KR100332897B1 - Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line - Google Patents

Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line Download PDF

Info

Publication number
KR100332897B1
KR100332897B1 KR1019950025985A KR19950025985A KR100332897B1 KR 100332897 B1 KR100332897 B1 KR 100332897B1 KR 1019950025985 A KR1019950025985 A KR 1019950025985A KR 19950025985 A KR19950025985 A KR 19950025985A KR 100332897 B1 KR100332897 B1 KR 100332897B1
Authority
KR
South Korea
Prior art keywords
nozzle
plating thickness
plating
coating thickness
obtaining
Prior art date
Application number
KR1019950025985A
Other languages
Korean (ko)
Other versions
KR970011005A (en
Inventor
유승렬
최일섭
김상준
김종근
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1019950025985A priority Critical patent/KR100332897B1/en
Publication of KR970011005A publication Critical patent/KR970011005A/en
Application granted granted Critical
Publication of KR100332897B1 publication Critical patent/KR100332897B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/06Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with a blast of gas or vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
    • G01B5/066Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness of coating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D5/00Control of dimensions of material
    • G05D5/02Control of dimensions of material of thickness, e.g. of rolled material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE: A method for controlling widthwise coating thickness deviation of strip using an air knife equipped with variable nozzles in a continuous hot dip galvanizing line is provided. CONSTITUTION: The method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line comprises the steps of obtaining coating thickness deviation (Coj¬t) from arbitrary 't' measured strip widthwise coating thickness values (Cj¬t); obtaining coating thickness error (Ce¬t) using the obtained coating thickness deviation (Coj¬t); obtaining nozzle gap variation (ΔE¬(t+1)) using the obtained coating thickness error (Ce¬t); changing a nozzle gap as much as the obtained nozzle gap variation (ΔE¬(t+1)) by driving a nozzle gap driver; obtaining coating thickness deviation (Coj¬(T+1)) from (t+1)th measured strip widthwise coating thickness values (Cj¬(t+1)) after coating in the state that the nozzle gap is changed; obtaining coating thickness error (Ce¬(t+1)) using the obtained coating thickness deviation (Coj¬(t+1)); obtaining nozzle gap variation (ΔE¬(t+2)) using the obtained coating thickness error (Ce¬(t+1)); changing the nozzle gap as much as the obtained nozzle gap variation (ΔE¬(t+2)) by driving the nozzle gap driver; and repeating the steps of changing the nozzle gap after obtaining the coating thickness error (Ce¬(t+2)) and nozzle gap variation (ΔE¬(t+3)) after obtaining the coating thickness deviation (Coj¬(t+2)) from (t+2)th measured strip widthwise coating thickness values (Cj¬(t+2)) after coating in the state that the nozzle gap is changed.

Description

연속식 용융도금라인에서의 폭방향 도금두께 편차 제어방법Width Thickness Determination Control Method in Continuous Hot-Plating Line

본 발명은 연속식 용융도금라인에서 가변 노즐을 구비한 에어나이프(Air Knife)를 이용하여 스트립의 폭방향 도금두께 편차를 제어하는 방법에 관한 것이다.The present invention relates to a method for controlling the variation in the thickness in the width direction of the strip by using an air knife (Knife) having a variable nozzle in a continuous hot-dip plating line.

연속식 용융 도금라인에서 도금층의 두께를 제어하기 위한 장치로 에어나이프 시스템이 널리 사용되어 왔다.Air knife systems have been widely used as a device for controlling the thickness of the plating layer in a continuous hot dip plating line.

제1도에 나타난 바와같이, 에어나이프(1)는 싱크롤(3) 및 가이드롤(4)를 지나 도금욕조(5)에서 나오는 스트립(6)의 양쪽에 위치하며, 이 에어나이프의 노즐부분을 통해서 나오는 기체를 이용하여 스트립에 도금되는 도금층을 제어하게 되며, 도금층이 제어된 스트립은 도금두께 측정기(5)를 지나게 된다.As shown in FIG. 1, the air knife 1 is located on both sides of the strip 6 exiting the plating bath 5 through the sink roll 3 and the guide roll 4, and the nozzle portion of the air knife. By controlling the plating layer to be plated on the strip by using the gas coming out through, the strip of the plated layer is passed through the plating thickness meter (5).

도금두께는 스트립에 분사되는 기체의 충돌압력에 따라 다르며, 충돌압력은 기체의 압력(8), 노즐과 스트립간의 거리(9) 및 스트립의 진행속도에 따라 달라진다.The plating thickness depends on the impingement pressure of the gas injected onto the strip, which depends on the pressure of the gas (8), the distance (9) between the nozzle and the strip, and the traveling speed of the strip.

도금두께는 길이방향과 폭방향으로 제어된다.The plating thickness is controlled in the longitudinal direction and the width direction.

종래에는 기체의 압력, 및 노즐과 스트립과의 거리의 제어를 통해 길이방향의 도금두께를 제어하는 방법이 알려져 있다.Background Art A method of controlling the plating thickness in the longitudinal direction is known by controlling the pressure of the gas and the distance between the nozzle and the strip.

한편, 폭방향의 도금두께를 제어하는 방법으로는 노즐간격이 일정한 노즐을 사용하거나, 스트립의 크기에 따라 변경된 고정노즐을 사용하는 방법이 알려져 있으나, 폭방향 도금편차의 제어는 불가능한 문제점이 있다.On the other hand, as a method of controlling the plating thickness in the width direction, it is known to use a nozzle having a constant nozzle interval or a fixed nozzle changed according to the size of the strip, but there is a problem in that the control of the width plating deviation is impossible.

이에, 본 발명자들은 상기한 종래 기술의 문제점을 해결하기 위하여 연구와실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 연속식 용융도금 라인에서 가변노즐을 구비한 에어나이프를 이용하여 스트립의 폭방향 도금두께 편차를 제어하는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the above-mentioned problems of the prior art, and based on the results, the present invention proposes the present invention, and the present invention provides an air having a variable nozzle in a continuous hot dip plating line. It is an object of the present invention to provide a method for controlling the variation of the thickness in the width direction of a strip using a knife.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 일정한 간격두고 설치되는 노즐간격 구동기에 의해 가변될 수 있는 가변립 및 이 가변립과 일정한 간격(노즐간격)을 갖고 고정되어 있는 고정립으로 이루어진 가변식 노즐을 구비하여 스트립의 전,후부에 설치되는 에어나이프를 이용하여 용융도금 스트립의 폭방향 도금두께 편차를 제어하는 방법에 있어서,The present invention is a front and rear of the strip having a variable nozzle consisting of a variable lip that can be varied by a nozzle interval driver installed at regular intervals and a fixed lip fixed with this variable lip and a fixed interval (nozzle interval) In the method of controlling the thickness thickness variation of the hot-dip strip by using an air knife installed in the

임의의 t 번째 측정된 스트립 폭방향 도금두께 값()들로 부터 하기식(1)과 같이 도금 두께 편차()를 구비하는 단계;Any t-th measured strip width plating thickness value ( Plating thickness deviation from the following equation (1) Providing a;

(여기서, t는 도금두께 제어기의 제어시간)(Where t is the control time of the plating thickness controller)

상기와 같이 구한 도금두께 편차(Coj)를 하기식(2)에 대입하여 도금두께 오차(Cet)를 구하는 단계;Obtaining a plating thickness error Ce t by substituting the plating thickness deviation Co j obtained as described above in Equation (2);

Cet= Cmtd - Cmt- Cot‥‥·(2)Ce t = C m t d-C m t -Co t ‥‥ · (2)

(여기서, Cmt: 도금두께 편차 예측값, Cmtd : Cmt의 시간지연 도금두께 편차)(Cm t : plating thickness deviation prediction value, Cm t d: time delay plating thickness deviation of Cm t )

상기와 같이 구한 도금두께 오차(Cet)를 이용하여 하기 식(3)과 같이 노즐 간격변화량(△Et+1)을 구하는 단계;Obtaining a nozzle gap change amount ΔE t + 1 using the plating thickness error Ce t obtained as described above (3);

[여기서, r:상수, GT: G 매트릭스의 트랜스포즈(transpose)][Where r: constant, G T : transpose of G matrix]

노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격 변화량(△Et+1)만큼 노즐간격을 변화시키는 단계;Changing the nozzle interval by the nozzle interval change amount? E t + 1 obtained by driving the nozzle interval driver;

상기와 같이 노즐간격을 변화시킨 상태에서 도금한 후의 t + 1 번째 측정된 스트립폭방향 도금두께 값()들로 부터 하기식(1a)와 갈이 도금두께 편차()를 구하는 단계;Strip thickness direction thickness value of t + 1 after plating with the nozzle spacing changed as above ( (1a) and grinding thickness deviation from Obtaining;

상기와 같이 구한 도금두께 편차()를 하기식(2a)에 대입하여 도금두께 오차(Cet+1)를 구하는 단계;Plating thickness deviation calculated as above ( ) To obtain the plating thickness error Ce t + 1 by substituting the following formula (2a);

(여기서,: G x △Et+1,:의 시간지연 도금두께 편차](here, : G x ΔE t + 1 , : Time Delay Plating Thickness Deviation]

상기와 같이 구한 도금두께 오차(Cet+1)를 이용하여 하기식(3a)과 같이 노즐간격 변화량(△Et+2)을 구하는 단계;Using the plating thickness error Ce t + 1 obtained as described above, obtaining a nozzle interval change amount ΔE t + 2 as shown in Equation (3a);

[여기서, r:상수, GT: G 매트릭스의 트랜스포즈(transpose)][Where r: constant, G T : transpose of G matrix]

노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격 변화량(△Et+2)만큼 노즐간격을 변화시키는 단계; 및 상기와 같이 노즐간격을 변화시킨 상태에서 도금한후의 t+2 번째 측정된 스트립 폭방향 도금두께값()들로 부터 상기와 같이 도금두께 편차()를 구한 다음, 상기와 같이 도금두께 오차(Cet+2) 및 노즐간격 변화량(△Et+3)을 구한 후, 상기와 같이 노즐간격을 변화시키는 단계를 반복하는 단계를 포함하여 구성되는 연속식 용융도금라인에서의 폭방향 도금두께 편차 제어방법에 관한 것이다.Changing the nozzle interval by the nozzle interval change amount? E t + 2 obtained by driving the nozzle interval driver; And t + 2th measured strip width direction thickness value after plating with the nozzle spacing changed as described above ( Plating thickness deviation as above from ) And then obtaining the plating thickness error (Ce t + 2 ) and the nozzle gap change amount (ΔE t + 3 ) as described above, and then repeating the steps of changing the nozzle gap as described above. The present invention relates to a method for controlling variation in width in the thickness direction in a continuous hot dip plating line.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

제2도에는 본 발명이 적용되는 연속식 용융도금라인에서의 가변식 노즐 구조의 일개념도가, 그리고 제3도에는 본 발명에 부합되는 폭방향 도금두께 편차의 제어블럭도가 나타나 있는데, 이하에서는 제2도 및 제3도에 근거하여 본 발명을 상세히 설명한다.FIG. 2 shows one conceptual diagram of a variable nozzle structure in a continuous hot dip plating line to which the present invention is applied, and FIG. 3 shows a control block diagram of width plating thickness variation in accordance with the present invention. The present invention will be described in detail with reference to FIGS. 2 and 3.

본 발명에 따라 스트립의 폭방향 도금두께 편차를 제어하기 위해서는 제2도에서와 같이 가변식 노즐을 구비한 에어나이프를 사용해야 한다.According to the present invention, an air knife having a variable nozzle must be used as shown in FIG.

제2도에 나타난 바와같이, 가변식 노즐(11)은 일정한 간격을 두고 설치되는 노즐간격 구동기(10)에 의해 가변될 수 있는 가변립(11a) 및 이 가변립(11a)과 일정한 간격(노즐간격)을 갖고 고정되어 있는 고정립(11b)으로 이루어져 있다.As shown in FIG. 2, the variable nozzle 11 is a variable lip 11a that can be varied by the nozzle interval driver 10 provided at regular intervals, and a constant spacing (nozzle) with the variable lip 11a. And a fixed granule 11b fixed at an interval thereof.

제2도에서, "Ei"(i = 1,..., K)는 가변립(11a)과 고정립(11b) 사이의 간격 즉, 노즐간격을 나타내고, "LA"는 노즐간격 구동기간의 거리를, "Xi"는 노즐의 기준점(X1)에서 i 번째 노즐간격 구동기까지의 거리를, "L"는 에어나이프의 폭방향 길이를 나타낸다.In Fig. 2, "E i " (i = 1, ..., K) denotes the interval between the variable lip 11a and the fixed lip 11b, i.e., nozzle interval, and " LA " of the distance, "X i" is the distance from the i-th nozzle spacing actuator from the reference point (X1) of the nozzle, "L" represents a width direction length of the air knife.

본 발명에 따라 용융도금 스트립의 폭방향 도금두께 편차를 제어하기 위해서는, 우선, 도금두께 측정기에서 연속적으로 일정한 간격을 두고 측정되는 스트립 폭방향 두께값 중에서 임의의 t 번째 스트립 폭방향 도금두께 값()를 구한다.In order to control the widthwise thickness variation of the hot dip galvanizing strip according to the present invention, first, an arbitrary t-th strip width thickness value ( )

다음에, 상기와 같이 구한 도금두께 편차()를 하기식(2)에 대입하여 도금두께오차(Cet)를 구한다.Next, the plating thickness deviation obtained as described above ( ) Is substituted into the following formula (2) to obtain the plating thickness error Ce t .

Cet= Cmtd - Cmt- Cot‥‥·(2)Ce t = C m t d-C m t -Co t ‥‥ · (2)

(여기서 Cmt= G x △Et)Where Cm t = G x ΔE t

상기 식(2)에서 t=1 즉, 첫번째 측정된 폭방향 도금두께 값들로 부터 도금두께 오차(Cet)를 구하는 경우에는 △E 가 0(Zero)이므로, 도금두께 편차 예측값(Cmt) 및 Cmt의 시간지연 도금두께 편차()는 0(Zero)이 된다.In the formula (2), when t = 1, that is, the plating thickness error Ce t is obtained from the first measured width plating thickness values, ΔE is 0 (Zero), and thus the plating thickness deviation predicted value Cm t and Time delay plating thickness deviation of Cm t ( ) Becomes 0 (Zero).

다음에, 상기와 같이 구한 도금두께 오차()를 이용하여 하기식(3)과 같이노즐간격 변화량(△Et+1)을 구한다.Next, the plating thickness error obtained as described above ( Using the following formula, obtain the nozzle gap change amount ΔE t +1 as shown in the following equation (3).

상기 식(3)에서 구한 노즐간격 변화량(△Et+1)은 가격함수(Coat Function)를 최소로 하는 노즐간격 변화량을 나타내는 것으로써, 이에 대하여 설명하면 다음과 같다.The nozzle interval change amount ΔE t + 1 obtained in Equation (3) represents the nozzle interval change amount that minimizes the cost function, which will be described below.

상기 가격함수는 하기식(4)와 같이 나타낼 수 있다.The price function may be expressed as in Equation 4 below.

(여기서, S : 상수)Where S is a constant

상기 식(4)의 가격 함수를 이용한 노즐간격의 변화량(△Ei)의 계산에서 노즐간격의 변화량(△Ei)의 총 합이 변할 경우는 기체의 압력이 변하게 되므로 노즐간격의 변화량(△Ei)의 총 합은 영이어야 한다. 따라서, 도금두께 오차(Ce)에 대한 최적의 노즐 간격변화량은 하기식(4a) 및 (4b)로 표시된다.In the calculation of the change amount of the nozzle interval ΔE i using the price function of Equation (4), when the total sum of the change amount of the nozzle interval ΔE i is changed, the pressure of the gas is changed, so The sum of E i ) must be zero. Therefore, the optimum nozzle gap variation with respect to the plating thickness error Ce is represented by the following equations (4a) and (4b).

상기 식(4a)와 (4b)의 조건을 만족하는 최적의 노즐간격은 상기 식(3)과 같이 표시된다.The optimum nozzle interval that satisfies the conditions of the above formulas (4a) and (4b) is expressed as shown in the above formula (3).

도금두께를 제어하기 위해서는 노즐간격의 변화에 따라 도금되는 두께를 모델링하게 되는데, 노즐간격 변화량(△E)에 따른 도금두께 편차의 모델을 G 라 하면 노즐간격이 △E 만큼 변할 경우에 도금두께 편차 모델(D)은 하기식(5)와 같이 매트릭스(Matrix) 형태로 표시된다.In order to control the plating thickness, the thickness of the plating is modeled according to the change of the nozzle interval. If the model of the plating thickness variation according to the change amount of nozzle interval (ΔE) is G, the plating thickness deviation is changed when the nozzle interval changes by ΔE. The model D is represented in a matrix form as shown in Equation 5 below.

D = G x △E ‥‥‥ (5)D = G x ΔE ‥‥‥ (5)

[여기서, G :, 노즐간격(△E)에 대한 도금두께 변화량[Where, G: Plating thickness variation with nozzle spacing (△ E)

N x K 다이아고날 매트릭스(Diagonal Matrix), (단위 : g/㎥)N x K Diagonal Matrix, (unit: g / ㎥)

△E : 노즐간격(E)의 변화량ΔE: amount of change in nozzle spacing (E)

K x 1 매트릭스(Matrix), (단위 : mm)]K x 1 Matrix, in mm

다음에, 노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격 변화량(△Et)만큼 노즐간격을 변화시 킨다.Next, the nozzle spacing driver is driven to change the nozzle spacing by the nozzle spacing change amount ΔE t obtained as described above.

다음에, 상기와 같이 노즐간격을 변화시킨 상태에서 도금한 후의 t+1 번째측정된 스트립 폭방향 도금두께 값()들로 부터 하기식(1a)와 같이 도금두께 편차()를 구한다.Next, the t + 1th measured strip width direction thickness value after plating with the nozzle spacing changed as described above ( Plating thickness deviation from the following equation (1a) )

다음에, 상기와 같이 구한 도금두께 편차()를 하기식(2a)에 대입하여 도금두께오차(Cet+1)를 구한다.Next, the plating thickness deviation obtained as described above ( ) Is substituted into the following formula (2a) to find the plating thickness error (Ce t + 1 ).

Cet+1=-- Cot+1.....(2a)Ce t + 1 = - Co t + 1 ..... (2a)

다음에, 상기와 같이 구한 도금두께 오차(Cet+1)를 이용하여 하기식(3a)와 같이 노즐간격 변화량(△Et+2)을 구한다.Next, using the plating thickness error Ce t + 1 obtained as described above, the nozzle gap change amount DELTA E t + 2 is obtained as in the following formula (3a).

다음에, 노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격변화량(△Et+2)만큼 노즐간격을 변화시킨다.Next, the nozzle spacing driver is driven to change the nozzle spacing by the nozzle spacing change amount? E t + 2 determined as described above.

다음에, 상기와 같이 노즐간격을 변화시킨 상태에서 도금한 후의 t+2 번째 측정된 스트립 폭방향 도금두께 값()들로 부터 상기와 갈이 도금두께 편차()를 구한다음, 상기와 같이 도금두께 오차(Cet+2) 및 노즐간격 변화량(△Et+3)을 구한 후, 상기와 같이 노즐간격을 변화시키는 단계를 반복하여 행함으로써, 폭방향 도금두께편차가 제어된다.Next, the t + 2th measured strip width direction thickness value after plating with the nozzle spacing changed as described above ( Variation of the above and ground plating thickness from ), Then obtain the plating thickness error (Ce t + 2 ) and the nozzle gap change amount (ΔE t + 3 ) as described above, and then repeat the steps of changing the nozzle gap as described above, thereby performing widthwise plating. Thickness deviation is controlled.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

노즐간격 구동기가 14개 이고 간격이 160인 경우 각 노즐 간격 구동기의 위치(x)는 다음과 같다.If there are 14 nozzle spacing drivers and the spacing is 160, the position (x) of each nozzle spacing driver is as follows.

X = {0 160 320 480 640 800 960 1120 1280 1440 1600 1760 1920 2080}X = {0 160 320 480 640 800 960 1120 1280 1440 1600 1760 1920 2080}

스트립 폭이 1780mm 인 경우 도금측정기에서 도금두께를 측정하는 위치(P)는 다음과 같다.When the strip width is 1780mm, the position (P) for measuring the plating thickness in the plating measuring instrument is as follows.

P = {160 240 320 400 480 560 640 720 800 880 960 1040 1120 1200 1280 1360 1440 1520 1600 1680 1760 1840}P = {160 240 320 400 480 560 640 720 800 880 960 1040 1120 1200 1280 1360 1440 1520 1600 1680 1760 1840}

초기에 측정된 폭방향 도금두께 편차는 다음과 같다.Initially, the width thickness variation measured was as follows.

Co = {-4.5 -3.5 2.5 8.5 8.5 10.5 10.5 5.5 0.5 -6.5 -9.5 -10.5 -10.5 8.5 -4.5 -0.5 0.5 3.5 5.5 5.5 1.5 -4.5}Co = {-4.5 -3.5 2.5 8.5 8.5 10.5 10.5 5.5 0.5 -6.5 -9.5 -10.5 -10.5 8.5 -4.5 -0.5 0.5 3.5 5.5 5.5 1.5 -4.5}

이때, △E=0 이므로, 도금두께 오차(Ce)는 도금두께 편차(Co)와 갈다.At this time, since ΔE = 0, the plating thickness error Ce is equal to the plating thickness deviation Co.

상기 도금두께 오차(Ce)를 이용하여 노즐간격 변화량(△E)을 구하고 노즐간격을 제4도와 같이 조절한 후 도금을 행한 다음, 폭방향 도금두께를 측정하여 폭방향 도금두께 편차를 산출하고, 그 결과를 제5도에 나타내었다.Obtain the nozzle gap change amount ΔE using the plating thickness error Ce, adjust the nozzle gap as shown in FIG. 4, perform plating, measure the width plating thickness, and calculate the width plating thickness deviation, The results are shown in FIG.

제4도에는 본 발명을 적용하기 전의 경우(종래방법)의 노즐간격이, 그리고 제5도에는 본 발명을 적용하기 전의 경우에 대한 폭방향 도금두께 편차가 제시되어 있다.FIG. 4 shows the nozzle spacing before applying the present invention (the conventional method), and FIG. 5 shows the variation in the plating thickness in the width direction when applying the present invention.

제5도에 나타난 바와같이, 본 발명에 따라 도금두께 편차를 제어하는 경우에는 종래방법에 비하여 도금두께 편차가 훨씬 적음을 알 수 있다.As shown in FIG. 5, in the case of controlling the plating thickness variation in accordance with the present invention, it can be seen that the plating thickness variation is much smaller than in the conventional method.

상술한 바와같이, 본 발명은 스트립의 폭이 변하거나, 스트립의 형상이 변하거나 또는 스트립의 에지 부분에 편차가 발생하는 경우 스트립의 폭방향 도금두께 편차를 제어할 수 있어 생산성 및 품질을 높일 수 있는 효과가 있는 것이다.As described above, the present invention can increase the productivity and quality by controlling the variation of the thickness of the strip in the width direction when the width of the strip is changed, the shape of the strip is changed or the deviation occurs at the edge portion of the strip. It is effective.

제1도는 본 발명이 적용될 수 있는 연속식 용융 도금라인의 개략도1 is a schematic diagram of a continuous hot dip plating line to which the present invention can be applied.

제2도는 본 발명이 적용될 수 있는 연속식 용융 도금라인에 있어 가변노즐구조의 개략도2 is a schematic view of a variable nozzle structure in a continuous hot dip plating line to which the present invention can be applied.

제3도는 본 발명의 폭방향 도금두께 편차 제어블럭도3 is a width control thickness plating control block diagram of the present invention

제4도는 본 발명 적용 전,후의 에어나이프 폭방향 길이에 따른 노즐간격을 나타내는 그래프4 is a graph showing the nozzle spacing according to the length of the air knife width direction before and after applying the present invention

제5도는 본 발명 적용 전,후의 스트립 폭방향의 도금두께 측정위치에 따른 폭방향 도금두께 편차를 나타내는 그래프5 is a graph showing the variation in the plating thickness in the width direction according to the plating thickness measurement position in the strip width direction before and after applying the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 ..... 에어나이프 2 ..... 도금욕조1 ..... Air Knife 2 ..... Plating Bath

5 ..... 도금두께 측정기 6 ..... 스트립5 ..... Plating Thickness Meter 6 ..... Strip

7 ..... 노즐간격 9 ..... 노즐과 스트립간의 거리7 ..... Nozzle Spacing 9 ..... Distance between Nozzle and Strip

10 .... 노즐간격 구동기 11 .... 가변노즐10 .... Nozzle spacing actuator 11 .... Variable nozzle

Claims (1)

일정한 간격두고 설치되는 노즐간격구동기에 의해 가변될 수 있는 가변립 및 이 가변립과 일정한 간격(노즐간격)을 갖고 고정되어 있는 고정립으로 이루어진 가변식 노즐을 구비하여 스트립의 전,후부에 설치되는 에어나이프를 이용하여 용융도금 스트립의 폭방향 도금두께 편차를 제어하는 방법에 있어서,It is provided with a variable lip which is variable by nozzle interval actuators which are installed at regular intervals and a variable nozzle which is fixed to the variable lip and a fixed lip which is fixed at a fixed interval (nozzle interval). In the method for controlling the variation in the plating thickness in the width direction of the hot dip coating strip using an air knife, 임의의 t 번째 측정된 스트립 폭방향 도금두께값()들로 부터 하기식(1)과 같이 도금두께 편차()를 구하는 단계;Any measured t-th width measured in the width direction of the strip ( Plating thickness deviation from the following equation (1) Obtaining; 상기와 같이 구한 도금두께 편차()를 하기식(2)에 대입하여 도금두께 오차(Cet)를 구하는 단계;Plating thickness deviation calculated as above ( ) To obtain the plating thickness error Ce t by substituting the following formula (2); (여기서, Cmt: 도금두께 편차 예측값, Cmtd : Cmt의 시간지연 도금두께 편차)(Cm t : plating thickness deviation prediction value, Cm t d: time delay plating thickness deviation of Cm t ) 상기와 같이 구한 도금두께 오차(Cet)를 이용하여 하기 식(3)과 같이 노즐간격 변화량(△Et+1)을 구하는 단계;Obtaining a nozzle gap change amount ΔE t + 1 using the plating thickness error Ce t obtained as described above (3); [여기서, r:상수, GT; G 매트릭스의 트랜스포즈(transpose)][Where r: constant, G T ; Transpose of G Matrix] 노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격 변화량(△Et+1)만큼 노즐 간격을 변화시키는 단계;Changing the nozzle interval by the nozzle interval change amount? E t + 1 obtained by driving the nozzle interval driver; 상기와 같이 노즐간격을 변화시킨 상태에서 도금한 후의 t + 1 번째 측정된 스트립 폭방향 도금두께 값()들로 부터 하기식(1a)와 같이 도금두께 편차()를 구하는 단계;T + 1st measured strip width direction thickness value after plating with the nozzle spacing changed as above ( Plating thickness deviation from the following equation (1a) Obtaining; 상기와 같이 구한 도금두께 편차()를 하기식(2a)에 대입하여 도금두께 오차(Cet+1)를 구하는 단계;Plating thickness deviation calculated as above ( ) To obtain the plating thickness error Ce t + 1 by substituting the following formula (2a); (여기서,; G x △Et+1,:의 시간지연 도금두께 편차)(here, ; G x ΔE t + 1 , : Time delay plating thickness deviation) 상기와 같이 구한 도금두께 오차(Cet+1)를 이용하여 하기식(3a)과 같이 노즐간격 변화량(△Et+2)을 구하는 단계;Using the plating thickness error Ce t + 1 obtained as described above, obtaining a nozzle interval change amount ΔE t + 2 as shown in Equation (3a); [여기서, r:상수, GT: G 매트릭스의 트랜스포즈(transpose)][Where r: constant, G T : transpose of G matrix] 노즐간격 구동기를 구동하여 상기와 같이 구한 노즐간격 변화량(△Et+2)만큼 노즐간격을 변화시키는 단계; 및 상기와 같이 노즐간격을 변화시킨 상태에서 도금한 후의 t+2 번째 측정된 스트립 폭방향 도금두께값()들로 부터 상기와 같이 도금두께 편차()를 구한 다음, 상기와 같이 도금두께 오차(Cet+2) 및 노즐간격 변화량(△Et+3)을 구한 후, 상기와 같이 노즐간격을 변화시키는 단계를 반복하는 단계를 포함하여 구성되는 연속식 용융도금라인에서의 폭방향 도금두께 편차 제어방법Changing the nozzle interval by the nozzle interval change amount? E t + 2 obtained by driving the nozzle interval driver; And the t + 2th measured strip width direction thickness value after plating with the nozzle spacing changed as described above ( Plating thickness deviation as above from ) And then obtaining the plating thickness error (Ce t + 2 ) and the nozzle gap change amount (ΔE t + 3 ) as described above, and then repeating the steps of changing the nozzle gap as described above. Width Thickness Determination Control Method in Continuous Hot-Plating Line
KR1019950025985A 1995-08-22 1995-08-22 Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line KR100332897B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950025985A KR100332897B1 (en) 1995-08-22 1995-08-22 Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950025985A KR100332897B1 (en) 1995-08-22 1995-08-22 Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line

Publications (2)

Publication Number Publication Date
KR970011005A KR970011005A (en) 1997-03-27
KR100332897B1 true KR100332897B1 (en) 2002-10-31

Family

ID=37479530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950025985A KR100332897B1 (en) 1995-08-22 1995-08-22 Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line

Country Status (1)

Country Link
KR (1) KR100332897B1 (en)

Also Published As

Publication number Publication date
KR970011005A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
KR102099910B1 (en) System and method for hot-dip galvanized layer thickness control for continuous thickness-variable strip materials
FI108219B (en) A method for adjusting the coating weight by a gas sweep
KR100332897B1 (en) Method for controlling widthwise coating thickness deviation in continuous hot dip galvanizing line
JP3530514B2 (en) Steel plate shape correction device and method
JPH0633448B2 (en) Molten metal plating amount control device
KR100742834B1 (en) System for controlling a plating amount in hot dipping process
KR100332896B1 (en) Method for controlling widthwise coating thickness in continuous hot dip galvanizing line
KR100393679B1 (en) Coating weight predictive control in continuous galvanizing line
JP3327351B2 (en) Method of adjusting coating thickness by gas wiping
JP5015055B2 (en) Plating adhesion amount control apparatus, control method thereof, and computer program in continuous molten metal plating line
JPH11100651A (en) Continuous hot dip metal coating device
JPH08260122A (en) Method for controlling coating weight of plating of hot-dip coated steel sheet
JP2003105515A (en) Device and method for correcting steel plate shape
JPH07243015A (en) Plating deposition control method of continuous type hot dip metal coating line
JP5131010B2 (en) Continuous molten metal plating system and plating method
JP3442901B2 (en) Adhesion amount control device for hot metal plating line
JP3127815B2 (en) Method for controlling coating weight in hot metal plating
JPH08252625A (en) Method for controlling coiling temperature in hot rolling
JP2804320B2 (en) Plating weight control method
JP5949316B2 (en) Manufacturing method of continuous cast slab
JP4037569B2 (en) Method for controlling the coating amount of hot-dip metal strip
JP2002275613A (en) Method and system for controlling deposition amount of plating
JP2804318B2 (en) Plating weight control method
KR100497082B1 (en) Strip anti-bending control system in continous galvanizing line
JPH05117832A (en) Method for adjusting deposition of hot dip metal

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080402

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee