KR100334898B1 - Aaaaa - Google Patents

Aaaaa Download PDF

Info

Publication number
KR100334898B1
KR100334898B1 KR1019990007389A KR19990007389A KR100334898B1 KR 100334898 B1 KR100334898 B1 KR 100334898B1 KR 1019990007389 A KR1019990007389 A KR 1019990007389A KR 19990007389 A KR19990007389 A KR 19990007389A KR 100334898 B1 KR100334898 B1 KR 100334898B1
Authority
KR
South Korea
Prior art keywords
carrier
mesh
frame
wastewater
nitrogen
Prior art date
Application number
KR1019990007389A
Other languages
Korean (ko)
Other versions
KR19990046394A (en
Inventor
성기달
조무환
Original Assignee
성기달
조무환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성기달, 조무환 filed Critical 성기달
Priority to KR1019990007389A priority Critical patent/KR100334898B1/en
Publication of KR19990046394A publication Critical patent/KR19990046394A/en
Application granted granted Critical
Publication of KR100334898B1 publication Critical patent/KR100334898B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: Microorganism media for wastewater treatment is provided, which is characterized in that separation of microorganism and clogging of media are prevented compared with conventional media. CONSTITUTION: The media comprises a frame(1) and granular activated carbon(2). The frame(1) is one of plastic net, iron net coated with vinyl, and stainless steel net. Pore size of the frame(1) is 5-40 mesh. Shape of the frame(1) is rectangular, sphere, or shapeless, and thickness of the frame(1) is 5-100 mm. The frame(1) is packed with granular activated carbon for cultivating microorganism. Consequently, nitrogen and phosphorus are treated efficiently by the media.

Description

오.폐수정화용 미생물 담체{AAAAA}O. Microbial carrier for wastewater purification

본 발명은 폐수처리용 시설에서 생물학적 분해를 위한 미생물을 고정화하는 담체에 관한 것으로서, 특히 활성탄을 포획하는 그물형의 지지체를 형성하는 담체에 활성슬럿지 중의 고착하는 미생물을 고정화함으로써 폐수중의 질소·인을 포함하는 난분해성 유기 오염물질을 효과적으로 정화할 수 있는 생물막 공정에 사용되는 미생물 담체에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carrier for immobilizing microorganisms for biodegradation in a wastewater treatment facility. In particular, the present invention relates to a carrier for forming a mesh support for trapping activated carbon, thereby immobilizing nitrogen and phosphorus in wastewater by immobilizing microorganisms fixed in activated sludge. The present invention relates to a microbial carrier used in a biofilm process capable of effectively purifying hardly degradable organic contaminants, including.

종래의 생물막법의 담체는 플라스틱 발포형이거나 비표면적을 감안한 섬유상 소재를 정화조 포기조 내에 적당량 고정시켜서 고착, 성장하는 미생물을 담체에 고정화하여 오염물질을 분해 섭취하게 된다.또한 유동상에서는 셀라이트(Celite), 지오라이트(Zeolite), 활성탄, 기타 분말 또는 입상 물질에 미생물을 고정화시키는 방법이 일부 채택된다.이러한 담체는 분산상태의 미생물을 이용하는 활성슬럿지 공법보다 난분해성 물질의 분해, 고농도의 유기성 물질의 분해, 폐수의 부하변동에 강하고, 높은 처리효율을 가지는 점들에 있어서 유리한 장점들을 가지고 있으나, 현장 적용에 있어 포기조의 높이가 높아질 경우 포기의 전단응력에 의하여 미생물이 부착이 어려운 점과 부착미생물의 탈리문제가 대두되고 있는 등 다음과 같은 심각한 구조적 문제점을 가지고 있어서 수질의 안정적인 처리에 많은 어려움이 있다.즉 종래에는 담체에서 고정화된 미생물의 탈리가 일어나는 문제, 담체의 종류에 따라 생물막 형성이 어려운 문제, 부유성 현탁물질 제거의 어려운 문제, 담체사이 공극의 막힘 문제 등이 있다.Conventional biofilm carriers are plastic foamed or specific surface area fibrous materials are fixed in an appropriate amount in a septic tank aeration tank to fix and grow microorganisms on the carrier to decompose and ingest contaminants. Some methods of immobilizing microorganisms in zeolites, activated carbon, other powders or granular materials are adopted.These carriers are decomposed of hardly decomposable substances and decomposed high concentrations of organic substances than activated slotted methods using dispersed microorganisms. However, it has strong advantages in load fluctuations of wastewater and has high treatment efficiency, but it is difficult to attach microorganisms due to shear stress of abandonment and desorption problem of adherent microorganisms when the height of aeration tank increases in field application. Serious structural problems such as It has many difficulties in the stable treatment of water quality, namely, the problem of detachment of immobilized microorganisms from the carrier, the difficulty of biofilm formation according to the type of carrier, the difficulty of removing the suspended suspension material, and the voids between the carriers. Blockage problems.

또한 기존에 많이 설치되어 있는 처리장치(활성슬럿지 공법)에서는 질소 및 인성분의 제거가 불가능하여 처리가 되지 않고 방류됨으로 인해서, 현재 하천이나 호수의 부영양화를 일으키는 주요 요인이 되고 있다.이를 해결하기 위해서 질산화조를 설치해야 하지만, 이 또한 막대한 비용이 소요되므로 이의 문제가 사회적 문제로 대두되고 있다.질산의 처리에 질산화조 등의 다른 시설설치의 필요성은 질산화, 탈질의 메카니즘에서 질산화는 호기성 조건에서 질산화 미생물의 착용으로 암모니아성 질소가 아질산성 질소를 거쳐 질산성 질소로 변환되고, 탈질은 혐기성 조건에서 질소가 질소 가스로 분해되는 상태로 된다고 알려져 있다.따라서 질소의 제거를 위한 기존의 공법은 혐기-호기 조건을 번갈아 운전하는 간헐포기방식 또는 혐기조, 호기조를 순환하는 방식의 공정 등을 통한 방식을 적용해야 하므로 질소 제거를 위해서는 별도의 처리 시설을 설치해야 하는 것이다.더욱이 종래에는 활성탄의 강도를 증대하기 위하여 일본곡 공개특허공보 평 10-202283호에 기재된 바와 같이, 플라스틱에 분말활성탄 및 불용성 분말무기물을 분산 함유시킨 여과재를 원통형상으로 형성하여 활성탄을 전체적으로 분산되게 하며, 다수의 기공과 요철이 형성하여 접촉 면적을 증대하는 생물접촉여과용 여과재가 있다.그러나 상기와 같은 원통형상의 여과재는 플라스틱에 분말활성탄과 분말무기물을 일체로 분산 함유하기 때문에, 플라스틱이 부착된 부분이 구비되어 있어 분말 활성탄과 분말무기물의 접촉 면적이 작아지며, 이에 인하여 난분해성 오염물질 등의 흡착 분해하는 기능이 저하된다는 단점이 있다.In addition, in many existing treatment devices (active sludge method), it is impossible to remove nitrogen and phosphorus and discharged without treatment, which is now a major factor causing eutrophication of rivers and lakes. Nitrogen tanks need to be installed, but this is also a huge cost, so the problem is becoming a social problem. The necessity of installing other facilities such as nitrifiers for the treatment of nitric acid is nitrification under the aerobic conditions in the mechanism of nitrification and denitrification. It is known that ammonia nitrogen is converted into nitrate nitrogen through nitrite nitrogen through the wearing of microorganisms, and denitrification is a state in which nitrogen is decomposed into nitrogen gas under anaerobic conditions. Therefore, the conventional method for removing nitrogen is anaerobic- Intermittent aeration, anaerobic and aerobic tanks that alternate driving conditions In order to remove nitrogen, a separate treatment facility must be installed. Therefore, in order to increase the strength of activated carbon, it is conventionally described in Japanese Patent Application Laid-Open No. 10-202283. Similarly, there is a biocontact filter medium for forming a cylindrical filter medium containing powdered activated carbon and insoluble powdered inorganic particles in a cylindrical shape to disperse the activated carbon as a whole, and forming a plurality of pores and irregularities to increase the contact area. Since the cylindrical filter medium contains the powdered activated carbon and the powdered inorganics integrally dispersed in the plastic, the plastic-attached portion is provided so that the contact area of the powdered activated carbon and the powdered inorganic is reduced, and thus hardly decomposable pollutants, etc. There is a disadvantage that the function of adsorption decomposition of the is lowered.

본 발명은 상기와 같은 문제점을 해소하기 위하여, 담체의 기능에 관하여 광범위한 검토를 거친 결과, 우수한 담체를 개발하여 생물막을 이용하는 공법을 채택하면 난분해성 오염물질 및 질소성분의 효과적인 제거가 가능하게 된다.여기서 난분해성 유기물질의 제거가 기존의 활성 슬럿지법에서 처리가 어려운 이유는 이 물질을 분해 섭취하는 미생물이 증식속도가 대단히 느리기 때문이며, 부유 성장하는 공법에서는 슬럿지 체류시간보다 증식속도가 느리므로 대부분 씻겨 나가 버려서 분해 미생물이 포기조 내에서 성장할 수 없어 분해처리가 어렵다.그러나 생물막을 이용하는 공법은 난분해성 물질을 분해 섭취하는 미생물이 지지하는 담체에 고착 성장하기 때문에, 비록 분해 속도는 느리기는 하지만 반응조 내에서 증식과 분해가 가능하며, 질산화, 탈질도 생물막 공법에서 가능하다.물론 질산화, 탈질의 조건은 앞에서 언급한 것과 같이 호기-혐기 조건을 만족하는 담체의 환경을 유지하여야 하며, 이러한 호기-혐기조건을 한 공정에서 동시에 유지시킨다면, 질소의 제거를 위한 탈질조의 장치를 구비할 필요없이 포기조 한 공정에서 유기물의 제거와 동시에 탈질을 수행할 수 있어서 매우 경제적이다.본 발명은 상기 목적을 달성하기 위하여, 표면에서는 흡착능이 우수하고 내부지역은 혐기상태를 유지하면서 분자 이동이 원활하게 이루어지는 담체에서, 그물형의 망에 공극률이 매우 높은 활성탄으로 포획하는 것으로 이루어진 담체를 제공한다.In order to solve the above problems, as a result of extensive examination of the function of the carrier, it is possible to effectively remove the hardly decomposable pollutants and nitrogen components by developing an excellent carrier and adopting a method using a biofilm. The reason why the removal of hardly decomposable organic substances is difficult in the existing activated sludge method is that the microorganisms that decompose and ingest this material have a very slow growth rate. Decomposing microorganisms cannot be grown in the aeration tank because they are thrown out, so it is difficult to decompose them.However, the biofilm-based method adheres and grows on a carrier supported by the microorganisms that decompose and decompose hardly decomposable substances. Proliferation and degradation are possible, nitrification Denitrification is also possible in biofilm processes. Of course, the conditions of nitrification and denitrification must maintain the environment of the carrier that satisfies the aerobic-anaerobic conditions as mentioned above, and if these aerobic-anaerobic conditions are simultaneously maintained in one process, nitrogen It is very economical to be able to perform denitrification at the same time as the removal of organic matter in the aeration tank process without having to provide a device of the denitrification tank for the removal of the present invention. Provided is a carrier consisting of trapping activated carbon having a very high porosity in a mesh network in a carrier which maintains anaerobic conditions and facilitates molecular movement.

도 1의 (가)는 본 발명에 의한 오.폐수정화용 미생물 담체 중의 사각형 담체, (나)는 원형 담체, (다)는 무정형 담체,1 (a) is a rectangular carrier in the microorganism carrier for wastewater purification according to the present invention, (b) is a circular carrier, (c) is an amorphous carrier,

도 2의 (가),(나)는 본 발명의 담체를 포기조에 설치할 때의 단면도이다.〈도면의 주요 부분에 대한 부호의 설명〉1 : 틀2 : 입상활성탄2 (a) and 2 (b) are cross-sectional views when the carrier of the present invention is installed in an aeration tank. <Description of the reference numerals for the main parts of the drawing> 1: Frame 2: Granular activated carbon

이하 본 발명에 의한 오.폐수정화용 미생물 담체의 바람직한 실시예를 표와 도면에 의거하여 더욱 상세하게 설명한다.본 발명은 표 1에서 나타난 물리화학적 성질을 가진 입상활성탄을 체망의 구조에 포획하는 방식으로서, 도 1과 같이 사각형, 원형, 무정형의 구조를 가진 일정한 두께의 지지체인 틀(1)을 조립하는 구조로 이루어진 담체이다.즉 상기 담체는 도 1과 같이, 스텐레스스틸망, 플라스틱망,비닐코팅한 철망 등과 같은 내식성이 있는 재질의 그물형 체망구조의 카트리지형상의 틀(1)과 같은 지지체에 입성활성탄(2)을 채워서 포획하는 것이며, 상기 틀(1)은 입상활성탄(2)의 출입을 방지할 수 있도록 5메쉬 ~ 40메쉬의 그물형 체망으로 함이 바람직하다.질소 등의 난분해성 유기물질을 함유하는 폐수일 때에는 두꺼운 담체를 선택하고, 분해가 잘 되는 유기물질농도가 높은 폐수일 때에는 얇은 담체를 선택하는 등과 같이, 폐수의 성질에 따라서 다른 두께를 취할 수 있도록, 상기 틀(1)의 두께를 5㎜ ∼ 100㎜로 하고, 고정층에서의 포기조에 설치할 때는 도 2와 같이 폐수의 흐르는 방향 즉 유동에 방해를 주지 않는 구조로 설치해야 한다.담체의 기능을 살펴보면, 표면은 호기성 상태의 폐수와 접촉하고 있는 상태이므로 항상 호기성 조건을 유지하고, 담체 표면 바로 안쪽은 임의성을 유지하고, 그 내부는 항상 혐기조건을 유지하는 상태가 되며, 이에 따라 질소 제거의 메카니즘은 담체 표면이 항상 호기조건으로 되어 암모니아성 질소가 호기성 조건에서 질산성 질소 성분 상태로 질산화되어 담체에 흡착되며, 흡착된 성분은 담체내부로 물질 이동된다.질산화된 질산성 질소 성분이 내부로 분자 이동하게 되면 이 지역은 혐기성 조건이 되어, 함께 흡착된 난분해성 유기물질을 분해하는 전자공여체 역할을 하여, 난분해성 유기 물질을 분해함과 동시에 탈질된다.이처럼 본 발명의 특징은 표면의 흡착력이 우수하고 흡착된 유기물 또는 분해 가능물질이 담체의 혐기영역으로의 전이가 쉽고, 호기-혐기영역을 담체 두께로 자유로이 조절이 가능하다는 장점을 가지고 있다.이러한 본 발명의 작용을 고찰하기 위해, 기존의 활성슬럿지 공정과 기존의 여러 담체 등을 대조공정으로 하여 똑 같은 조건으로 실시예1과 실시예2와 같이 비교 실험한다.실시예 1Hereinafter, a preferred embodiment of the microorganism carrier for wastewater purification according to the present invention will be described in more detail with reference to the table and the drawings. The present invention captures the granular activated carbon having the physical and chemical properties shown in Table 1 in the structure of the sieve network. For example, as shown in Figure 1, a carrier having a structure of assembling the frame 1, which is a support having a constant thickness having a rectangular, circular, and amorphous structure, i.e., the carrier is made of stainless steel, plastic, vinyl The granular activated carbon (2) is filled and captured by a support such as a cartridge-shaped framework (1) of a mesh-like mesh structure having a corrosion resistance material such as a coated wire mesh, and the framework (1) enters and exits the granular activated carbon (2). It is preferable to use a mesh mesh of 5 mesh to 40 mesh to prevent the waste water. For wastewater containing hardly decomposable organic substances such as nitrogen, a thick carrier is selected and it is easily decomposed. In the case of wastewater having a high organic substance concentration, the thickness of the mold 1 is set to 5 mm to 100 mm so as to have a different thickness depending on the nature of the waste water, such as a thin carrier selected. In this case, as shown in Fig. 2, the wastewater should be installed in a structure that does not interfere with the flow direction of the wastewater. As a function of the carrier, the surface is in contact with the wastewater in an aerobic state, so that the aerobic condition is always maintained and the carrier surface is immediately Inner side maintains randomness and the inside always maintains anaerobic condition. Therefore, the mechanism of nitrogen removal is that the surface of the carrier is always in aerobic condition so that ammonia nitrogen is nitrified to a nitric acid state in aerobic condition. Is adsorbed on the carrier, and the adsorbed component is mass-transferred into the carrier. This area becomes anaerobic condition and serves as an electron donor to decompose the hardly decomposable organic substances adsorbed together, and denitrates at the same time as it decomposes the hardly decomposable organic substances. The organic or degradable substance is easily transferred to the anaerobic region of the carrier, and the aerobic-anaerobic region can be freely controlled to the thickness of the carrier. In order to consider the operation of the present invention, a comparative experiment as in Example 1 and Example 2 under the same conditions using a conventional activated sludge process and various existing carriers as a control process.

용량 45리터(L)인 포기조에 표 2에 같은 각각의 공정에 본 발명의 담체를 고정시킨 공정과 비교할 수 있는 다른 공정등에 동일한 미생물을 접종하여 순화시킨 후, 동일한 조건으로 BOD 150mg/L, T-N 20㎎/L, T-P 10mg/L 오염물질의 농도를 가지는 합성폐수를 온도 25℃, 12시간 체류시간으로 처리한다.After inoculating and purifying the same microorganisms to another process comparable to the process of immobilizing the carrier of the present invention in each process as shown in Table 2 in the aeration tank having a capacity of 45 liters (L), BOD 150mg / L, TN under the same conditions A synthetic wastewater having a concentration of 20 mg / L and TP 10 mg / L contaminants is treated with a temperature of 25 ° C. and a 12 hour residence time.

실시예 2Example 2

실시예 1과 동일한 공정의 표 2과 같은 조건으로 BOD 2,500㎎/L, T-N 550mg/L, T-P 105mg/L 오염물질의 농도를 가지는 실제 축산폐수를 온도 25℃, 24시간 체류시간으로 처리한다.Under the same conditions as in Table 2 of Example 1, actual livestock wastewater having a concentration of BOD 2,500 mg / L, T-N 550 mg / L, and T-P 105 mg / L contaminants is treated at a temperature of 25 ° C. and a 24-hour residence time.

이러한 대조된 처리공정에서 처리된 유입수, 유출수의 각종 오염농도를 시험예의 방법에 따라서 시험하였으며 결과는 시험결과표(표 3)에 나타난 바와 같다.Contaminant concentrations of influent and effluent treated in this contrasted treatment process were tested according to the test example, and the results are shown in the test result table (Table 3).

시험예Test Example

실시예의 폐수처리능력을 시험하는데 있어서 폐수의 시험방법은 다음의 방법에 따라서 시험하였다.In testing the wastewater treatment capability of the Example, the test method of wastewater was tested according to the following method.

1. BOD는 Standard method방법으로 측정하였다.1. BOD was measured by standard method.

2. T-N는 Standard method방법에 따라 킬달법으로 측정하였다.2. T-N was measured by Kjeldahl method according to the standard method.

3. T-P는 Standard method방법에 따라 아스코르빈산 환원법으로 측정하였다.3. T-P was measured by the ascorbic acid reduction method according to the standard method.

상기의 시험결과표(표 3)에 나타난 바와 같이 실시예1의 결과는 일반적인 오수처리에 관한 자료에서 BOD의 제거는 거의 비슷하였으나, 질소의 처리는 본 발명의 담체를 사용한 공정1이 활성슬럿지 공정보다 많은 차이가 나고, 기존의 담체중 가장 우수한 공정 3에서 사용된 HBC에 비해 처리효율이 15% 더 좋게 나타난 바와 같이, 오수의 처리에서 질소의 제거는 본 발명의 담체가 가장 효과적인 것으로 나타났다.또한 실제 축산폐수를 처리한 실시예의 2의 결과를 살펴보면 실시예1과 다른 결과치를 나타내고 있다.여기서 본 발명의 담체를 사용한 공정이 BOD를 기준으로 보면 활성 슬럿지법보다 46%, 기존의 담체보다 약 20%이상 처리효율이 더 높게 나타났다.이는 축산폐수의 BOD는 생체 합성된 유기물질을 포함하고 있기 때문이며, 생체 합성된 유기물질은 난분해성 물질이기 때문에 기존의 처리장치에서는 처리가 어려우나 본 발명의 담체는 호기조건에서 흡착혐기영역에서 분해제거라는 메카니즘에 따른 분해가 이루어지기 때문에 처리효율이 높게 나타난 것이다.또한 질소의 제거측면도 활성슬럿지법보다 약 50% 기존의 HBC보다 약 26%더 높은 제거효율이 나타났다.따라서 본 발명의 담체는 질소·인의 제거는 물론, 난분해성 유기물질의 분해에도 효과적인 것이다.이러한 담체는 표면의 흡착 효과가 탁월할 뿐만 아니라 내부 혐기영역으로의 분자물질이동이 자유로이 이루어지기 때문에, 담체 표면의 호기조건에서 질산화된 질소의 탈질이 용이하며 난분해성 물질이 흡착 소화되는 이론적 근거를 효율적으로 수행한다.As shown in the above test result table (Table 3), the result of Example 1 was almost similar to the removal of BOD from the data on general sewage treatment, but the treatment of nitrogen was carried out in step 1 using the carrier of the present invention than in the activated sludge process. As there are many differences and 15% better treatment efficiency than the HBC used in process 3, which is the best of the existing carriers, the removal of nitrogen in the treatment of sewage has shown that the carrier of the present invention is most effective. The results of Example 2 treated with the livestock wastewater are different from those of Example 1. The process using the carrier of the present invention is 46% of the active sludge method and about 20% of the conventional carrier based on BOD. The anomalous treatment efficiency was higher because the BOD of the livestock wastewater contained biosynthesized organic material, and the biosynthetic organic material was egg powder. Although it is difficult to process in the existing treatment apparatus because it is an acidic substance, the carrier of the present invention shows high treatment efficiency because the decomposition is performed in the adsorption anaerobic region under the aerobic condition. The removal efficiency was about 26% higher than that of conventional HBC. Thus, the carrier of the present invention is effective in removing nitrogen and phosphorus as well as in the decomposition of hardly decomposable organic substances. In addition, since the movement of the molecular material to the internal anaerobic region is free, the denitrification of the nitrified nitrogen is easy under the aerobic conditions of the carrier surface, and the theoretical basis for the adsorption and digestion of the hardly decomposable substance is efficiently performed.

이상 설명한 바와 같이, 본 발명에 의한 담체를 이용하는 폐수처리에 있어서 질소·인을 포함하는 난분해성물질의 처리에 매우 효과적이다.이러한 공정은 질소를 과량 포함하는 도시하수, 염색폐수, 고농도의 유기성 물질을 함유하는 식품공장 폐수, 난분해성 물질과 질소·인을 포함하는 축산폐수 등의 폐수처리에 적용하면 단위 한 공정내에서 질소·인을 포함한 유기물질을 동시 처리가 가능하므로, 자연 환경보존에 크게 기여하는 효과를 발휘한다.As described above, in the wastewater treatment using the carrier according to the present invention, it is very effective for the treatment of hardly decomposable substances containing nitrogen and phosphorus. Such a process includes municipal sewage, dye wastewater, and high concentration of organic substances containing excess nitrogen. When applied to wastewater treatment of food factory wastewater, hardly decomposable substances and livestock wastewater containing nitrogen and phosphorus, it is possible to simultaneously treat organic substances including nitrogen and phosphorus in a single process, thus greatly conserving natural environment. Demonstrate a contributing effect.

Claims (3)

오수 및 폐수를 처리, 정화하는 것으로 이루어지는 오.폐수정화용 미생물 담체에 있어서,A microorganism carrier for wastewater purification, comprising treating and purifying sewage and wastewater, 그물형 체망구조의 카트리지형상의 지지체인 틀(1)에 입상활성탄(2)을 채워서 포획하되,Filling and capturing the granular activated carbon (2) in the frame (1), which is a cartridge-shaped support of the mesh network structure, 상기 틀(1)이 플라스틱망, 비닐코팅한 철망과 스테인레스스틸망 중의 하나의 소재이면서 5메쉬 ~ 40메쉬의 그물형 체망을 사각형, 원형과 무정형 중의 어느 한가지 형상으로 형성되고, 5㎜ ~ 100㎜의 두께를 보유하는 것으로 이루어지는 오.폐수정화용 미생물 담체.The frame (1) is a material of one of plastic mesh, vinyl-coated wire mesh and stainless steel mesh, and a mesh mesh of 5 mesh to 40 mesh is formed in one of rectangular, circular and amorphous shapes, and 5 mm to 100 mm. A microorganism carrier for wastewater purification consisting of having a thickness of. 삭제delete 삭제delete
KR1019990007389A 1999-03-02 1999-03-02 Aaaaa KR100334898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990007389A KR100334898B1 (en) 1999-03-02 1999-03-02 Aaaaa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990007389A KR100334898B1 (en) 1999-03-02 1999-03-02 Aaaaa

Publications (2)

Publication Number Publication Date
KR19990046394A KR19990046394A (en) 1999-07-05
KR100334898B1 true KR100334898B1 (en) 2002-05-04

Family

ID=37479728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990007389A KR100334898B1 (en) 1999-03-02 1999-03-02 Aaaaa

Country Status (1)

Country Link
KR (1) KR100334898B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369710B1 (en) * 2000-07-13 2003-01-30 한국과학기술연구원 A biological treatment process of dye waste water using granulated active carbon as a support material
KR101255852B1 (en) * 2004-06-18 2013-04-17 가부시키가이샤 히타치플랜트테크놀로지 Method for operation of anaerobic ammonia oxidization tank and anaerobic ammonia oxidation apparatus
WO2020116700A1 (en) * 2018-12-07 2020-06-11 서울대학교 산학협력단 Nitrifying bio-tablet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073454A (en) * 1999-07-09 1999-10-05 성기달 5) For the treatment of waste water, functional carriers and combined purification tanks using them
KR100457071B1 (en) * 2001-04-07 2004-11-10 주식회사 생명탄 Development of decolorization and biodegradation techniques for dyeing waste waters treatment by bacterial consortium
KR100748849B1 (en) * 2006-10-09 2007-08-10 한국수자원공사 Multi-applicable separated urine and feces treatment facility for unsewered area

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202283A (en) * 1997-01-17 1998-08-04 Nkk Corp Filter material for biological contact filtration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202283A (en) * 1997-01-17 1998-08-04 Nkk Corp Filter material for biological contact filtration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369710B1 (en) * 2000-07-13 2003-01-30 한국과학기술연구원 A biological treatment process of dye waste water using granulated active carbon as a support material
KR101255852B1 (en) * 2004-06-18 2013-04-17 가부시키가이샤 히타치플랜트테크놀로지 Method for operation of anaerobic ammonia oxidization tank and anaerobic ammonia oxidation apparatus
WO2020116700A1 (en) * 2018-12-07 2020-06-11 서울대학교 산학협력단 Nitrifying bio-tablet

Also Published As

Publication number Publication date
KR19990046394A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
EP0979803B1 (en) Water treatment system based on denitrification
EP1762547B1 (en) Method for collecting bacterial cells
Abeysinghe et al. Biofilters for water reuse in aquaculture
KR20190075188A (en) Treatment apparatus for wastewater with high strength nitrogen using microorganism immobilized high molecule media
Mahmoud et al. Simultaneous organic and nutrient removal in a naturally ventilated biotower treating presettled municipal wastewater
US6007720A (en) Process for treatment of organic wastewater
KR100334898B1 (en) Aaaaa
US20130233792A1 (en) Method for treating wastewater with lignocelluosic particulate
Hirata et al. Kinetics of biological treatment of phenolic wastewater in three-phase fluidized bed containing biofilm and suspended sludge
KR100277017B1 (en) Media for wastewater treatment, manufacturing method thereof and wastewater treatment method using the media
KR100227471B1 (en) Media for wastewater treatment manufacturing method thereof and wastewater treatment method using the media
KR100343257B1 (en) Combination purifier tank
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JPH081181A (en) Bacteria gel carrier and treatment of pollutant using the same
KR200189472Y1 (en) Carrier for processing waste water
Jacobsen et al. Microbial degradation of pentachlorophenol and lindane in laboratory-scale activated sludge reactors
KR19990022765U (en) Aaaaa
Li et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
JPH07241584A (en) Waste water treatment method and apparatus using composite activated sludge carrier
JP3389811B2 (en) Encapsulated carrier
JPH06218391A (en) Method and device for purifying water
Chester et al. Stormwater applications of zeolite-coated biofilm carriers for ammonium removal with possible applications to PFAS biotransformation
JPH0966293A (en) Low load sewage treatment apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081015

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee