 영역에서의 저항값들을 측정하고, 이를 이온전도도 계산식을 이용하여 계산하였다(참조: 도 1 및 도 2).Ion conductivity was measured for the gel polymer electrolytes prepared in Examples 1 and 2 and Comparative Examples 1 and 2. Ionic conductivity is obtained by measuring the resistance values in the high frequency region by using a frequency response analyzer (FRA) by bonding each polymer electrolyte film to a stainless steel electrode and then vacuum-sealing it with a polyethylene-coated aluminum package. And it was calculated using the ion conductivity calculation formula (see Figs. 1 and 2).

도 1에서, -(■)-는 폴리비닐리덴플루오라이드와 폴리메틸메타크릴레이트의중량비가 7:3인 고분자 블렌드를 사용한 젤 고분자 전해질 조성물의 온도에 따른 이온전도특성을 나타낸 그래프이고, -(●)-는 폴리비닐리덴플루오라이드만을 사용한 젤 고분자전해질의 온도에 따른 이온전도특성을 나타낸 그래프이다. 도 1에서 보듯이, 폴리비닐리덴플루오라이드에 메틸메타크릴레이트를 혼합함으로써 넓은 온도범위에서 이온전도도가 향상되었으며, 특히 저온 범위에서의 이온전도도는 메타크릴레이트를 혼합하지 않은 종래의 젤 형태의 고분자 전해질보다 현저히 향상되었다.In Figure 1,-(■)-is a graph showing the ion conductivity characteristics according to the temperature of the gel polymer electrolyte composition using a polymer blend having a weight ratio of polyvinylidene fluoride and polymethyl methacrylate of 7: 3,-( ●)-is a graph showing the ion conductance characteristics of the gel polymer electrolyte using polyvinylidene fluoride according to the temperature. As shown in FIG. 1, by mixing methyl methacrylate with polyvinylidene fluoride, ionic conductivity was improved in a wide temperature range, and in particular, ionic conductivity in a low temperature range was a conventional gel-type polymer without methacrylate mixing. Significantly improved over the electrolyte.

도 2에서, -(■)-는 비닐리덴플루오라이드 계열의 고분자인 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체 및 아크릴레이트 계열의 고분자인 폴리메틸메타크릴레이트의 중량비가 7:3인 고분자 블렌드를 사용한 젤 고분자 전해질 조성물의 온도에 따른 이온전도특성을 나타낸 그래프이고, -(●)-는 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체만의 온도에 따른 이온전도특성을 나타낸 그래프이다. 도 2에서 보듯이, 상온 이온전도도가 2.17×10-3S/cm로 폴리메틸메타크릴레이트를 혼합하지 않은 종래의 젤 형태의 고분자 전해질보다 우수하거나 유사하였으며, 저온 범위에서의 이온전도 특성도 10-4S/cm 수준을 유지하여 매우 우수하였다.In FIG. 2,-(■)-is a copolymer of vinylidene fluoride and hexafluoropropylene, a vinylidene fluoride-based polymer, and a polymer having a weight ratio of polymethyl methacrylate of 7: 3, an acrylate-based polymer. It is a graph showing the ion conductivity characteristics according to the temperature of the gel polymer electrolyte composition using the blend,-(●)-is a graph showing the ion conductivity characteristics according to the temperature of the copolymer of vinylidene fluoride and hexafluoropropylene only. As shown in FIG. 2, the room temperature ion conductivity is 2.17 × 10 −3 S / cm, which is superior to or similar to that of the conventional gel-type polymer electrolyte in which polymethyl methacrylate is not mixed. Maintained -4 S / cm level was very good.

계면저항의 측정: Measurement of Interface Resistance :

또한, 실시예 1, 2, 비교실시예 1 및 2에서 제조된 젤 고분자 전해질에 대하여 계면저항을 측정하였다. 계면저항은 고분자 전해질 필름의 양쪽에 리튬 전극을 부착시킨 후, 역시 주파수 응답 분석기를 이용하여 낮은 주파수 영역에서의 저항값들을 측정하여 비교하였다(참조: 도 3 및 도 4).In addition, the interfacial resistance of the gel polymer electrolytes prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was measured. The interfacial resistance was compared by attaching lithium electrodes to both sides of the polymer electrolyte film and then measuring resistance values in the low frequency region using a frequency response analyzer (see FIGS. 3 and 4).

도 3에서, -(□)-는 폴리비닐리덴플루오라이드 및 폴리메틸메타크릴레이트의 중량비가 7:3인 고분자 블렌드를 사용한 젤 고분자 전해질 조성물과 리튬 전극과의 계면저항을 측정한 그래프이고, -(○)-는 폴리비닐리덴플루오라이드를 사용한 젤 고분자 전해질 조성물과 리튬 전극과의 계면저항을 측정한 그래프이다. 도 3에서 보듯이, 폴리메틸메타크릴레이트가 혼합된 본 발명의 고분자 전해질과 리튬 전극의 계면저항이, 폴리메틸메타크릴레이트가 혼합되지 않은 전해질의 계면저항과 비교하여 현저히 감소되었음을 확인할 수 있다.In Figure 3,-(□)-is a graph measuring the interfacial resistance between the gel polymer electrolyte composition and the lithium electrode using a polymer blend having a weight ratio of polyvinylidene fluoride and polymethyl methacrylate of 7: 3,- (Circle)-is a graph which measured the interface resistance between the gel polymer electrolyte composition using polyvinylidene fluoride, and a lithium electrode. As shown in FIG. 3, it can be seen that the interfacial resistance of the polymer electrolyte and the lithium electrode of the present invention in which polymethyl methacrylate is mixed is significantly reduced compared to the interfacial resistance of the electrolyte in which the polymethyl methacrylate is not mixed.

도 4에서, -(□)-는 비닐리덴플루오라이드 계열의 고분자인 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체 및 아크릴레이트 계열의 고분자인 폴리메틸메타크릴레이트의 중량비가 7:3인 고분자 블렌드를 사용한 젤 고분자 전해질 조성물과 리튬 전극과의 계면저항을 측정한 그래프이고, -(○)-는 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체의 계면저항을 나타낸 그래프이다. 도 4에서 보듯이, 폴리메틸메타크릴레이트가 혼합된 본 발명의 고분자 전해질과 리튬 전극의 계면저항이, 폴리메틸메타크릴레이트가 혼합되지 않은 전해질의 계면저항과 비교하여 현저히 감소되었음을 확인할 수 있다.In Fig. 4,-(□)-is a copolymer of vinylidene fluoride and hexafluoropropylene, a vinylidene fluoride-based polymer, and a polymer having a weight ratio of polymethyl methacrylate of 7: 3, an acrylate-based polymer. It is a graph which measured the interfacial resistance between the gel polymer electrolyte composition and the lithium electrode using the blend, and-(○)-is a graph showing the interfacial resistance of the copolymer of vinylidene fluoride and hexafluoropropylene. As shown in FIG. 4, it can be seen that the interfacial resistance of the polymer electrolyte and the lithium electrode of the present invention in which polymethyl methacrylate is mixed is significantly reduced compared to the interfacial resistance of the electrolyte in which the polymethyl methacrylate is not mixed.

이상에서 상세히 설명하고 입증하였듯이, 본 발명에서는 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트계 고분자의 블렌드에 유기용매, 리튬염 및 무기물을 혼합하여 제조한 젤 고분자 전해질 조성물을 제공한다. 본 발명에 의해 제조된 젤 고분자 전해질은, 비닐리덴플루오라이드 계열의 고분자로만 구성된 종래의 젤 고분자 전해질에 비하여, 넓은 온도 범위에서 이온전도특성이 우수하고, 계면 안정성이 향상되었다. 따라서, 본 발명에서 제조된 젤 고분자 전해질은 리튬 고분자 이차전지용 고분자 전해질의 재료로서 유용하게 사용될 수 있을 것이다.As described and demonstrated in detail above, the present invention provides a gel polymer electrolyte composition prepared by mixing an organic solvent, a lithium salt, and an inorganic material in a blend of a vinylidene fluoride-based polymer and an acrylate-based polymer. The gel polymer electrolyte prepared according to the present invention has superior ion conductivity characteristics and improved interfacial stability over a wide temperature range, compared to a conventional gel polymer electrolyte composed only of a vinylidene fluoride series polymer. Therefore, the gel polymer electrolyte prepared in the present invention may be usefully used as a material of the polymer electrolyte for lithium polymer secondary batteries.

Claims (7)

헥사플루오로프로필렌의 조성비가 5 내지 25몰%인 헥사플루오로프로필렌과 비닐리덴플루오라이드의 공중합체, 트리플루오로에틸렌의 조성비가 5 내지 25몰%인 트리플루오로에틸렌과 비닐리덴플루오라이드의 공중합체, 및 테트라플루오로에틸렌의 조성비가 5 내지 25몰%인 테트라플루오로에틸렌과 비닐리덴플루오라이드의 공중합체로 이루어진 그룹으로부터 선택되는 어느 하나의 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자가 99:1 내지 20:80의 중량비로 혼합된 고분자 블렌드를 공용매에 용해시킨 다음, 상기 고분자 블렌드의 중량 100부에 대하여 유기용매 50 내지 500부, 리튬염 1 내지 50부 및 무기물 1 내지 50부를 공용매에 용해된 고분자 블렌드와 혼합하여 균일한 용액을 수득하는 공정; 및,Copolymer of hexafluoropropylene and vinylidene fluoride having a composition ratio of hexafluoropropylene of 5 to 25 mol%, and air of trifluoroethylene and vinylidene fluoride having a composition ratio of trifluoroethylene of 5 to 25 mol% A vinylidene fluoride-based polymer and an acrylate-based polymer selected from the group consisting of a copolymer and a copolymer of tetrafluoroethylene and vinylidene fluoride having a composition ratio of tetrafluoroethylene of 5 to 25 mol%. The polymer blend was dissolved in a co-solvent in a weight ratio of 99: 1 to 20:80, and then 50 to 500 parts of an organic solvent, 1 to 50 parts of lithium salt, and 1 to 50 parts of inorganic salt based on 100 parts by weight of the polymer blend. Mixing the parts with the polymer blend dissolved in the cosolvent to obtain a uniform solution; And, 상기 수득한 용액을 캐스팅하여 공용매를 증발시키는 공정을 포함하는 젤 고분자 전해질 조성물의 제조방법.Casting the obtained solution to evaporate the co-solvent manufacturing method of a gel polymer electrolyte composition. 삭제delete 제 1항에 있어서,The method of claim 1, 아크릴레이트 계열의 고분자는, 중량평균 분자량이 100,000The acrylate-based polymer has a weight average molecular weight of 100,000 내지 500,000인 폴리메틸아크릴레이트, 폴리에틸아크릴레이트, 폴리메틸메Polymethyl acrylate, polyethyl acrylate, polymethyl meth from 500,000 타크릴레이트, 폴리에틸메타크릴레이트, 폴리부틸아크릴레이트 또는 폴리Methacrylate, polyethyl methacrylate, polybutyl acrylate or poly 부틸메타크릴레이트인 것을 특징으로 하는Butyl methacrylate, characterized in that 젤 고분자 전해질 조성물의 제조방법.Method for preparing a gel polymer electrolyte composition. 제 1항에 있어서,The method of claim 1, 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트,Organic solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, 디에틸카보네이트, 감마부틸로락톤 및 메틸에틸카보네이트로 구성되는Consisting of diethyl carbonate, gamma butyrolactone, and methyl ethyl carbonate 그룹으로부터 선택되는 1종 이상의 용매인 것을 특징으로 하는At least one solvent selected from the group 젤 고분자 전해질 조성물의 제조방법.Method for preparing a gel polymer electrolyte composition. 제 1항에 있어서,The method of claim 1, 리튬염은 리튬퍼클로레이트, 리튬헥사플루오로포스페이트, 리튬트리플레Lithium salt is lithium perchlorate, lithium hexafluoro phosphate, lithium triple 이트, 리튬비스트리플루오로메틸설포닐이미드 또는 리튬테트라플루오로Yttrium, lithium bistrifluoromethylsulfonylimide or lithium tetrafluoro 보레이트 염인 것을 특징으로 하는Characterized in that it is a borate salt 젤 고분자 전해질 조성물의 제조방법.Method for preparing a gel polymer electrolyte composition. 제 1항에 있어서,The method of claim 1, 무기물은 알루미늄옥사이드, 리튬알루미늄옥사이드, 실리카 또는 제올라이Inorganic materials are aluminum oxide, lithium aluminum oxide, silica or zeolite 트인 것을 특징으로 하는Characterized by 젤 고분자 전해질 조성물의 제조방법.Method for preparing a gel polymer electrolyte composition. 비닐리덴플루오라이드 계열의 고분자 및 아크릴레이트 계열의 고분자가 99:1 내지 20:80의 중량비로 혼합된 고분자 블렌드 100부, 유기용매 50 내지 500부, 리튬염 1 내지 50부 및 무기물 1 내지 50부를 포함하는 젤 고분자 전해질 조성물.100 parts of polymer blend in which vinylidene fluoride-based polymer and acrylate-based polymer are mixed in a weight ratio of 99: 1 to 20:80, 50 to 500 parts of organic solvent, 1 to 50 parts of lithium salt and 1 to 50 parts of inorganic material Gel polymer electrolyte composition comprising.
KR1019990029697A 1999-07-22 1999-07-22 Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same KR100335649B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990029697A KR100335649B1 (en) 1999-07-22 1999-07-22 Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990029697A KR100335649B1 (en) 1999-07-22 1999-07-22 Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20010010676A KR20010010676A (en) 2001-02-15
KR100335649B1 true KR100335649B1 (en) 2002-05-08

Family

ID=19603562

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990029697A KR100335649B1 (en) 1999-07-22 1999-07-22 Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100335649B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115498254B (en) * 2022-08-01 2023-07-18 吉林省东驰新能源科技有限公司 Semi-interpenetrating network polymer electrolyte and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032019A (en) * 1996-07-17 1998-02-03 Matsushita Electric Ind Co Ltd Polymer electrolyte and lithium polymer battery using polymer electrolyte
JPH1153936A (en) * 1997-08-05 1999-02-26 Nec Corp Polymer electrolyte and secondary battery using the electrolyte
JPH1166948A (en) * 1997-08-27 1999-03-09 Nec Corp High polymer electrolyte and lithium ion secondary battery
JPH1186631A (en) * 1997-09-11 1999-03-30 Tdk Corp Polymer solid electrolyte, lithium secondary battery, and electric double layer capacitor
KR20000019372A (en) * 1998-09-10 2000-04-06 박호군 Solid polymer alloy electrolyte of homogeneous phase, complex electrode using the electrolyte, lithium polymer battery, lithium ion polymer battery and manufacturing method thereof
KR20000055681A (en) * 1999-02-09 2000-09-15 성재갑 Polymer blend electrolyte and electrochemical cell using the same
KR20010010675A (en) * 1999-07-22 2001-02-15 윤덕용 Porous Polymeric Electrolytes Comprising Vinylidenefluoride and Polyacrylate Polymers and Process for Preparing the Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032019A (en) * 1996-07-17 1998-02-03 Matsushita Electric Ind Co Ltd Polymer electrolyte and lithium polymer battery using polymer electrolyte
JPH1153936A (en) * 1997-08-05 1999-02-26 Nec Corp Polymer electrolyte and secondary battery using the electrolyte
JPH1166948A (en) * 1997-08-27 1999-03-09 Nec Corp High polymer electrolyte and lithium ion secondary battery
JPH1186631A (en) * 1997-09-11 1999-03-30 Tdk Corp Polymer solid electrolyte, lithium secondary battery, and electric double layer capacitor
KR20000019372A (en) * 1998-09-10 2000-04-06 박호군 Solid polymer alloy electrolyte of homogeneous phase, complex electrode using the electrolyte, lithium polymer battery, lithium ion polymer battery and manufacturing method thereof
KR20000055681A (en) * 1999-02-09 2000-09-15 성재갑 Polymer blend electrolyte and electrochemical cell using the same
KR20010010675A (en) * 1999-07-22 2001-02-15 윤덕용 Porous Polymeric Electrolytes Comprising Vinylidenefluoride and Polyacrylate Polymers and Process for Preparing the Same

Also Published As

Publication number Publication date
KR20010010676A (en) 2001-02-15

Similar Documents

Publication Publication Date Title
US6884547B2 (en) Lithium polymer battery
JP3571032B2 (en) Gel polymer electrolyte and lithium battery using the same
US6503661B1 (en) Lithium secondary battery
JP3675460B2 (en) Organic electrolyte and lithium battery using the same
JP5089595B2 (en) Novel polymer electrolytes and electrochemical devices
Sashmitha et al. A comprehensive review of polymer electrolyte for lithium-ion battery
WO2011132717A1 (en) Non-aqueous electrolyte for electrical device and secondary battery using same
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
KR100335649B1 (en) Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride and Acrylate Polymers and Process for Preparing the Same
KR100340952B1 (en) Porous Polymeric Electrolytes Comprising Vinylidenefluoride and Polyacrylate Polymers and Process for Preparing the Same
KR100331237B1 (en) Composition of Gel-Type Polymer Electrolytes Comprising Vinylidenefluoride Polymer and Polyvinylacetate and Process for Preparing the Same
KR100324714B1 (en) New blended gel polymer electrolyte(Ⅱ) and a method for manufacturing thereof
Dong et al. A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium batteries
KR100324712B1 (en) New blended porous polymer electrolyte(Ⅱ) and a method for manufacturing thereof
KR100407485B1 (en) Polymeric gel electrolyte and lithium battery employing the same
KR100324713B1 (en) New blended gel polymer electrolyte(I)and a method for manufacturing thereof
KR100324715B1 (en) New blended gel polymer electrolyte(Ⅲ) and a method for manufacturing thereof
KR100361642B1 (en) New blended porous polymer electrolyte(I) and a method for manufacturing thereof
KR100361641B1 (en) Porous Polymer Electrolytes Based on the Blend of PVC and PMMA and Manufacturing Methof Thereof
KR100533647B1 (en) A uv-cured multi-component polymer blend electrolyte, lithium secondary battery and their fabrication method
KR100329125B1 (en) Porous Polymer Electroyts Composition based on the Blend of Polyvinylchloride/Polymer of Acrylate/Ionomer of Acrylate and Manufacturing Method Thereof
KR100332676B1 (en) Porous Polymer Electrolytes Based on the Blend of P(VC-co-VAc), PMMA and Manufacturing Method
KR100297923B1 (en) Polymeric Electrolyte of Polyacrylonitrile Ionomer And Process for Preparing the Same
JPH103942A (en) Manufacture of gelatinous electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080331

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee