KR100335601B1 - Apparatus for continuously reducing iron chloride aqueous solution - Google Patents

Apparatus for continuously reducing iron chloride aqueous solution Download PDF

Info

Publication number
KR100335601B1
KR100335601B1 KR1020000007028A KR20000007028A KR100335601B1 KR 100335601 B1 KR100335601 B1 KR 100335601B1 KR 1020000007028 A KR1020000007028 A KR 1020000007028A KR 20000007028 A KR20000007028 A KR 20000007028A KR 100335601 B1 KR100335601 B1 KR 100335601B1
Authority
KR
South Korea
Prior art keywords
iron chloride
iron
chloride solution
reactor
solution
Prior art date
Application number
KR1020000007028A
Other languages
Korean (ko)
Other versions
KR20010083481A (en
Inventor
안병성
김용진
서인석
박건유
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1020000007028A priority Critical patent/KR100335601B1/en
Publication of KR20010083481A publication Critical patent/KR20010083481A/en
Application granted granted Critical
Publication of KR100335601B1 publication Critical patent/KR100335601B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은, 폐염화철 수용액을 재생하기 위해 환원시키는 방법에 있어서 철재를 충진한 컬럼 반응기를 사용하면서도 적정한 환원율을 유지하고, 연속 운전이 가능하도록 하기 위하여, 폐염화철 수용액이 도입되는 철재가 충진된 컬럼 반응기 (1)와, 상기 컬럼 반응기로부터 배출되는 염화철수용액이 도입되고, 레벨지시조절계 (LIC)와 산화환원전위지시조절계 (AIC)를 포함하는 교반 반응기 (2)와, 상기 교반 반응기의 염화철 수용액을 상기 컬럼 반응기로 순환시키기 위한 순환 펌프 (3)로 이루어지고, 상기 레벨지시조절계 (LIC)는 상기 교반 반응기내의 염화철 수용액 높이를 측정하여 상기 컬럼 반응기로 도입되는 폐염화철 수용액의 유량을 제어하고, 상기 산화환원전위지시조절계 (AIC)는 상기 교반 반응기내의 염화철 수용액의 산화환원전위를 측정하여 상기 교반 반응기로부터 배출되는 염화철 수용액의 유량을 제어하는 염화철 수용액의 연속 환원 장치를 제공한다.In the present invention, in order to reduce the waste iron chloride solution in order to regenerate, in order to maintain an appropriate reduction rate and to enable continuous operation while using a column-filled column reactor, the iron-filled column into which the waste iron chloride solution is introduced A stirred reactor (2) including a reactor (1), an iron chloride solution discharged from the column reactor, a level indication control system (LIC) and a redox potential control system (AIC), and an aqueous solution of iron chloride in the stirred reactor It consists of a circulation pump (3) for circulating to the column reactor, the level indicator control system (LIC) measures the height of the aqueous iron chloride solution in the stirred reactor to control the flow rate of the waste iron chloride solution introduced into the column reactor, The redox potential control system (AIC) measures the redox potential of the aqueous solution of iron chloride in the stirred reactor It provides a continuous reduction apparatus of ferric chloride aqueous solution of iron chloride solution to control the flow rate discharged from the group stirred reactor.

Description

염화철 수용액의 연속 환원 장치{APPARATUS FOR CONTINUOUSLY REDUCING IRON CHLORIDE AQUEOUS SOLUTION}Continuous reduction apparatus of aqueous iron chloride solution {APPARATUS FOR CONTINUOUSLY REDUCING IRON CHLORIDE AQUEOUS SOLUTION}

본 발명은 철 혹은 철-니켈의 합금 등을 에칭시킬 때 사용된 에칭액인 폐염화철 수용액을 효율적으로 재생하는 방법에 있어서 염화철수용액 중 3가의 염화제이철을 2가의 염화제일철로 환원시키는 방법에 관한 것이다. 더욱 상세하게는 니켈 등의 중금속을 함유한 폐염화철 수용액을 철과 반응시켜 철보다 이온화 경향이 작은 금속을 석출/제거하는 방법에 있어서 1 단계로 염화철수용액 중 3가의 염화제이철을 2가의 염화제일철로 환원시키는 방법이다. 이러한 방법으로 환원된 염화제일철 수용액을 니켈등의 중금속을 제거하기 위한 2단계 공정에 공급함으로써 철환원법에 의한 폐에칭액 재생방법을 더욱 유용하게 한다.The present invention relates to a method for reducing trivalent ferric chloride in a ferric chloride solution to divalent ferric chloride in a method for efficiently regenerating an aqueous waste iron chloride solution which is an etching solution used to etch iron or an iron-nickel alloy or the like. More specifically, in a method of depositing / removing a metal having a less ionization tendency than iron by reacting a waste iron chloride solution containing heavy metals such as nickel with iron, trivalent ferric chloride in the iron chloride solution is converted into divalent ferric chloride. It is a method of reducing. By supplying the ferric chloride solution reduced in this way to a two-step process for removing heavy metals such as nickel, the waste etching solution regeneration method by the iron reduction method becomes more useful.

염화제이철(FeCl3) 수용액은 금속 (순철 및 철합금, 구리합금, 니켈합금 등)을 에칭하기 위한 에칭액 (etchant)으로 사용되며 일반적으로 철을 염산에 용해시켜 염화제일철(FeCl2)을 만든 후, 이것을 염소가스로 산화시켜 제조한다. 에칭용으로 사용되는 염화제이철 수용액은 에칭 대상 금속과 에칭율, 에칭 단위에 따라 다소간의 차이는 있으나 통상 30% - 45%의 염화제이철과 5%-15%의 염화제일철을 혼합하여 사용한다. 특히 브라운관에 사용되는 새도우마스크나 반도체용 리드프레임 등을 생산하기 위해 사용되는 에칭용액으로는 고도로 순수한 염화철 수용액이 사용된다.Ferric chloride (FeCl 3) The aqueous solution of metal after (pure iron and an iron alloy, copper alloy, nickel alloy, etc.) is used as the etching solution (etchant) for etching was typically dissolved iron in hydrochloric acid, made of ferrous chloride (FeCl 2) It is produced by oxidizing with chlorine gas. The ferric chloride aqueous solution used for etching is somewhat different depending on the metal to be etched, the etching rate, and the etching unit, but a mixture of 30% to 45% ferric chloride and 5% to 15% ferric chloride is usually used. In particular, highly pure aqueous iron chloride solution is used as an etching solution used to produce shadow masks and semiconductor lead frames used in CRTs.

25인치 이하의 소형 TV나 소형 컴퓨터모니터에 사용되는 새도우마스크 재질은 순철로서 이의 에칭에 사용된 폐염화철 수용액은 회수하여 염소가스로 산화처리 함으로써 간단히 재생이 가능하다. 그러나 25인치 이상의 대형 TV와 차세대 TV인 HDTV(high definition television), 고급 대형 컴퓨터 모니터의 브라운관에 사용되는 새도우 마스크는 철-니켈 합금 (Invar 합금, Alloy-42)이 사용되며 이러한 합금을 에칭한 용액 (염화철수용액)에는 니켈 이온 등이 함유되어 기존의 처리기술로는 염화철수용액을 고순도로 재생할 수가 없다. 또한, 염화철 수용액에 니켈 이온이 축적되면 에칭 홀 (hole)이 불균일해지고 에칭효율이 저하되어 사용할 수 없게 된다. 따라서, 새로운 염화철 수용액을 사용하던가 사용된 폐에칭액에서 니켈 등의중금속 이온을 제거하여야 한다.The shadow mask material used for small TVs or small computer monitors of 25 inches or less is pure iron, and the waste iron chloride solution used for etching thereof can be recovered and oxidized with chlorine gas for simple regeneration. However, the shadow masks used in the CRTs of large 25-inch and larger TVs, high definition televisions (HDTV), and high-end large computer monitors are made of iron-nickel alloys (Invar alloy, Alloy-42), and these alloys are etched solutions. (Iron chloride solution) contains nickel ions and the like, so that the iron chloride solution cannot be recycled with high purity by the existing treatment technology. In addition, when nickel ions are accumulated in the aqueous iron chloride solution, etching holes are uneven and etching efficiency is lowered, making it impossible to use. Therefore, it is necessary to remove heavy metal ions, such as nickel, from the spent etching solution using a new iron chloride solution.

에칭에 사용된 폐염화철수용액 (30%-45%의 염화제이철과 5%-15%의 염화제일철 및 0.2% - 2%의 니켈 및 기타 중금속함유)에서 니켈 등의 금속이온을 제거하는 방법으로는 철분을 과량 첨가하여 이온화 경향이 철보다 작은 금속(구리, 크롬, 니켈 등)을 석출/제거하는 철환원 방법이 주로 사용되고 있으며 이외에 이온교환법, 전기분해법, 결정형성법들이 있다.Metal ions such as nickel are removed from the spent iron chloride solution (containing 30% -45% ferric chloride and 5% -15% ferric chloride and 0.2% -2% nickel and other heavy metals) used in etching. Iron reduction methods for depositing / removing metals (copper, chromium, nickel, etc.) that have less ionization tendency than iron by adding excessive amounts of iron are mainly used. In addition, there are ion exchange, electrolysis, and crystal formation.

철환원법 (일본공개특허공보 소62-192588 및 일본공개특허공보 평1-167235)에서는 염화철 에칭폐액에 금속철을 첨가하여 다음의 제1반응에 의해 염화 제2철을 염화제일철로 환원시키고, 여기에 금속철분을 과량으로 첨가하여 다음의 제2반응에 의해 니켈이온을 니켈금속으로 석출시킨다.In the iron reduction method (Japanese Patent Laid-Open No. 62-192588 and Japanese Patent Laid-Open No. Hei 1-67235), metal iron is added to an iron chloride etching waste solution, and ferric chloride is reduced to ferric chloride by the following first reaction. The metal iron powder is added in excess to precipitate nickel ions into nickel metal by the following second reaction.

제1반응(환원반응): 2FeCl3+ Fe = 3FeCl2 First reaction (reduction reaction): 2FeCl 3 + Fe = 3FeCl 2

제2반응(니켈제거반응): NiCl2+ Fe = FeCl2+ NiSecond reaction (nickel removal reaction): NiCl 2 + Fe = FeCl 2 + Ni

일본특허공보 소61-44814에서는 위의 두 개 반응을 한 개의 반응기(괴상 철재 및 교반 반응기 사용)에서 동시에 일어나도록 하여 크롬, 구리, 납 등을 제거하였으나 니켈제거가 효율적이지 못하였다. 일본공개특허공보 소62-192588, 일본공개특허공보 평1-167235, 평5-255869, 평5-263273, 평9-156930 등에서는 발열반응인 제1단계 환원반응과 비교적 발열량이 적은 제2단계 니켈제거반응을 분리시켜 철환원법을 개선하였다. 2단계 반응인 니켈제거반응에서는 철재 표면에 니켈이 석출되어 반응속도를 급격히 저하시키므로 이를 개선하기 위하여 표면적이 넓은 철분을사용하고 철분과 함께 분리되는 고형물에 니켈 함량을 높여 효과적으로 니켈을 회수, 재활용할 수 있게 되었다.In Japanese Patent Publication No. 61-44814, the above two reactions were simultaneously performed in one reactor (using a bulk iron and a stirred reactor) to remove chromium, copper, and lead, but nickel removal was not efficient. Japanese Patent Application Laid-Open No. 62-192588, Japanese Patent Application Laid-Open No. Hei 1-167235, Hei 5-255869, Hei 5-263273, Hei 9-156930, etc., is a first step reduction reaction and a second step with relatively low calorific value. The nickel reduction reaction was separated to improve the iron reduction method. In the two-step nickel elimination reaction, nickel precipitates on the surface of the steel, and the reaction rate is drastically reduced. Therefore, to improve this, it is necessary to use iron with a large surface area and to increase the nickel content in solids separated from iron to effectively recover and recycle the nickel. It became possible.

제1반응인 환원반응에서도 연속반응을 위해 철분 (일본공개특허공보 평10-18061, 평6-128760)이 사용되나 환원반응은 상온에서도 자발적으로 일어나며 발열반응으로서 반응이 진행되면 온도가 상승하여 반응속도가 더욱 빨라지게 된다. 따라서 제1반응에서는 고가의 철분을 사용하지 않고 철 스크랩 등의 저가의 철재 (일본공개특허공보 소62-192588, 평1-167235, 평5-125563, 평5-255869, 평9-156930)가 사용되기도 한다. 철편, 철봉 등의 철 스크랩을 사용하는 경우에 교반조에 철재를 투입히거나 철재를 충진한 컬럼 형태의 반응기가 사용되고 연속공정보다는 회분공정으로 운전된다.In the first reaction, the reduction reaction, iron (JP-A-10-18061, H6-128760) is used for the continuous reaction, but the reduction reaction occurs spontaneously even at room temperature. It's faster. Therefore, in the first reaction, inexpensive iron materials such as iron scrap without using expensive iron powder (Japanese Patent Laid-Open Publication No. 62-192588, Pt. 1-67235, Pt. 5-125563, Pt. 5-255869, Pt. 9-156930) Also used. In the case of using iron scraps such as iron pieces and iron rods, a reactor in the form of a column in which steel is added to a stirring tank or filled with iron is used, and is operated in a batch process rather than in a continuous process.

염화철수용액 폐에칭액에 철을 첨가하여 니켈 등의 중금속을 제거하기 위한 철환원법의 1단계공정인 환원공정에서 고가의 철분을 사용하지 않고 가격이 저렴한 철 스크랩 등의 철재를 사용하는 방법은 철환원법의 경제성을 높일 수 있으나 회분 공정 사용에 따라 번잡하고 장치가 커지는 문제가 있다. 컬럼 형태 반응기를 사용하는 경우, 반응기 특성상 교반이 불가능하여 철재와 수용액과의 접촉을 촉진시킬 수가 없고 반응기에서 배출되는 수용액의 환원율을 일정하게 유지하기 어려워 연속공정으로 운전하기 위해서는 특수한 형태의 반응기가 요구된다. 또한 컬럼 반응기를 사용하지 않고 철편이나 철괴 등의 철재를 교반반응기에 투입하는 방법도 시도될 수 있으나 교반조를 사용하는 경우, 형태가 일정하지 않은 철재를 일정량씩 연속 투입하는 것이 용이하지 않으며 철분이 아닌 철재의 경우에는 많은 양을 교반조에 투입할 수가 없어 접촉면적을 충분히 증가시킬 수가 없다. 철편이나 철괴가 교반조내에 수용액과 함께 존재하는 경우, 교반 또한 용이하지 않다.In the reduction process, which is the first step of the iron reduction method to remove heavy metals such as nickel by adding iron to the waste etching solution of iron chloride solution, the method of using iron materials such as iron scrap, which is inexpensive and inexpensive, does not use expensive iron. Economics can be increased, but there is a problem in that it is complicated and the device becomes large according to the use of the ash process. In the case of using a column type reactor, it is impossible to stir due to the characteristics of the reactor, and thus it is not possible to promote contact between the steel and the aqueous solution, and it is difficult to maintain a constant reduction rate of the aqueous solution discharged from the reactor. do. In addition, a method of injecting iron materials such as iron pieces or iron ingots into a stirred reactor without using a column reactor may be attempted. However, in the case of using a stirring tank, it is not easy to continuously input iron materials having a irregular shape by a certain amount. In the case of iron, a large amount cannot be added to the agitation tank, and thus the contact area cannot be sufficiently increased. If iron pieces or iron bars are present together with the aqueous solution in the stirring bath, stirring is also not easy.

폐염화철수용액을 환원시킬 때, 환원되지 않은 3가의 염화철이 많으면 니켈제거단계에서 3가의 염화철을 먼저 2가의 염화철로 환원시켜야하므로 고가의 철분을 소비하게 된다. 한편 환원단계에서 3가 염화철을 2가의 염화철로 완전히 환원시키면 일부 니켈이온이 철재에 석출되는 반응이 일어나게 된다. 이럴 경우 철재 표면에 석출된 니켈은 다음에 투입되는 폐염화철수용액에 의해 다시 용해되어 수용액중의 니켈이온함량을 높이게 되며 이에 따라 니켈함량이 변화하여 안정적인 운전을 하기 어렵다. 또한 니켈제거공정에서 니켈함량이 감소하여 니켈 회수가 어렵게 된다.When reducing the waste iron chloride solution, if there is a lot of unreduced trivalent iron chloride, it is necessary to reduce the trivalent iron chloride to divalent iron chloride in the nickel removal step, thus consuming expensive iron. Meanwhile, when trivalent iron chloride is completely reduced to divalent iron chloride in the reduction step, a reaction in which some nickel ions are precipitated in the iron material occurs. In this case, the nickel deposited on the surface of the steel is dissolved again by the waste iron chloride solution to be added next to increase the content of nickel ions in the aqueous solution. In addition, nickel content is reduced in the nickel removal process, making it difficult to recover nickel.

따라서 철재를 충진한 컬럼 반응기를 사용하면서도 적정한 환원율을 유지하고, 연속 운전이 가능한 폐염화철수용액의 환원방법이 필요하다.Therefore, there is a need for a method for reducing waste iron chloride solution capable of maintaining an appropriate reduction rate and enabling continuous operation while using a column reactor filled with iron.

도 1 은 본 발명에 따른 염화철 수용액 연속 환원 장치의 개략도이다.1 is a schematic view of the iron chloride aqueous solution continuous reduction apparatus according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1: 컬럼반응기 2: 교반반응기1: column reactor 2: stirred reactor

3: 순환펌프3: circulation pump

1a: 레벨지시조절계로 제어되는 조절 밸브1a: Control valve controlled by level indicator

2a: 산화환원전위지시조절계로 제어되는 조절 밸브2a: regulating valve controlled by redox potential control system

이에 본 발명은, 폐염화철 수용액이 도입되는 철재가 충진된 컬럼 반응기 (1)와, 상기 컬럼 반응기로부터 배출되는 염화철수용액이 도입되고, 레벨지시조절계 (LIC)와 산화환원전위지시조절계 (AIC)를 포함하는 교반 반응기 (2)와, 상기 교반 반응기의 염화철 수용액을 상기 컬럼 반응기로 순환시키기 위한 순환 펌프 (3)로 이루어지고, 상기 레벨지시조절계 (LIC)는 상기 교반 반응기내의 염화철 수용액 높이를 측정하여 상기 컬럼 반응기로 도입되는 폐염화철 수용액의 유량을 제어하고, 상기 산화환원전위지시조절계 (AIC)는 상기 교반 반응기내의 염화철 수용액의 산화환원전위를 측정하여 상기 교반 반응기로부터 배출되는 염화철 수용액의 유량을 제어하는 염화철 수용액의 연속 환원 장치를 제공한다.In the present invention, a column reactor (1) filled with iron material into which an aqueous waste iron chloride solution is introduced, and iron chloride solution discharged from the column reactor are introduced, and a level indication control system (LIC) and a redox potential control system (AIC) are introduced. It comprises a stirred reactor (2) and a circulation pump (3) for circulating the iron chloride aqueous solution of the stirred reactor to the column reactor, the level indicator control system (LIC) is measured by measuring the height of the iron chloride aqueous solution in the stirred reactor The flow rate of the waste iron chloride solution introduced into the column reactor is controlled, and the redox potential control system (AIC) controls the flow rate of the iron chloride solution discharged from the stirred reactor by measuring the redox potential of the aqueous iron chloride solution in the stirred reactor. It provides a continuous reduction device of the aqueous iron chloride solution.

여기서, 상기 컬럼 반응기에 공급되는 폐염화철 수용액의 염화제일철과 염화제이철의 합계 함량이 45% 이하이고, 염화제이철 농도가 40% 이하인 것이 바람직하다. 또한, 상기 컬럼 반응기에 공급되는 폐염화철 수용액의 니켈이온 농도가 3% 이하인 것이 바람직하다. 또한, 상기 산화환원전위지시조절계에 의해 염화철 수용액 중의 염화제이철 농도가 0.5 내지 3% 에 해당하는 염화철 수용액의 산화환원전위값이 측정되는 경우 상기 교반반응기로부터 염화철 수용액이 배출되는 것이 바람직하다.Here, the total content of ferrous chloride and ferric chloride in the waste iron chloride solution supplied to the column reactor is preferably 45% or less, and the ferric chloride concentration is 40% or less. In addition, the nickel ion concentration of the waste iron chloride solution supplied to the column reactor is preferably 3% or less. In addition, when the redox potential value of the ferric chloride solution corresponding to the concentration of ferric chloride in the aqueous solution of iron chloride is 0.5 to 3% is measured by the redox potential indicator control system, the aqueous solution of iron chloride is preferably discharged from the stirring reactor.

본 발명의 구성은 도 1 에서와 같이 종래의 컬럼 반응기와 통상적인 교반반응기 및 순환펌프로 구성되며 교반반응기에는 산화환원전위지시조절계 (AIC: Analysis Indicating Controller)를 장착하여 연속적으로 환원율을 측정하도록 하였다. 컬럼 반응기에는 철편, 철괴 등의 철재 스크랩을 충진하고 여기에 폐염화철수용액을 공급하여 환원반응을 일으킨다.The configuration of the present invention is composed of a conventional column reactor, a conventional stirred reactor and a circulation pump as shown in FIG. 1 and equipped with a redox potential indicator (AIC: Analysis Indicating Controller) to continuously measure the reduction rate. . The column reactor is filled with iron scraps such as iron strips and iron bars, and a waste iron chloride solution is supplied thereto to cause a reduction reaction.

도 1에 표시된 흐름도에 의해 본 발명의 구성을 설명하면 다음과 같다.Referring to the configuration of the present invention by the flow chart shown in Figure 1 as follows.

가) 철재가 충진된 컬럼반응기(1)에, 폐염화철수용액과, 상기 컬럼반응기와 교반반응기를 거쳐 순환되는 염화철수용액을 연속투입하고, 나) 컬럼반응기 (1)에서 배출된 염화철수용액을 교반반응기(2)에 투입하며, 다) 순환펌프(3)를 사용하여 교반반응기 (2)의 염화철수용액을 컬럼반응기 (1)로 순환하며 산화환원전위지시조절계 (AIC)에서 3가 염화철의 농도를 측정하여 적정농도로 환원된 염화철수용액을 연속적으로 다음 공정으로 유출시키는 공정으로 구성한다.(A) Continuously introducing the waste iron chloride solution and the iron chloride solution circulated through the column reactor and the stirring reactor into the column reactor (1) filled with iron material, and b) The iron chloride solution discharged from the column reactor (1) is stirred. And (c) circulating the iron chloride solution in the stirred reactor (2) to the column reactor (1) using a circulation pump (3) and measuring the concentration of trivalent iron chloride in the redox potential control system (AIC). It is composed of a step of continuously flowing out the iron chloride solution reduced to the appropriate concentration to the next step.

본 발명에서는 컬럼반응기에서 배출된 염화철수용액을 교반반응기에 투입하여 용액을 혼합한 후, 다량의 염화철 용액을 컬럼반응기에 순환시켜 철재와 수용액이 충분히 접촉되도록 한다. 또한 교반반응기에서 배출되는 염화철 수용액의 3가 염화철의 농도를 연속적으로 측정하여, 배출되는 염화철수용액의 염화제이철의 농도가 0.3 내지 5 중량%가 되도록 하여, 94 내지 99%의 적정한 환원율을 유지하도록 하는 것이다. 교반반응기에서 다음공정으로 유출되는 양에 따라 교반반응기의 액 높이가 변화하므로 이를 레벨지시조절계 (LIC: Level Indicating Controller)로 측정하고 컬럼 반응기로 공급되는 폐에칭액의 공급량을 조절한다.In the present invention, the iron chloride solution discharged from the column reactor is added to the stirring reactor to mix the solution, and the iron chloride solution is circulated in the column reactor so that the iron and the aqueous solution are sufficiently in contact with each other. In addition, the concentration of trivalent iron chloride in the aqueous solution of iron chloride discharged from the stirred reactor was continuously measured so that the concentration of ferric chloride in the discharged iron chloride solution was 0.3 to 5% by weight, thereby maintaining an appropriate reduction rate of 94 to 99%. will be. As the liquid height of the stirred reactor changes according to the amount of outflow from the stirred reactor to the next process, it is measured by a Level Indicating Controller (LIC) and the amount of waste etching liquid supplied to the column reactor is controlled.

본 발명을 실시하기 위하여 산화환원전위기를 사용하여 측정한 수용액의 3가 염화철 농도와 산화환원전위 관계는 다음 표와 같다. 3가의 염화철 32wt.% 수용액 (2가 염화철 0 wt.%)을 환원시킬 때 환원율 혹은 3가 염화철의 농도에 따른 산화환원전위 (ORP)이다. 여기서 환원율은 다음과 같이 계산된 값이다.To implement the present invention, the relationship between the trivalent iron chloride concentration and the redox potential of an aqueous solution measured using a redox potential is shown in the following table. It is the redox potential (ORP) according to the reduction rate or the concentration of trivalent iron chloride when reducing the trivalent iron chloride 32 wt.% Aqueous solution (divalent iron chloride 0 wt.%). Here, the reduction rate is a value calculated as follows.

환원율과 산화환원전위(80℃)Reduction rate and redox potential (80 ℃) 염화제2철농도(wt.%)Ferric Chloride Concentration (wt.%) 환원율(wt.%)Reduction Rate (wt.%) 산화환원전위(ORP, mV)Redox potential (ORP, mV) 31.631.6 0.00.0 752.3752.3 27.427.4 13.313.3 579.3579.3 23.623.6 25.325.3 552.6552.6 19.619.6 38.038.0 534.9534.9 15.515.5 50.950.9 519.5519.5 11.811.8 62.762.7 501.4501.4 7.97.9 75.075.0 485.0485.0 4.04.0 87.387.3 456.5456.5 0.00.0 100.0100.0 349.7349.7

상기 표에서 보는 바와 같이 3가의 염화제이철이 4%에서 0%까지 환원되는 과정에서 ORP는 457mV에서 350mV까지 변화하므로 산화환원전위 값을 사용하여 환원종말점을 정확히 확인할 수 있음을 알 수 있다. 즉 3가의 염화철 농도를 0-4% 범위에서 조절할 수 있으며 환원단계에서 니켈의 석출을 최소화하면서도 저가의 철재를 사용하여 가능한한 3가의 염화철을 2가로 환원시키는 방법이 가능하다.As shown in the table, ORP changes from 457mV to 350mV in the process of reducing trivalent ferric chloride from 4% to 0%, so it can be seen that the reduction end point can be accurately identified using the redox potential value. That is, the trivalent iron chloride concentration can be adjusted in the range of 0-4%, and it is possible to reduce the trivalent iron chloride to divalent as much as possible using inexpensive iron while minimizing the precipitation of nickel in the reduction step.

이하 실시예를 통하여 본 발명의 효과를 자세히 설명하고자하며 다음의 실시예에 의해 본 발명의 범위가 제한되지는 않는다.Through the following examples will be described in detail the effect of the present invention is not limited to the scope of the present invention by the following examples.

실시예 1Example 1

철재를 충진하기 위해 직경 9cm, 높이 150cm의 0.9 m3크기, FRP(fiber reinforced plastic) 재질 컬럼반응기를 사용하였으며 교반반응기 또한 FRP 재질의 1.5 m3크기(직경 110cm, 높이 160cm) 교반조를 사용하였다.In order to fill the steel, a 0.9 m 3 sized FRP (fiber reinforced plastic) column reactor with a diameter of 9 cm and a height of 150 cm was used, and a 1.5 m 3 sized diameter (110 cm, 160 cm high) agitator was also used. .

철재로는 순철의 새도우마스크(shadow mask) 제작시 발생된 스크랩을 사용하였으며 천공된 부분과 비천공된 부분을 구별하지 않고 무정형으로 절단하여 10시간사용이 가능한 양만큼을 컬럼반응기에 충진하였다. 환원반응에 공급되는 폐염화철 에칭액의 조성은 염화제이철이 34%, 염화제일철이 9%, 니켈이온함량이 11,000ppm 이었으며, 교반조에 1.2m3를 채운후 환원반응을 시작하였다. 교반조의 교반속도는 100rpm 이 되도록 하여 액이 충분히 혼합되도록 하였으며 교반조의 반응액을 컬럼반응기로 순환시키기 위한 펌프의 유량은 분당 50리터가 되도록 운전하였으며 컬럼반응기에서 배출되는 액은 컬럼반응기의 액 높이가 일정하게 유지되는 상태에서 교반반응기로 자연 이송되도록 하였다.As the iron material, scrap generated during the manufacture of a shadow mask of pure iron was used, and the column reactor was filled with an amount that can be used for 10 hours by cutting the amorphous form without distinguishing the perforated and non-perforated parts. The composition of the waste iron chloride etching solution supplied to the reduction reaction was 34% ferric chloride, 9% ferric chloride, and 11,000 ppm nickel ion. The reaction was started after filling 1.2m 3 of the stirring tank. The stirring speed of the agitator tank was 100 rpm to allow the liquid to be sufficiently mixed. The flow rate of the pump for circulating the reaction liquid of the agitator tank to the column reactor was operated to 50 liters per minute, and the liquid discharged from the column reactor was increased in the column reactor. It was to be naturally transported to the stirred reactor in a constant state.

반응초기에는 반응열에 의해 컬럼반응기에서 배출되는 액의 온도가 상온에서 83℃까지 상승하였으나 5시간 이후에는 온도가 75℃로 유지되었다. 교반 반응기에서 컬럼반응기로 순환되는 라인에 플레이트형 열교환기를 설치하여 컬럼반응기에서의 반응액 온도가 80℃ 부근이 되도록 유지시켰다. 또한 5시간 후, 교반반응기내 염화철수용액의 산화환원전위가 410mV 정도가 되었으며 염화제이철 농도는 2.5% - 2.0% 가 되었다.At the beginning of the reaction, the temperature of the liquid discharged from the column reactor by the heat of reaction increased from room temperature to 83 ° C., but after 5 hours, the temperature was maintained at 75 ° C. A plate type heat exchanger was installed in the line circulated to the column reactor in the stirred reactor to maintain the temperature of the reaction liquid in the column reactor to around 80 ° C. After 5 hours, the redox potential of the ferric chloride solution in the stirred reactor was about 410 mV and the ferric chloride concentration was 2.5%-2.0%.

이때 컬럼반응기에 폐염화철수용액을 분당 4리터의 유량으로 공급하였다. 교반반응기의 액높이가 유지되도록 염화철수용액을 배출하였을때, 6시간 동안 교반반응기내 염화철수용액의 ORP 는 415-420mV 정도로 유지되었으며 교반반응기에서 배출되는 환원된 염화철 수용액의 염화제이철 농도는 2.2-2.5% 로 유지되었다.At this time, the waste iron chloride solution was supplied to the column reactor at a flow rate of 4 liters per minute. When the iron chloride solution was discharged to maintain the liquid level of the stirred reactor, the ORP of the iron chloride solution in the stirred reactor was maintained at 415-420mV for 6 hours, and the ferric chloride concentration of the reduced iron chloride solution discharged from the stirred reactor was 2.2-2.5%. Was maintained.

실시예 2Example 2

실시예 1 에서와 같이 교반반응기내 염화철수용액의 산화환원전위가 410mV정도가 되었을때, 컬럼반응기로 공급되는 폐염화철수용액의 유량을 분당 3리터로 유지하였다. 6시간 동안 교반반응기내 염화철수용액의 산화환원전위는 385-400mV 정도로 유지되었으며 교반반응기에서 배출되는 환원된 염화철 수용액의 염화제이철 농도는 1.0-1.3% 가 되었다. 한편 니켈함량은 11,000ppm에서 9,950ppm 으로 감소하였다.As in Example 1, when the redox potential of the iron chloride solution in the stirred reactor reached about 410 mV, the flow rate of the waste iron chloride solution supplied to the column reactor was maintained at 3 liters per minute. The redox potential of the ferric chloride solution in the stirred reactor was maintained at 385-400 mV for 6 hours, and the ferric chloride concentration of the reduced aqueous iron chloride solution was 1.0-1.3%. Meanwhile, the nickel content decreased from 11,000 ppm to 9,950 ppm.

비교예 1Comparative Example 1

실시예 1 에서와 같이 교반반응기내 염화철수용액의 산화환원전위가 410 mV 정도가 되었을때, 컬럼반응기로 공급되는 폐염화철수용액의 유량을 분당 2리터로 유지하였다. 4시간동안 교반반응기내 염화철수용액의 산화환원전위는 350-360mV 정도로 낮게 유지되었으나 그 이후에는 점차 높아져 8시간 후 420mV가 되었다. 교반반응기에서 배출되는 환원된 염화철 수용액의 염화제이철 농도도 0.5% 이하에서 3%까지 높아졌다. 한편 니켈함량은 처음 4시간 후 8,300ppm 으로 감소하였으나 점차 니켈함량이 높아져 8시간 후 12,500ppm 이 되었다.As in Example 1, when the redox potential of the iron chloride solution in the stirred reactor became about 410 mV, the flow rate of the waste iron chloride solution supplied to the column reactor was maintained at 2 liters per minute. The redox potential of the ferric chloride solution in the stirred reactor was maintained at 350-360 mV for 4 hours, but gradually increased to 420 mV after 8 hours. The ferric chloride concentration of the reduced aqueous iron chloride solution discharged from the stirred reactor also increased from 0.5% to 3%. Meanwhile, the nickel content decreased to 8,300ppm after the first 4 hours, but gradually increased to 12,500ppm after 8 hours.

본 발명의 효과는 저가의 철편, 철괴, 철 스크랩등의 철재를 사용하여 연속적으로, 폐염화철수용액에서 3가의 염화철을 2가의 염화철로 환원시키는 용이한 방법을 제공하는 것이다. 염화철수용액을 철재가 충진된 컬럼반응기로 순환시켜 교반없이도 철재와 충분히 접촉할 수 있도록 하며 필요시, 순환되는 염화철수용액의 온도를 제어하여 반응속도를 조절하기가 용이한 방법을 제공하는 것이다.The effect of the present invention is to provide an easy method of continuously reducing trivalent iron chloride to divalent iron chloride in a waste iron chloride solution by using iron materials such as inexpensive iron pieces, iron bars and iron scraps. The iron chloride solution is circulated to the column reactor filled with iron to allow sufficient contact with the iron without stirring, and if necessary, it is easy to control the reaction rate by controlling the temperature of the circulated iron chloride solution.

Claims (4)

- 폐염화철 수용액이 도입되는 철재가 충진된 컬럼 반응기 (1)와,A column reactor (1) filled with iron material into which an aqueous waste iron chloride solution is introduced, - 상기 컬럼 반응기로부터 배출되는 염화철수용액이 도입되고, 레벨지시조절계 (LIC)와 산화환원전위지시조절계 (AIC)를 포함하는 교반 반응기 (2)와,A stirred reactor (2) into which the iron chloride solution discharged from the column reactor is introduced, comprising a level indication control system (LIC) and a redox potential control system (AIC); - 상기 교반 반응기의 염화철 수용액을 상기 컬럼 반응기로 순환시키기 위한 순환 펌프 (3)로 이루어지고,A circulation pump (3) for circulating the aqueous iron chloride solution of the stirred reactor to the column reactor, 상기 레벨지시조절계 (LIC)는 상기 교반 반응기내의 염화철 수용액 높이를 측정하여 상기 컬럼 반응기로 도입되는 폐염화철 수용액의 유량을 제어하고, 상기 산화환원전위지시조절계 (AIC)는 상기 교반 반응기내의 염화철 수용액의 산화환원전위를 측정하여 상기 교반 반응기로부터 배출되는 염화철 수용액의 유량을 제어하는 것을 특징으로 하는 염화철 수용액의 연속 환원 장치.The level indicating control system (LIC) measures the height of the aqueous iron chloride solution in the stirred reactor to control the flow rate of the waste iron chloride solution introduced into the column reactor, the redox potential control system (AIC) of the aqueous solution of iron chloride in the stirred reactor Measuring a redox potential to control the flow rate of the iron chloride aqueous solution discharged from the stirred reactor characterized in that the continuous reduction device of the aqueous iron chloride solution. 제 1 항에 있어서, 상기 컬럼 반응기에 공급되는 폐염화철 수용액의 염화제일철과 염화제이철의 합계 함량이 45% 이하이고, 염화제이철 농도가 40% 이하인 것을 특징으로 하는 염화철 수용액의 연속 환원 장치.The apparatus of claim 1, wherein the total content of ferrous chloride and ferric chloride in the spent iron chloride solution supplied to the column reactor is 45% or less, and the ferric chloride concentration is 40% or less. 제 1 항에 있어서, 상기 컬럼 반응기에 공급되는 폐염화철 수용액의 니켈이온 농도가 3% 이하인 것을 특징으로 하는 염화철 수용액의 연속 환원 장치.2. The continuous reduction apparatus of aqueous iron chloride solution according to claim 1, wherein the nickel ion concentration of the aqueous waste iron chloride solution supplied to the column reactor is 3% or less. 제 1 항에 있어서, 상기 산화환원전위지시조절계에 의해 염화철 수용액 중의 염화제이철 농도가 0.5 내지 3% 에 해당하는 염화철 수용액의 산화환원전위값이 측정되는 경우 상기 교반반응기로부터 염화철 수용액이 배출되는 것을 특징으로 하는 염화철 수용액의 연속 환원 장치.The iron chloride solution is discharged from the stirring reactor when the redox potential value of the ferric chloride solution corresponding to the concentration of ferric chloride in the aqueous solution of iron chloride is 0.5 to 3% by the redox potential control system. Continuous reduction apparatus of the aqueous solution of iron chloride.
KR1020000007028A 2000-02-15 2000-02-15 Apparatus for continuously reducing iron chloride aqueous solution KR100335601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000007028A KR100335601B1 (en) 2000-02-15 2000-02-15 Apparatus for continuously reducing iron chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000007028A KR100335601B1 (en) 2000-02-15 2000-02-15 Apparatus for continuously reducing iron chloride aqueous solution

Publications (2)

Publication Number Publication Date
KR20010083481A KR20010083481A (en) 2001-09-01
KR100335601B1 true KR100335601B1 (en) 2002-05-08

Family

ID=19646528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000007028A KR100335601B1 (en) 2000-02-15 2000-02-15 Apparatus for continuously reducing iron chloride aqueous solution

Country Status (1)

Country Link
KR (1) KR100335601B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133484B1 (en) * 2007-01-23 2012-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 Method and apparatus for collection of indium from etching waste solution containing indium and ferric chloride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073126A (en) * 2002-09-05 2002-09-19 서보창 The reductor and remover of waste iron chloride's water solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980001838A (en) * 1996-06-28 1998-03-30 이리에 노부아키 Recycling Method of Iron Chloride Etching Waste
KR19980016381A (en) * 1996-08-28 1998-05-25 허남준 Method for regenerating ferric chloride aqueous solution by ultrasonic treatment
JPH1112768A (en) * 1997-06-25 1999-01-19 Astec Irie:Kk Method for regenerating waste iron chloride-base liquid etchant
JPH11140670A (en) * 1997-11-11 1999-05-25 Tsurumi Soda Co Ltd Method for regenerating ferric chloride liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980001838A (en) * 1996-06-28 1998-03-30 이리에 노부아키 Recycling Method of Iron Chloride Etching Waste
KR19980016381A (en) * 1996-08-28 1998-05-25 허남준 Method for regenerating ferric chloride aqueous solution by ultrasonic treatment
JPH1112768A (en) * 1997-06-25 1999-01-19 Astec Irie:Kk Method for regenerating waste iron chloride-base liquid etchant
JPH11140670A (en) * 1997-11-11 1999-05-25 Tsurumi Soda Co Ltd Method for regenerating ferric chloride liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133484B1 (en) * 2007-01-23 2012-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 Method and apparatus for collection of indium from etching waste solution containing indium and ferric chloride

Also Published As

Publication number Publication date
KR20010083481A (en) 2001-09-01

Similar Documents

Publication Publication Date Title
US3788915A (en) Regeneration of spent etchant
US4381976A (en) Process for the preparation of titanium by electrolysis
JPS585975B2 (en) Aluminum Kara Alkali
KR100335601B1 (en) Apparatus for continuously reducing iron chloride aqueous solution
US4789444A (en) Process for electrolytically producing metals of Ni, Co, Zn, Cu, Mn, and Cr from a solution thereof
JP4018832B2 (en) Etching waste treatment method
US4483828A (en) Method of producing manganese sulfate solutions of improved purity
CN109112597B (en) Configuration and method for reforming oxidation line to recover oxidation liquid and protect mono-nickel salt coloring tank
CA2449185A1 (en) Autoclave control mechanisms for pressure oxidation of molybdenite
MXPA01011627A (en) A method for extracting copper from an aqueous solution.
JP3661911B2 (en) Method for producing high purity cobalt solution
JP3243929B2 (en) Adjustment method of copper ion concentration of copper removal electrolytic solution
CN109137034B (en) Configuration and method for recovering anodic oxidation liquid by reforming existing oxidation tank
JPH0673564A (en) Treatment of nickel-containing waste etchant
JPH0379779A (en) Method for regenerating ferric chloride etchant
CN111573739A (en) Method for producing iron oxide red from high manganese steel waste acid liquid
US5573739A (en) Selective bismuth and antimony removal from copper electrolyte
JP2000178766A (en) Method for oxidizing ferrous salt
EP0157561B1 (en) Metal stripping system and an operation process therefor
JPH02124721A (en) Production of chromium chloride
JP4787951B2 (en) Method for electrolytic purification of silver
JP4018831B2 (en) Etching waste treatment method
JPH11140671A (en) Method for regenerating etchant
JPH06240475A (en) Treatment of iron chloride based etchant containing nickel
JPH1072691A (en) Treatment of aqueous iron chloride solution containing ferric ion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130306

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee