KR100332904B1 - A Method for Manufacturing Carbon Cotaining Castable - Google Patents

A Method for Manufacturing Carbon Cotaining Castable Download PDF

Info

Publication number
KR100332904B1
KR100332904B1 KR1019970052153A KR19970052153A KR100332904B1 KR 100332904 B1 KR100332904 B1 KR 100332904B1 KR 1019970052153 A KR1019970052153 A KR 1019970052153A KR 19970052153 A KR19970052153 A KR 19970052153A KR 100332904 B1 KR100332904 B1 KR 100332904B1
Authority
KR
South Korea
Prior art keywords
artificial graphite
graphite
carbon
pulverized
weight
Prior art date
Application number
KR1019970052153A
Other languages
Korean (ko)
Other versions
KR19990031442A (en
Inventor
이원우
전진익
Original Assignee
신현준
재단법인 포항산업과학연구원
홍상복
포스코신기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원, 홍상복, 포스코신기술연구조합 filed Critical 신현준
Priority to KR1019970052153A priority Critical patent/KR100332904B1/en
Publication of KR19990031442A publication Critical patent/KR19990031442A/en
Application granted granted Critical
Publication of KR100332904B1 publication Critical patent/KR100332904B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Abstract

PURPOSE: An amorphous refractory composition containing carbon is provided, to improve the physical properties and the corrosion resistance by reducing the required water content compared with that of the carbon-containing amorphous refractory using the pulverized natural crystalline graphite. CONSTITUTION: The amorphous refractory composition containing carbon comprises a blending source material comprising 77-82 wt% of a magnesia clinker, 5-10 wt% of alumina super micropowder, and 3-8 wt% of the pulverized artificial graphite; and 1-2 wt% of alumina cement, 1-3 wt% of silica super micropowder, and 0.1 wt% or less of a phosphate salt as a binder. Preferably the pulverized artificial graphite has a volume density of 1.8 g/cm3 or more or is obtained by pulverizing the artificial graphite by-product generated in the preparation of high purity silica single crystal. More preferably the pulverized artificial graphite has a particle size of 0.025-0.5 mm.

Description

카본함유 부정형 내화조성물{A Method for Manufacturing Carbon Cotaining Castable}A Method for Manufacturing Carbon Cotaining Castable}

본 발명은 제철, 제강분야에서 사용되는 부정형 내화물에 관한 것으로, 보다 상세하게는 인조흑연을 함유한 부정형 내화물에 관한 것이다.The present invention relates to amorphous refractory materials used in the field of steelmaking and steelmaking, and more particularly, to amorphous refractory materials containing artificial graphite.

일반적으로 제철, 제강용 내화물에는 물리적, 화학적으로 안정된 무기산화물이 주원료로 사용된다.In general, physical and chemically stable inorganic oxides are used as main raw materials for steel and steel refractories.

그러나, 무기산화물은 슬라그의 젖음성이 쉽고, 고온에서의 열팽창으로 인한 스폴링(Spalling)이 발생하는 결점을 가지고 있다. 이를 보완하기 위하여 슬라그에 대한 젖음성이 우수하고, 고열전도성과 열팽창성을 가진 카본을 무기산화물과 함께 사용하는 것이 제철, 제강용 내화물의 주류이다. 즉, 카본함유 내화물은 그 주원료인 무기산화물이 용강에 대한 내식성과 내마모성을 가지며, 카본은 무기산화물의 슬라그 젖음을 방지하여 슬라그에 의한 무기산화물의 용해침식과 반응침식을 억제하고, 고열전도성에 의한 내스폴링성을 향상시킴으로써 상호보호기구를 형성하는 장점을 갖고 있다.However, inorganic oxides have the drawback that slag is easily wettable and spattering occurs due to thermal expansion at high temperatures. In order to compensate for this, the use of carbon having an excellent wettability against slag and having high thermal conductivity and thermal expansion together with an inorganic oxide is the mainstream of steel and steel refractories. In other words, the carbon-containing refractory has the inorganic oxide, its main raw material, corrosion resistance and abrasion resistance to molten steel, and carbon prevents the slag wetting of the inorganic oxide, thereby suppressing the erosion and reaction erosion of the inorganic oxide by the slag, and the high thermal conductivity It has the advantage of forming the mutual protection mechanism by improving the spalling resistance.

보통 카본의 사용량은 정형내화물에서는 20w% 이하를 사용하며, 부정형 내화물의 경우에는 10w% 이하를 사용하는데, 카본량이 많으면 카본의 산화 영향이 크기 때문에 내화물의 물성을 저하시키는 단점으로 작용한다.Normally, the amount of carbon used is less than 20w% in the form of refractory, and less than 10w% in the case of amorphous refractory. When the amount of carbon is large, the oxidation effect of carbon is large, which acts as a disadvantage of lowering the properties of the refractory.

이러한 카본함유 내화물은 그 카본형태에 따라 다양하게 분류되는데, 비정질카본의 경우는 주로 특수용도로 사용되는 분야에만 국한되어 사용되며, 그외에는 카본원료로 순도 85% 이상인 결정질 천연산 인산흑연(flake graphite)가 주로 사용되고 있다. 이는 결정질 인조흑연보다 인상흑연이 내산화성과 내식성이 우수하기 때문이다.These carbon-containing refractories are classified into various types according to their carbon form. In the case of amorphous carbon, it is mainly used only in a field used for special purposes. Otherwise, crystalline natural graphite phosphate (flake graphite) having a purity of 85% or more as a carbon raw material ) Is mainly used. This is because impression graphite has better oxidation resistance and corrosion resistance than crystalline artificial graphite.

그러나, 마그네시아(MgO), 스핀넬(Spinel) 또는 알루미나(Al2O3) 등을 주원료로 하는 카본함유 유입용 내화물에 있어서는 물을 사용하여 혼련, 시공하기 때문에 인상흑연의 사용에 제약이 따른다. 그 이유는 카본은 친수성이 없고, 인상흑연 입자가 판상으로서 비표면적이 크며, 흑연의 층상구조 때문에 혼련시 소요되는 수분량이 카본을 사용하지 않을 경우보다 약 2배로 증가하여 내화물의 물성을 크게 떨어 뜨리기 때문이다.However, in the refractory for inflow containing carbon containing magnesia (MgO), spinel or alumina (Al 2 O 3 ) as the main raw materials, the use of impression graphite is restricted because kneading and construction are performed using water. The reason is that carbon is not hydrophilic, and the graphite particles have a large specific surface area as a plate, and due to the layered structure of graphite, the amount of water consumed during kneading increases about twice as much as without using carbon, which greatly reduces the properties of the refractory material. Because.

이러한 단점을 보완하여 친수성을 가지도록 표면을 처리한 표면개질된 카본을 사용하는 방법도 있다. 그러나, 표면개질카본을 사용하는 경우 소요수분량은 적어지지만 표면개질 카본자체가 가격이 비싸고, 대량 생산에는 효율이 떨어져 상용화에는 많은 제약이 따르고 있다.There is also a method using a surface-modified carbon treated surface to have a hydrophilic to compensate for this disadvantage. However, when the surface-modified carbon is used, the required amount of water is reduced, but the surface-modified carbon itself is expensive, and the mass production is inefficient, and there are many restrictions on commercialization.

따라서, 본 발명은 상기 단점을 해결하기 위해 적절히 분쇄된 인조흑연을 사용하면서도 혼련시 수분량이 적게 사용되어 고내용성을 갖도록 하는 카본함유 부정형 내화물을 제공하고자 하는데, 그 목적이 있다.Accordingly, an object of the present invention is to provide a carbon-containing amorphous refractory material having a high content by using a small amount of water during kneading while using artificial graphite properly milled to solve the above disadvantages.

상기 목적달성을 위한 본 발명은 카본함유 부정형 내화조성물에 있어서, 마그네시아 클링커: 77-82중량%, 초미분알루미나 : 5-10중량%, 및 파쇄된 인조흑연 : 3-8중량%로 이루어진 배합원료에 결합제로서 알루미나 시멘트: 1-2중량%, 실리카초미분 : 1-3중량% 및 0∠인산염≤0.1중량%로 첨가되어 구성되는 카본함유 부정형 내화조성물에 관한 것이다.The present invention for achieving the above object in the carbon-containing amorphous refractory composition, magnesia clinker: 77-82% by weight, ultra fine alumina: 5-10% by weight, and crushed artificial graphite: 3-8% by weight of a blended raw material The present invention relates to a carbon-containing amorphous refractory composition which is added as a binder in an alumina cement: 1-2% by weight, ultrafine silica: 1-3% by weight and 0∠ phosphate≤0.1% by weight.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 부합되는 마그네시아 클링커는 고온에 견딜 수 있는 내화주원료이다. 그 함량이 77중량% 미만이면 내식성이 저하되며, 82중량%를 초과하면 내스폴링성이 떨어지고 유동성이 저하되어 바람직하지 않다.Magnesia clinker according to the present invention is a refractory main raw material capable of withstanding high temperatures. If the content is less than 77% by weight, the corrosion resistance is lowered. If the content is more than 82%, the spalling resistance is lowered and the fluidity is lowered, which is not preferable.

상기 초미분 알루미나는 내화 부원료로서 유동성을 증가시키는 역할을 한다.그 함량이 5중량% 미만이면 시공가능한 유동성의 향상 효과가 떨어지며 10중량%이상에서는 내식성이 저하되기 때문에 바람직하지 않다.The ultra-fine alumina serves to increase the fluidity as a refractory side material. If the content is less than 5% by weight, the effect of improving workable fluidity is lowered and corrosion resistance is lowered at 10% or more by weight.

본 발명의 내화물에 함유되는 분쇄된 인조흑연은 마그네시아클링커나 초미분 알루미나의 슬라그와의 젖음성을 방지함은 물론 고열전도성과 저열팽창성을 갖고 있어 상기 무기산화물의 용해침식과 반응침식을 억제하는 역할을 한다. 그러나, 상기 분쇄 인조흑연의 함량이 3중량% 미만이면 슬라그 침투에 의해 무기산화물의 침식을 억제하는 효과가 떨어지고, 8중량%를 초과하면 시공시 소요되는 수분량이 증가하여 내화물의 물성이 저하되어 바람직하지 않다. 본 발명에 적합한 분쇄 인조흑연은 고밀도, 저기공율을 가지며 형상은 박판상이 아닌 것이 바람직하다. 왜냐하면 기공율이 높고 인상흑연처럼 박판상의 인조흑연을 사용할 경우에는 인상흑연을 사용하는 경우와 같이 소요 수분량이 증가하기 때문이다. 이에 부합되는 인조흑연으로는 고순도 실리카 단결정 제조시 발생되는 부산물을 분쇄한 인조흑연분말이다. 바람직하게는 상기 인조흑연의 부피밀도가 약 1.8g/cm3이상인 것이다.The pulverized artificial graphite contained in the refractory material of the present invention prevents wettability of magnesia clinker or ultra fine alumina with slag, as well as has high thermal conductivity and low thermal expansion, thereby inhibiting the erosion and reaction erosion of the inorganic oxide. Do it. However, when the content of the pulverized artificial graphite is less than 3% by weight, the effect of inhibiting the erosion of the inorganic oxides by the slag infiltration is inferior, and when the content of more than 8% by weight increases the amount of water required during construction, the physical properties of the refractory are deteriorated. Not desirable The pulverized artificial graphite suitable for the present invention preferably has a high density, low porosity and is not thin in shape. This is because the use of thin man-made graphite, such as high graphite, increases the amount of water required, as in the case of using graphite. Corresponding artificial graphite is artificial graphite powder obtained by crushing by-products generated during the production of high purity silica single crystal. Preferably, the bulk density of the artificial graphite is about 1.8 g / cm 3 or more.

구체적인 예를들면 본 발명에 적합한 분쇄인조흑연은 다음과 같은 고순도 실리콘 단결정 제조과정중에서 부산물로서 얻어진다. 즉, 반도체 집적회로 기판용으로 사용되는 고순도 실리콘 단결정은 다결정 실리콘을 1700℃이상으로 가열하여 용융시킨 후 실리콘 용액을 단결정으로 재결정화하는 쵸크랄스키법(czochralski method)을 통해 제조되는데, 이 제조과정에서 다결정 실리콘분말은 실리카(SiO2)질 용기에 충진되고, 충진된 다결정 실리콘분말은 실리카용기 외경부에 위치하는 인조흑연질 전극에 의하여 가열됨으로써 용융된다. 그리고, 실리콘분말이 완전히 용융되면, 실리카용기 상부에 위치하는 종자결정(seed) 을 용융된 실리콘 용액과 접합시킨후 종자결정을 서서히 상승시킴으로써 단결정 실리콘을 얻을 수 있게 되며, 이때 실리카용기내에 있는 실리콘용액의 냉각을 방지하기 위하여 실리카용기 보온용으로 인조흑연질 용기를 사용하여 실리카용기를 감싸고 있다. 또한, 전극 외경부에도 단열용 인조흑연질 용기가 사용된다. 또한 상기 용기들을 지지하는 인조흑연질 받침과 받침의 상하이동을 위하여 인조흑연질 봉이 사용된다. 따라서 상기와 같이 고순도 실리콘 단결정을 제조하기 위하여 사용되는 인조흑연질 용기 및 단열재는고온에서 사용되기 때문에 흑연의 산화를 방지하기 위하여 아르곤(Ar) 가스분위기에서 사용되지만, 일정기간 사용하면 인조흑연질 용기 및 단열재는 산화마모가 되어 재사용이 불가능하게 됨으로써 부산물로 폐기된다.For example, pulverized artificial graphite suitable for the present invention is obtained as a by-product during the following high purity silicon single crystal manufacturing process. In other words, high-purity silicon single crystals used for semiconductor integrated circuit boards are manufactured by the Czochralski method in which polycrystalline silicon is heated and melted to 1700 ° C. or higher, and then the silicon solution is recrystallized into a single crystal. The polycrystalline silicon powder is filled in a silica (SiO 2 ) quality container, and the filled polycrystalline silicon powder is melted by heating by an artificial graphite electrode located at the outer diameter of the silica container. When the silicon powder is completely melted, single crystal silicon can be obtained by bonding seed crystals located above the silica container with the molten silicon solution and gradually raising the seed crystals, wherein the silicon solution in the silica container is obtained. In order to prevent the cooling of the silica container, an artificial graphite container is used to insulate the silica container. In addition, an artificial graphite container for thermal insulation is also used for the electrode outer diameter portion. In addition, artificial graphite rods for supporting the vessels and artificial graphite rods are used for shanghaidong. Therefore, the artificial graphite container and the heat insulating material used to manufacture high purity silicon single crystal as described above are used in an argon (Ar) gas atmosphere to prevent oxidation of graphite because they are used at high temperature, but if used for a period of time, the artificial graphite container And the heat insulating material is oxidized and becomes impossible to reuse so that it is discarded as a by-product.

이러한 분쇄인조흑연 부산물은 입자크기가 0.5mm이하가 되도록 분쇄하는 것이 바람직하다. 입자크기가 0.5mm 이상인 인조흑연을 사용하는 경우에는 고온에서 산화로 인하여 내화물조직내에 큰 기공이 형성되어 내화물의 내식성을 저하되는 단점이 있다. 그리고, 입자크기가 0.025mm 이하인 인조흑연을 사용하는 경우에는 혼련시 수분의 사용량이 증가하고, 내산화성이 떨어지기 때문에 내화물의 물성을 저하시키는 단점이 있다.Such ground artificial graphite by-products are preferably ground to have a particle size of 0.5 mm or less. In the case of using artificial graphite having a particle size of 0.5 mm or more, large pores are formed in the refractory structure due to oxidation at a high temperature, thereby reducing the corrosion resistance of the refractory. In addition, in the case of using artificial graphite having a particle size of 0.025 mm or less, the amount of water used during kneading increases, and since oxidation resistance is lowered, there is a disadvantage of lowering the physical properties of the refractory.

무엇보다도 본 발명의 분쇄인조흑연은 박판상이 아닌 구형 또는 구형에 가까운 형태가 바람직하다.Above all, the pulverized artificial graphite of the present invention preferably has a spherical shape or a shape close to a spherical shape that is not thin.

이렇게 얻어진 분쇄인조흑연분말을 내화골재인 마그네시아클링커 및 초미분 알루미나와 배합하고, 여기에 결합제를 첨가하면 수분이 적게 소요되는 카본함유 부정형 내화물을 얻을 수 있다.The pulverized artificial graphite powder thus obtained is blended with magnesia clinker and ultrafine alumina, which are refractory aggregates, and a binder is added thereto to obtain a carbon-containing amorphous refractory that requires less moisture.

상기 결합제는 알루미나시멘트와 실리카 초미분, 인산염이 적당한데, 알루미나시멘트의 경우 약 1-2중량%, 실리카 초미분의 경우 약 1-3중량%, 그리고 인산염의 경우 약 0.1중량%이하이면 충분하다.The binder is suitable for alumina cement, ultrafine silica and phosphate, about 1-2 wt% for alumina cement, about 1-3 wt% for ultrafine silica, and about 0.1 wt% or less for phosphate. .

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

하기표 1과 같이 실리콘 단결정 제조공정에서 발생된 부산물을 분쇄처리한인조흑연 분말(0.5mm-0.025mm)과 하기표 2와 같은 품질의 천연인상흑연(평균입경, 0.18mm)을 각각 3-10wt% 그리고 내화골재인 마그네시아(MgO) 순도가 95% 이상인 마그네시아 클링커 5-3mm 는 25wt%, 3-1mm는 23wt%, 1mm 이하는 12-19wt%, 0.075mm 이하는 15wt%, 그리고 알루미나(Al2O3) 순도가 95%이상인 알루미나초미분(5㎛) 10wt%로 이루어진 원료배합에 결합제로 알루미나시멘트(Al2O3순도 70%급) 2wt%, 실리카초미분 3wt%, 인산염 0.1wt%를 첨가하고, 물을 원료 총중량에 대하여 6.5-12wt% 투입하여 실온에서 혼련기를 이용하여 3분간 혼련한 후, 40x40x160mm 크기의 성형틀 혼련물을 투입하여 15초동안 진동유입 성형을 행하였고, 성형체를 24시간 양생한 후, 110℃ 건조기에서 24시간 건조를 행하였다.3-10wt each of artificial graphite powder (0.5mm-0.025mm) pulverized by-products generated in the silicon single crystal manufacturing process as shown in Table 1 and natural impression graphite (average particle diameter, 0.18mm) of the quality as shown in Table 2 below % And magnesia clinker with 95% purity of magnesia (MgO) is 25wt% for 5-3mm, 23wt% for 3-1mm, 12-19wt% for less than 1mm, 15wt% for less than 0.075mm, and alumina (Al2O3) 2 wt% alumina cement (70% Al2O3 purity), 3 wt% silica ultrafine powder, 0.1 wt% phosphate was added as a binder to a raw material mixture composed of 10 wt% of alumina ultrafine powder (5 μm) having a purity of 95% or more. 6.5-12wt% of the total weight was added and kneaded at room temperature for 3 minutes using a kneader. Then, 40 × 40x160mm sized mold kneaded material was added to perform vibration inlet molding for 15 seconds, and the molded body was cured for 24 hours. Drying was performed for 24 hours in a drier.

또한, 본 발명에서 사용한 인조흑연과 인상흑연의 내식성을 비교하기 위하여, 동일수분량을 갖는 시편을 제작하기 위해 진동 유입성형이 불가능할 경우에는 강제수타성형을 행하였다.In addition, in order to compare the corrosion resistance of the artificial graphite and the impression graphite used in the present invention, when vibration inflow molding was not possible in order to produce a specimen having the same amount of water, forced embossing was performed.

시험방법으로, 유동도측정은 상기에서 혼련한 시료를 유동성 측정 테이블에 올려놓고 15회 타격한 후 퍼진길이(mm) 를 측정하였다.As a test method, the flow measurement measured the spread length (mm) after putting the kneaded sample on the fluidity measurement table and hitting 15 times.

내식성은 산소-프로판을 열원으로 하는 드럼식 회전침식기로 슬라그(CaO/SiO2=2.5)를 투입하여 용융시켜 1650℃에서 30분간 반응시킨후 배출하고, 슬라글 재투입하여 용융, 반응시키는 것을 3회 반복한 후, 시편의 가운데를 절단하여 침식된 길이와 슬라그 침투길이를 측정하였다.Corrosion resistance is a drum-type rotary erosion machine using oxygen-propane as a heat source, injecting slag (CaO / SiO 2 = 2.5) to melt, reacting at 1650 ° C for 30 minutes, and then discharging it. After repeated times, the center of the specimen was cut to measure the length of erosion and the length of slag penetration.

이때의 침식율은 아래 산식으로 계산하였다.Erosion rate at this time was calculated by the following equation.

Figure pat00001
Figure pat00001

또한 기타 물성인 기공율, 곡강도, 열간곡강도는 유입용 내화물·물성측정방법에 준하여 측정하였다.In addition, the other properties such as porosity, bending strength and hot bending strength were measured according to the inflow refractory and physical properties measurement method.

구분division 화학성분Chemical composition 평균입경Average particle diameter 입자형상Particle shape CC SiCSiC SiSi SiO2 SiO 2 함량(wt%)Content (wt%) 99.799.7 TrTr TrTr TrTr 0.15mm0.15mm 파쇄구형Crushing Sphere

구분division 화학성분Chemical composition 평균입경Average particle diameter 입자형상Particle shape CC SiO2 SiO 2 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO Al2O3 Al 2 O 3 함량(wt%)Content (wt%) 94.794.7 2.52.5 1.31.3 0.40.4 0.30.3 1.21.2 0.18mm0.18mm 박판상Lamination

구 분division 발명예Inventive Example 비교예Comparative example 1One 22 33 1One 22 33 44 배합율(wt%)Compounding rate (wt%) 마그네시아클링커Magnesia clinker 5-3mm5-3mm 2525 2525 2525 2525 2525 2525 2525 3-1mm3-1mm 2323 2323 2323 2323 2323 2323 2323 1-mm1-mm 1919 1717 1414 1212 1717 1717 1919 0.075mm-0.075mm- 1515 1515 1515 1515 1515 1515 1515 인조흑연(0.5-0.025mm)Artificial Graphite (0.5-0.025mm) 33 55 88 1010 인상흑연(0.18mm)Impression Graphite (0.18mm) 55 55 33 초미분알루미나(5㎛)Ultrafine Alumina (5㎛) 1010 1010 1010 1010 1010 1010 1010 알루미나시멘트(70%)Alumina Cement (70%) 22 22 22 22 22 22 22 실리카 초미분Ultrafine Silica Powder 33 33 33 33 33 33 33 인산염phosphate 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1 water 6.56.5 6.56.5 6.56.5 6.56.5 6.56.5 1212 9.59.5 물성Properties 기공율(5)Porosity (5) 14.314.3 14.814.8 15.215.2 15.315.3 *15.1* 15.1 23.423.4 21.621.6 곡강도(kg/㎠)Bending strength (kg / ㎠) 4141 3838 3838 3333 *37* 37 10.610.6 14.314.3 열간곡강도(1400℃x30m)Hot bending strength (1400 ℃ x30m) 15.215.2 18.318.3 19.719.7 19.819.8 *17.9* 17.9 4.74.7 7.27.2 사용특성Characteristics of use 침식율(%)Erosion Rate (%) 14.614.6 17.117.1 20.320.3 22.722.7 *16.7* 16.7 33.233.2 27.627.6 슬라그 침투(mm)Slag Penetration (mm) 0.90.9 00 00 00 *0*0 00 1.41.4 유동도(mm)Flow rate (mm) 165165 155155 147147 130130 **100** 100 170170 165165 * 진동성형이 불가능하여 수타로 강제성형한 시편의 측정값.** 유입시공이 불가능.* Measured value of specimen forcedly molded by vibrating molding. ** Inflow construction is impossible.

상기 표3에 나타낸 바와같이 발명예(1-3)은 인조흑연의 사용량이 증가할수록 곡강도는 저하하고, 기공율과 열간곡강도는 증가하였다. 또한 동일 수분량으로 혼련할 때 유동도는 인조흑연량이 증가할수록 감소하였으나, 유입시공이 가능한 유동도범위(145-180mm)내의 유동도를 나타내었다. 내식성은 인조흑연이 증가할수록 저하되었다.As shown in Table 3, Inventive Example (1-3), as the amount of artificial graphite used increased, the bending strength decreased, and the porosity and hot bending strength increased. In addition, when kneading with the same water content, the flow rate decreased as the amount of artificial graphite increased, but the flow rate within the range of flowability (145-180mm) that can be introduced is shown. Corrosion resistance declined with increasing artificial graphite.

이에 반하여, 비교예(1)는 인조흑연량이 증가함에 따라 유동도가 떨어져, 유입시공이 어려웠고, 비교예(2-4)은 인상흑연량에 관계없이 인조흑연을 사용할 경우의 같은 수분량에서는 유동도가 극히 불량하여 유입시공이 불가능하였으며, 수분량을 증가시켜 유입시공이 가능한 유동도를 나타낼 경우에는 물성 뿐만아니라 내식성이 인조흑연을 사용한 경우보다도 현저히 저하되었다.On the contrary, in Comparative Example (1), the flow rate decreased due to the increase in the amount of artificial graphite, and the inflow construction was difficult. Due to the extremely poor quality, the inflow construction was impossible, and when the flow rate was increased by increasing the amount of water, the physical properties as well as the corrosion resistance were significantly lower than those of the artificial graphite.

또한, 인조흑연을 사용할 경우와 동일량의 인상흑연과 물을 사용하여 진동융입 성형이 불가능하기 때문에 강제 수타성형한 비교예(2) 경우에, 인조흑연을 사용한 발명예(2)와 유사한 물성 및 사용특성을 나타내었다.In addition, in the case of the comparative example (2) in which the forced graphite was formed by vibrating melt molding using the same amount of impression graphite and water as in the case of using artificial graphite, the physical properties similar to those of the invention example (2) using artificial graphite and Use characteristics are shown.

상술한 바와같이 본 발명의 카본함유 부정형 내화물은 분쇄인상흑연을 사용한 카본함유 부정형 내화물에 비하여 소요 수분량이 적어 물성 및 내식성이 우수하며, 동일수분량이 소요되는 경우에라도 인상흑연을 사용한 부정형 내화물과도 유사한 내식성을 나타내었고, 또한 폐기 처리되는 부산물을 원료로 사용함으로써 저렴한 가격으로 제조할 수 있고, 특히 유입용 내화물로 적합한 효과가 있다.As described above, the carbon-containing amorphous refractory material of the present invention has better physical properties and corrosion resistance due to less water content than carbon-containing amorphous refractory material using pulverized phosphorus graphite, and is similar to the amorphous refractory material using impression graphite even when the same moisture content is required. Corrosion resistance was also shown, and by using waste by-products as raw materials, it can be produced at a low price, and in particular, there is an effect that is suitable as inflow refractory.

Claims (3)

마그네시아클링커: 77-82중량%, 초미분알루미나: 5-10중량%, 및 분쇄인조흑연:3-8중량%로 이루어진 배합원료에 결합제로서 알루미나 시멘트: 1-2중량%, 실리카초미분: 1-3중량%, 및 0∠인산염≤0.1중량%로 첨가되어 구성되는 카본함유 부정형 내화조성물.Magnesia clinker: 77-82% by weight, ultra fine alumina: 5-10% by weight, and pulverized artificial graphite: 3-8% by weight, as a binder alumina cement: 1-2% by weight, ultrafine silica: 1 A carbon-containing amorphous refractory composition composed of -3 wt% and 0 'phosphate ≤0.1 wt%. 제1항에 있어서, 상기 분쇄인조흑연은 부피밀도가 1.8g/cm3이상인 인조흑연분말이거나 고순도 실리카 단결정 제조시 발생되는 인조흑연부산물을 분쇄하여 얻어지는 분말임을 특징으로 하는 카본함유 부정형 내화조성물.The amorphous graphite-containing refractory composition according to claim 1, wherein the pulverized artificial graphite is an artificial graphite powder having a bulk density of 1.8 g / cm 3 or more, or a powder obtained by pulverizing artificial graphite by-products generated during the production of high-purity silica single crystals. 제2항에 있어서, 상기 분쇄인조흑연은 그 입도크기가 0.025-0.5mm의 범위를 갖는 것임을 특징으로 하는 카본함유 내화조성물.3. The carbon-containing fire resistant composition according to claim 2, wherein the pulverized artificial graphite has a particle size of 0.025-0.5 mm.
KR1019970052153A 1997-10-10 1997-10-10 A Method for Manufacturing Carbon Cotaining Castable KR100332904B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970052153A KR100332904B1 (en) 1997-10-10 1997-10-10 A Method for Manufacturing Carbon Cotaining Castable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970052153A KR100332904B1 (en) 1997-10-10 1997-10-10 A Method for Manufacturing Carbon Cotaining Castable

Publications (2)

Publication Number Publication Date
KR19990031442A KR19990031442A (en) 1999-05-06
KR100332904B1 true KR100332904B1 (en) 2002-06-20

Family

ID=37479537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970052153A KR100332904B1 (en) 1997-10-10 1997-10-10 A Method for Manufacturing Carbon Cotaining Castable

Country Status (1)

Country Link
KR (1) KR100332904B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044809B1 (en) * 2008-11-03 2011-06-29 (주)원진월드와이드 Environmentally-friendly Waterless-Monolithic Lining Material
CN108558378A (en) * 2018-07-10 2018-09-21 武汉科技大学 A kind of hierarchical porous structure bauxite clinker and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100302401B1 (en) * 1998-12-19 2001-11-14 홍상복 Monolithic refractory contained carbon
KR100317307B1 (en) * 1999-09-20 2001-12-24 신승근 Monolithic Basic Refractories Having High Durability
US7445013B2 (en) 2003-06-17 2008-11-04 Whirlpool Corporation Multiple wash zone dishwasher
US9259138B2 (en) 2010-12-07 2016-02-16 Whirlpool Corporation Dishwasher with auxiliary spray system having removable sprayers
US9119517B2 (en) 2011-10-17 2015-09-01 Whirlpool Corporation Dishwasher having spray manifold and method for controlling same
US10076224B2 (en) 2014-01-20 2018-09-18 Whirlpool Corporation Dishwasher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044809B1 (en) * 2008-11-03 2011-06-29 (주)원진월드와이드 Environmentally-friendly Waterless-Monolithic Lining Material
CN108558378A (en) * 2018-07-10 2018-09-21 武汉科技大学 A kind of hierarchical porous structure bauxite clinker and preparation method thereof

Also Published As

Publication number Publication date
KR19990031442A (en) 1999-05-06

Similar Documents

Publication Publication Date Title
Pilli et al. Effect of spinel content on the properties of Al2O3–SiC–C based trough castable
KR100332904B1 (en) A Method for Manufacturing Carbon Cotaining Castable
CN111732417B (en) Scouring-resistant ultra-low-carbon magnesia-carbon brick with excellent oxidation resistance and preparation method thereof
JPH11189477A (en) Graphite-containing castable refractory material for mixer car
CN110317049A (en) A kind of siliceous prefabricated component of low-porosity and preparation method
KR100299460B1 (en) Monolithic refractory contained carbon
KR100508521B1 (en) A castable refractories composition containing carbon
CN109265144A (en) A kind of converter body brick and preparation method thereof adding titanium nitride
CN108383534A (en) A kind of pouring materialfor steel ladle and application method of graphene-containing
KR100302401B1 (en) Monolithic refractory contained carbon
KR100491123B1 (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
KR100342390B1 (en) Castable batch composition for blow pipe of blast furnace
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP3327883B2 (en) Refractories containing massive graphite
CN108585896A (en) A kind of preparation method of high-performance Ultra-low carbon Magnesia-carbon material
JP4703087B2 (en) Water-based castable refractories
JPH04130066A (en) Magnesia-olivine monolithic refractory material
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
JP2599894B2 (en) Carbon containing refractories
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JP2947390B2 (en) Carbon containing refractories
KR100473111B1 (en) Amorphous refractory materials for casting and molten steel containers
JPH0339985B2 (en)
JP2527118B2 (en) Cement rotary kiln magnesia spinel brick

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee