KR100330627B1 - Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide - Google Patents

Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide Download PDF

Info

Publication number
KR100330627B1
KR100330627B1 KR1019990055136A KR19990055136A KR100330627B1 KR 100330627 B1 KR100330627 B1 KR 100330627B1 KR 1019990055136 A KR1019990055136 A KR 1019990055136A KR 19990055136 A KR19990055136 A KR 19990055136A KR 100330627 B1 KR100330627 B1 KR 100330627B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
carrier
tio
hydroxide
titanium
Prior art date
Application number
KR1019990055136A
Other languages
Korean (ko)
Other versions
KR20010054342A (en
Inventor
유연태
최영윤
김병규
남철우
Original Assignee
곽영훈
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 곽영훈, 한국지질자원연구원 filed Critical 곽영훈
Priority to KR1019990055136A priority Critical patent/KR100330627B1/en
Publication of KR20010054342A publication Critical patent/KR20010054342A/en
Application granted granted Critical
Publication of KR100330627B1 publication Critical patent/KR100330627B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

TiO2광촉매의 활성은 TiO2미분체의 입경이 작을수록 큰 것으로 나타났기 때문에 10∼20nm 이하의 미세한 분체가 제조되고 있다. 그러나, 이러한 미분체는 응집이 일어나기 쉬어 광촉매의 효율을 저하시키거나 용도를 제한하는 등의 문제를 야기시킨다. 따라서, 광촉매의 활용성을 고려하여 미립의 TiO2분말을 담체에 담지시켜 사용되고 있으며, 담체로서는 제올라이트 등과 같은 다공성 물질을 주로 사용하고 있다. 그러나, TiO2의 광촉매 반응은 빛이 닿는 표면 부분에서만 일어나므로, 다공성 산화물을 담체로 사용하는 것은 그다지 바람직하지 못하며, 합성 제올라이트와 같은 다공성 물질은 가격이 비싸 광촉매의 가격을 상승시키는 요인이 되고 있다.Since the activity of the TiO 2 photocatalyst was found to be larger as the particle diameter of the TiO 2 fine powder was smaller, fine powders of 10 to 20 nm or less were prepared. However, such fine powder tends to cause aggregation, leading to problems such as lowering the efficiency of the photocatalyst or limiting its use. Therefore, in consideration of the availability of the photocatalyst, the fine TiO 2 powder is used to be supported on a carrier, and a porous material such as zeolite is mainly used as the carrier. However, since the photocatalytic reaction of TiO 2 occurs only at the surface where light is exposed, it is not preferable to use a porous oxide as a carrier, and porous materials such as synthetic zeolites are expensive and are causing factors to increase the price of the photocatalyst. .

본 발명은 상기한 바와 같이 동작되는 종래의 기술의 문제점을 개선하기 위하여 창안된 것으로서, 주목적은 광촉매의 담체를 다공성 물질이 아닌 규석, 고령토, 납석, 장석, 점토와 같은 염가의 천연광물로 하고, 담체의 표면에 피복되는 TiO2의 광촉매 활성을 향상시키기 위해 소량의 반도체성 금속산화물(WO3, Fe2O3, SnO2, Cu2O, Nb2O5등)을 복합 피복하는 저가형 TiO2의 광촉매의 제조 방법을 제공하는 것을 특징으로 한다.The present invention has been made to improve the problems of the prior art operating as described above, the main purpose of the carrier of the photocatalyst is not a porous material, but cheap natural minerals such as silica, kaolin, feldspar, feldspar, clay, Low-cost TiO 2 complex coating a small amount of semiconducting metal oxides (WO 3 , Fe 2 O 3 , SnO 2 , Cu 2 O, Nb 2 O 5, etc.) to improve the photocatalytic activity of TiO 2 coated on the surface of the carrier It is characterized by providing a method for producing a photocatalyst.

Description

금속산화물 복합 피복 이산화티탄 광촉매의 제조 방법{Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide}Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide}

본 발명은 이산화티탄(이하 'TiO2'라 한다) 광촉매의 특성 개선 및 광촉매의 활용성 확대를 위한 저가형 광촉매 제조에 관한 것으로, 좀더 상세하게는 규석, 고령토, 납석, 장석, 점토 등 천연광물 분체를 담체로하여 광물표면에 결정입 크기가 미세한 아나타제형 TiO2와 소량의 WO3, Fe2O3, SnO2, Cu2O, Nb2O5등의 반도체성 금속산화물을 복합 피복하는 광촉매의 제조에 관한 것이다.The present invention relates to the production of low-cost photocatalyst for improving the properties of titanium dioxide (hereinafter referred to as 'TiO 2 ') photocatalyst and expanding the usability of the photocatalyst, and more specifically, natural mineral powder such as silica, kaolin, feldspar, feldspar, clay Photocatalytically coated with anatase-type TiO 2 with a small grain size and semiconducting metal oxides such as WO 3 , Fe 2 O 3 , SnO 2 , Cu 2 O, and Nb 2 O 5 It is about manufacture.

광촉매 작용은 여러 가지 반도체에서 확인되고 있지만, 현재 가장 널리 사용되고 있는 것은 TiO2이다. 이것은 첫째, 태양광 또는 적당한 인공광에 함유되어 있는 자외선에 의해서 충분히 촉매활성을 나타내고, 둘째 화학적으로 안정하며, 셋째 환경 및 인체에 무해하며, 넷째 가격이 저렴하여 경제적이라는 이유 때문이다.Photocatalytic action has been identified in various semiconductors, but TiO 2 is the most widely used at present. This is because, firstly, it exhibits sufficient catalytic activity by ultraviolet rays contained in sunlight or suitable artificial light, secondly, chemically stable, thirdly harmless to the environment and human body, and fourthly, the price is low and economical.

이러한 TiO2에는 아나타제(anatase)형, 루틸(rutile)형, 부루카이트 (brookite)형의 3가지 종류의 결정구조가 있으며, 루틸형 TiO2는 공업용 도료 및 화장품 등에 널리 사용되고 있지만, 광촉매로서 적합한 것은 아나타제형 TiO2이다. 아나타제형 TiO2의 밴드 갭(band gap)은 3.2eV이며, 루틸형 TiO2의 밴드 갭은 3.0eV으로, 아나타제형 쪽이 전도대의 위쪽에 있어 환원력이 강하고 산소를 더 쉽게 환원할 수 있기 때문이다. 아나타제형 TiO2는 찌든 때의 분해성, 방취, 항균, 수중 또는 공기중의 오염물질의 분해 및 제거 등의 기능을 가지고 있어 주로 환경정화분야에 응용할 수 있다.TiO 2 has three types of crystal structures: anatase type, rutile type, and brookite type. Although rutile type TiO 2 is widely used in industrial paints and cosmetics, it is suitable as a photocatalyst. Anatase type TiO 2 . The band gap of the anatase type TiO 2 is 3.2 eV, and the band gap of the rutile TiO 2 is 3.0 eV, because the anatase type is at the upper side of the conduction band so that the reducing power is strong and oxygen can be reduced more easily. . Anatase type TiO 2 has the functions of degrading deodorization, deodorization, antibacterial, and decomposition and removal of pollutants in water or air, and thus can be mainly applied to environmental purification.

광촉매로서 TiO2미분체를 이용할 경우, 미분체의 입경이 작을수록 광촉매 활성이 크기 때문에 10∼20nm 이하의 미세한 분체가 사용된다. 그러나, 이러한 미분체는 응집이 일어나기 쉬어 광촉매의 효율을 저하시키거나 용도를 제한하는 등의 문제를 야기시킨다. 따라서, 미립의 TiO2분말을 담체에 담지시켜 사용하는 것이 일반적이다. 담체로서는 제올라이트 등의 다공성 물질이 주로 사용되고 있지만, TiO2의 광촉매 반응은 빛이 닿는 표면 부분에서만 일어나므로, 다공성 산화물을 담체로 사용하는 것은 그다지 바람직하지 못하며, 합성 제올라이트와 같은 다공성 물질은 가격이 비싸 광촉매의 가격을 상승시키는 요인이 되고 있다.In the case of using the TiO 2 fine powder as the photocatalyst, the smaller the particle diameter of the fine powder is, the larger the photocatalytic activity is, so that fine powder of 10 to 20 nm or less is used. However, such fine powder tends to cause aggregation, leading to problems such as lowering the efficiency of the photocatalyst or limiting its use. Therefore, it is common to use fine TiO 2 powder supported on a carrier. As a carrier, porous materials such as zeolite are mainly used, but since the photocatalytic reaction of TiO 2 occurs only at the surface where light is exposed, it is not preferable to use porous oxide as a carrier, and porous materials such as synthetic zeolites are expensive. It is a factor which raises the price of a photocatalyst.

광촉매의 특성은 담체의 표면에 담지 시킨 TiO2의 입자크기에 좌우되는데,이 TiO2의 입자크기(또는 결정입 크기)는 작을수록 높은 광촉매 활성을 나타낸다. 담체인 산화물 분체에 TiO2를 피복하는 방법은 일반적으로 사염화티탄(TiCl4) 수용액, 황산티타늄(Ti(SO4)2) 수용액 및 TNBT((C4H9O)4Ti) 용액에 히드라진, 아황산나트륨, 포르말린, 수산화나트륨과 같은 침전제를 적하하여 담체 표면에 티타늄 수화물을 피복하고, 이것을 공기 중에서 열처리하여 아나타제형 TiO2의 피복을 얻는 것이다. 그러나, 이와 같은 방법으로 얻어지는 TiO2의 입자크기는 약 15nm 정도로, 이 이하의 입자크기인 TiO2의 피복층을 얻기가 어렵다는 문제점이 있다. TiO2의 피복량을 줄이고 높은 활성을 나타내는 광촉매를 제조하기 위해서는 TiO2의 입자 크기(또는 결정입 크기)를 더욱 줄이거나, 이종원자의 첨가에 의해 TiO2의 밴드 갭에 전자의 포획 사이트를 형성시켜 전자와 공공의 결합을 저지시켜야 한다.The characteristics of the photocatalyst depend on the particle size of TiO 2 supported on the surface of the carrier. The smaller the particle size (or grain size) of TiO 2 is, the higher the photocatalytic activity is. The method of coating TiO 2 on the oxide powder serving as a carrier is generally a solution of titanium tetrachloride (TiCl 4 ), a solution of titanium sulfate (Ti (SO 4 ) 2 ), and a solution of TNBT ((C 4 H 9 O) 4 Ti), Precipitants such as sodium sulfite, formalin and sodium hydroxide are added dropwise to coat the titanium hydrate on the surface of the carrier, which is then heat-treated in air to obtain anatase-type TiO 2 coating. However, the particle size of TiO 2 obtained by such a method is about 15 nm, and it is difficult to obtain a coating layer of TiO 2 having a particle size of less than this. In order to reduce the coating amount of the TiO 2 to produce a photocatalyst having a high activity and further reduce the particle size of the TiO 2 (or grain size), by forming the electron trap sites in the band gap of TiO 2 by the addition's heteroatom The bond between the former and the public must be prevented.

본 발명은 광촉매의 담체를 다공성 물질이 아닌 규석, 고령토, 납석, 장석, 점토와 같은 천연광물로 하고, 담체의 표면에 피복되는 TiO2의 광촉매 활성을 향상시키기 위해 소량의 반도체성 금속산화물(WO3, Fe2O3, SnO2, Cu2O, Nb2O5등)을 복합 피복하는 TiO2의 광촉매의 제조 방법을 제공하는데 그 기술적 과제가 있다.In the present invention, the carrier of the photocatalyst is a natural mineral such as silica, kaolin, feldspar, feldspar, and clay, which is not a porous material, and a small amount of semiconducting metal oxide (WO) is used to improve the photocatalytic activity of TiO 2 coated on the surface of the carrier. There is a technical problem to provide a method for producing a TiO 2 photocatalyst having a composite coating of 3 , Fe 2 O 3 , SnO 2 , Cu 2 O, Nb 2 O 5, and the like.

도 1은 천연광물을 담체로 한 이산화티탄(TiO2) 및 금속산화물 복합 피복 광촉매의 제조 공정도1 is a manufacturing process diagram of a titanium dioxide (TiO 2 ) and a metal oxide composite coating photocatalyst using a natural mineral as a carrier

상기한 기술적과제를 달성하기 위한 본 발명을 첨부한 도면에 의거하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the present invention for achieving the above technical problem is as follows.

도 1은 본 발명에 따른 TiO2광촉매의 제조 공정도를 도시한 것으로서, 광촉매의 담체로는 평균입경이 10∼30㎛인 규석, 고령토, 납석, 장석 및 점토를 사용하였고, TiO2의 피복을 위한 티탄의 공급원으로는 사염화티탄(TiCl4) 수용액, 황산티타늄(Ti(SO4)2) 수용액, TNBT((C4H9O)4Ti) 용액을 사용하였고, 담체의 표면에 티타늄 수산화물을 형성시키기 위한 침전제로는 히드라진, 아황산나트륨, 포르말린, 수산화나트륨, 탄산수소암모늄 등을 사용하였다. 피복처리는 원료분말을 상기 희석액에 상온에서 분산하고 교반하면서, 침전제를 적하였다. 상기 티타늄 화합물의 희석액 농도는 0.01M에서 1M로 하였고, 0.05M에서 0.2M이 바람직하였다. 상기 침전제의 희석액 농도는 0.1M에서 5M로 하였고, 0.5M에서 2.0M이 바람직하였다. 피복처리 후 탈액, 세정하여 110℃에서 24시간 건조하였다.Figure 1 shows the manufacturing process of the TiO 2 photocatalyst according to the present invention, as a carrier of the photocatalyst, silica, kaolin, feldspar, feldspar and clay having an average particle diameter of 10 to 30㎛ was used, and for the coating of TiO 2 Titanium tetrachloride (TiCl 4 ) aqueous solution, titanium sulfate (Ti (SO 4 ) 2 ) aqueous solution, TNBT ((C 4 H 9 O) 4 Ti) solution was used as a source of titanium, and titanium hydroxide was formed on the surface of the carrier. As a precipitating agent, hydrazine, sodium sulfite, formalin, sodium hydroxide, ammonium bicarbonate and the like were used. In the coating treatment, a precipitant was added dropwise while the raw material powder was dispersed in the dilution liquid at room temperature and stirred. Diluent concentration of the titanium compound was 0.01M to 1M, 0.05M to 0.2M is preferred. Diluent concentration of the precipitant was 0.1M to 5M, 0.5M to 2.0M is preferred. After coating treatment, the solution was removed, washed, and dried at 110 ° C. for 24 hours.

건조된 티타늄 수화물 피복 담체에 텅스텐, 철, 몰리브덴 등의 수산화물의 복합 피복은 금속염 수용액을 사용하였다. 텅스텐, 철, 몰리브덴의 공급원으로는 각각의 질화물, 염화물, 암모늄화합물이 사용되었다. 금속 수산화물의 생성을 위한 침전제로는 히드라진, 아황산나트륨, 포르말린, 수산화나트륨, 탄산수소암모늄 등을 사용하였다. 상기 피복제의 희석액 농도는 0.001M에서 0.1M로 하였고, 0.005M에서 0.05M이 바람직하였다. 침전제의 희석액 농도는 0.1M에서 5M로 하였고, 1.0M에서 3.0M이 바람직하였다. 피복처리 후 탈액, 세정하여 110℃에서 24시간 건조하였다.A metal salt aqueous solution was used for the composite coating of hydroxides, such as tungsten, iron, and molybdenum, on the dried titanium hydrate coating support. As a source of tungsten, iron and molybdenum, respective nitrides, chlorides and ammonium compounds were used. Hydrazine, sodium sulfite, formalin, sodium hydroxide, ammonium bicarbonate, etc. were used as a precipitant for the production of metal hydroxides. The diluent concentration of the coating was set at 0.001M to 0.1M, and preferably 0.005M to 0.05M. The diluent concentration of the precipitant was set at 0.1M to 5M, and preferably 1.0M to 3.0M. After coating treatment, the solution was removed, washed, and dried at 110 ° C. for 24 hours.

이상에서와 같이 규석, 고령토, 납석, 장석, 점토를 담체로 하여 티타늄의 수산화물과 텅스텐, 철, 몰리브덴 등의 금속의 수산화물을 복합 피복 처리하였다. 복합 수산화물 피복 담체는 표면의 수산화물을 산화시키기 위해 400℃∼900℃의 온도범위에서 1∼10시간 동안 열처리하였고, 열처리 온도로는 500℃∼700℃가 바람직하였고, 열처리 시간은 3∼5시간이 적절하였다.As described above, a composite coating treatment of titanium hydroxide and hydroxides of metals such as tungsten, iron, and molybdenum was carried out using silica, kaolin, feldspar, feldspar, and clay as carriers. The composite hydroxide coating carrier was heat-treated for 1 to 10 hours at a temperature range of 400 ° C to 900 ° C to oxidize the hydroxide on the surface, and 500 ° C to 700 ° C is preferable as the heat treatment temperature, and the heat treatment time is 3 to 5 hours. It was appropriate.

이상과 같이 합성된 광촉매의 활성은 질소산화물의 제거율로 평가하였다. 질소산화물의 제거율 측정을 위하여 광원으로는 254nm의 자외선을 사용하였고, 질소산화물의 공급원으로는 NO 표준가스를 사용하였고, 표준가스의 NO 농도는 200ppm (balance gas N2)이었다. 제거율 측정전 질소산화물의 농도는 3∼4ppm으로 하였으며, 질소산화물을 반응기에 투입한 후 15분 경과 후의 질소산화물 농도 변화를 관찰하였다. 질소산화물의 측정은 GASTEC(주)의 검시관을 사용하여 수행하였다. 또한, 담체의 표면에 생성된 TiO2의 결정입 크기는 X선 회절피크의 반값폭으로부터 Sherrer 식을 이용하여 구하였다.The activity of the photocatalyst synthesized as above was evaluated by the removal rate of nitrogen oxides. In order to measure the removal rate of nitrogen oxide, UV light of 254 nm was used as a light source, NO standard gas was used as a source of nitrogen oxide, and NO concentration of the standard gas was 200 ppm (balance gas N 2 ). The nitrogen oxide concentration was 3 to 4 ppm before the removal rate was measured. The nitrogen oxide concentration was changed after 15 minutes after the nitrogen oxide was added to the reactor. The measurement of nitrogen oxide was performed using the coroner's tube of GASTEC. In addition, the grain size of TiO 2 formed on the surface of the carrier was determined using the Sherrer equation from the half width of the X-ray diffraction peak.

이상과 같은 방법으로 얻어지는 TiO2의 결정입 크기는 9∼12nm를 나타내었고, 질소산화물의 제거율은 금속산화물을 복합 피복하지 않은 시료와 비교하여 금속산화물을 복합 피복한 시료가 10∼23% 정도 향상하는 결과를 얻을 수 있었다. 질소산화물의 제거율은 최대 95%를 나타내었다. 이것은 열처리에 의해 티타늄 수산화물이 아타나제형 TiO2를 형성하는 과정에서, 이종의 금속이온이 아나타제형 TiO2의 결정 성장을 억제하여, 금속산화물을 첨가하지 않은 TiO2의 결정입 크기(약 15nm)보다 더 작은 결정입이 얻어진 것이다. 또한, 이종의 금속이온은 아나타제형 TiO2의 결정내에 전자의 포획 사이트를 형성하여 전자와 공공의 결합을 방해하는 역할을 하여 광촉매의 활성이 증가하였다.The grain size of TiO 2 obtained by the method described above was 9-12 nm, and the removal rate of nitrogen oxide was improved by 10 to 23% in the sample coated with the metal oxide in comparison with the sample without the metal oxide in the composite coating. To get the result. The removal rate of nitrogen oxide showed up to 95%. This is in the process of the titanium hydroxide by heat treatment to form a Athanasiadis formulation TiO 2, than that of TiO 2 metal ion of the heterodimer by inhibiting crystal growth of the anatase type TiO 2, without addition of the metal oxide, the crystal grain size (approx. 15nm) Smaller grains were obtained. In addition, the heterogeneous metal ions formed electron trap sites in the crystals of the anatase type TiO 2 to interfere with the bonding of the electrons and the pores, thereby increasing the activity of the photocatalyst.

다음은 비교예와 실시예를 통하여 본 발명을 설명한다.The following describes the present invention through comparative examples and examples.

<실시예 1><Example 1>

대명광산에서 생산되는 WC급 고령토를 해쇄한 후, 공기 분급기를 이용하여 평균입경이 10∼30㎛가 되도록 분급하였다. 고령토 50g을 사염화티탄 0.1M과 염산 0.2M의 혼합 수용액에 현탁하고, 약 200rpm의 속도로 교반하면서 침전제를 적하하였다. 침전제로는 1M의 탄산수소암모늄 수용액을 이용하였다. 티타늄 수산화물이 피복된 고령토는 탈액 세정한 후 110℃에서 24시간 동안 건조하였다.After crushing the WC grade kaolin produced in the Daemyung mine, it was classified using an air classifier so as to have an average particle diameter of 10 to 30 µm. 50 g of kaolin was suspended in a mixed aqueous solution of 0.1 M titanium tetrachloride and 0.2 M hydrochloric acid, and a precipitant was added dropwise while stirring at a speed of about 200 rpm. As a precipitant, 1 M aqueous ammonium bicarbonate solution was used. Kaolin coated with titanium hydroxide was dehydrated and dried at 110 ° C. for 24 hours.

티타늄 수산화물을 피복한 고령토는 2차 피복을 위해, 0.01M의 텅스텐파라암모늄 [5(NH4)2Oㆍ12WOㆍ5H2O] 수용액 중에 현탁한 후, 약 200rpm의 속도로 교반하면서 침전제로 1M의 히드라진 수용액을 적하하였다. 피복처리 후 탈액, 세정하여 110℃에서 24시간 건조하였다.Kaolin coated with titanium hydroxide was suspended in an aqueous solution of tungsten paraammonium [5 (NH 4 ) 2 O.12WO.5H 2 O] at 0.01 M for secondary coating, followed by stirring at a rate of about 200 rpm and 1 M as a precipitant. Hydrazine aqueous solution of was dripped. After coating treatment, the solution was removed, washed, and dried at 110 ° C. for 24 hours.

티타늄 수산화물과 텅스텐 수산화물을 복합 피복한 고령토는 표면의 수산화물을 산화시키기 위해 500℃로 4시간 동안 열처리하였다. 결정입 크기는 10.3nm이었고, 질소산화물의 제거율은 82.5%를 나타내었다.Kaolin coated with titanium hydroxide and tungsten hydroxide was heat-treated at 500 ° C. for 4 hours to oxidize the hydroxide on the surface. The grain size was 10.3 nm and the removal rate of nitrogen oxide was 82.5%.

<실시예 2><Example 2>

고령토 50g을 실시예 1에 표기한 동일한 방법으로 티타늄 수화물의 피복처리을 실시하였다. 티타늄 수산화물을 피복한 고령토는 2차 피복을 위해, 0.02M의 텅스텐파라암모늄 [5(NH4)2Oㆍ12WO3ㆍ5H2O] 수용액 중에 현탁한 후, 약 200rpm의 속도로 교반하면서 침전제로 1M의 히드라진 수용액을 적하하였다. 티타늄 수산화물과 텅스텐 수산화물을 복합 피복한 고령토는 실시예 1과 같이 탈액, 세정 후 열처리하였다. 결정입 크기는 11.5nm이었고, 질소산화물의 제거율은 91.3%를 나타내었다.50 g of kaolin was coated with titanium hydrate in the same manner as described in Example 1. Kaolin coated with titanium hydroxide was suspended in 0.02M aqueous solution of tungsten paraammonium [5 (NH 4 ) 2 O.12WO 3 ㆍ 5H 2 O] for secondary coating, and then stirred with a precipitant at a speed of about 200 rpm. 1 M aqueous hydrazine solution was added dropwise. Kaolin coated with a composite of titanium hydroxide and tungsten hydroxide was heat-treated after dehydration and cleaning as in Example 1. The grain size was 11.5 nm and the removal rate of nitrogen oxide was 91.3%.

<실시예 3><Example 3>

고령토 50g을 실시예 1에 표기한 동일한 방법으로 티타늄 수화물의 피복처리을 실시하였다. 티타늄 수산화물을 피복한 고령토는 2차 피복을 위해, 0.03M의 텅스텐파라암모늄 [5(NH4)2Oㆍ12WO3ㆍ5H2O] 수용액 중에 현탁한 후, 약 200rpm의 속도로 교반하면서 침전제로 1M의 히드라진 수용액을 적하하였다. 티타늄 수산화물과 텅스텐 수산화물을 복합 피복한 고령토는 실시예 1과 같이 탈액, 세정 후 열처리하였다. 결정입 크기는 12.5nm이었고, 질소산화물의 제거율은 95.2%를 나타내었다.50 g of kaolin was coated with titanium hydrate in the same manner as described in Example 1. Kaolin coated with titanium hydroxide was suspended in 0.03 M aqueous solution of tungsten paraammonium [5 (NH 4 ) 2 O.12WO 3 ㆍ 5H 2 O] for secondary coating, and then stirred with a precipitant at a speed of about 200 rpm. 1 M aqueous hydrazine solution was added dropwise. Kaolin coated with a composite of titanium hydroxide and tungsten hydroxide was heat-treated after dehydration and cleaning as in Example 1. The grain size was 12.5 nm and the removal rate of nitrogen oxide was 95.2%.

<비교예 1>Comparative Example 1

고령토 50g을 실시예 1에 표기한 동일한 방법으로 티타늄 수화물의 단독 피복처리하고 탈액, 세정 후 열처리하였다. 결정입 크기는 15nm이었고, 질소산화물의 제거율은 72.7%를 나타내었다.50 g of kaolin was subjected to a single coating of titanium hydrate in the same manner as described in Example 1, followed by dehydration, washing and heat treatment. The grain size was 15 nm and the removal rate of nitrogen oxide was 72.7%.

본 발명은 천연광물을 담체로 하기 때문에 광촉매의 제조단가가 낮아지는 효과가 있으며, TiO2및 금속산화물을 복합 피복처리에 의하여 TiO2의 결정입의 크기를 9 ~ 12nm까지 할 수 있으며 질소산화물의 제거능이 10 ~ 20%정도 향상되어 최대 95%까지 제거될 수 있으므로 활성이 높은 광촉매가 제조 가능하다는 효과가 있다.The present invention has the effect of lowering the manufacturing cost of the photocatalyst because the natural mineral as a support, and can be up to 9 ~ 12nm grain size of TiO 2 by the composite coating treatment of TiO 2 and metal oxides and the nitrogen oxide The removal ability is improved by about 10 to 20% and can be removed up to 95%, so that a highly active photocatalyst can be produced.

Claims (6)

천연광물을 파쇄 및 분급하여 평균입경이 10 ~ 30㎛인 천연광물 분말을 담체로하고, 상기 분말인 담체를 티타늄 수산화물의 희석액에 상온에서 분산하고 교반하면서 침전제를 적하한 후 탈액 세정하여 110℃에서 24시간 건조하여 1차 피복담체를 제조하고, 상기 건조된 티타늄 수화물 피복 담체를 금속수산화물의 회석액에 상온에서 분산하고 교반하면서 침전제를 적하한 후 탈액 세정하여 110℃에서 24시간 건조하고, 상기 담체의 표면에 복합피복된 수산화물들을 산화시키기 위하여 400℃∼ 900℃의 온도범위에서 1∼10시간 동안 열처리하여 소성시키는 것을 특징으로 하는 광촉매 제조방법Crushing and classifying the natural minerals as a carrier of a natural mineral powder having an average particle diameter of 10 ~ 30㎛, dispersed in a dilute solution of titanium hydroxide at room temperature, dropping a precipitant while stirring and dehydrating and washing at 110 ℃ After drying for 24 hours to prepare a primary coating carrier, the dried titanium hydrate coating carrier was dispersed in a dilute solution of metal hydroxide at room temperature, dropping a precipitant with stirring, followed by washing with dehydration and drying for 24 hours at 110 ℃, the carrier Method for producing a photocatalyst, characterized in that the heat treatment for 1 to 10 hours in the temperature range of 400 ℃ to 900 ℃ to oxidize the composite coating hydroxide on the surface of the 제1항에 있어서, 천연광물은 규석, 고령토, 납석, 장석 또는 점토로 하는 광촉매 제조방법.The photocatalyst production method according to claim 1, wherein the natural mineral is silica, kaolin, feldspar, feldspar or clay. 제1항에 있어서, 티타늄 수산화물은 사염화티탄(TiCl4) 수용액, 황산티타늄(Ti(SO4)2) 수용액 또는 TNBT((C4H9O)4Ti)용액으로 하되 희석액의 농도는 0.05M ~ 0.2M로 하는 광촉매 제조방법The method of claim 1, wherein the titanium hydroxide is a titanium tetrachloride (TiCl 4 ) aqueous solution, titanium sulfate (Ti (SO 4 ) 2 ) aqueous solution or TNBT ((C 4 H 9 O) 4 Ti) solution, the concentration of the diluted solution is 0.05M Photocatalyst Manufacturing Method ~ 0.2M 제1항에 있어서, 침전제는 히드라진, 아황산나트륨, 포르말린, 수산화나트륨 또는 탄산수소암모늄을 사용하되 희석액의 농도는 티타늄 수산화물의 피복 처리의 경우에는 0.5M ~ 2.0M로 하고, 금속수산화물 피복 처리의 경우에는 1.0M ~ 3.0M로 하는 광촉매 제조방법The method of claim 1, wherein the precipitant is hydrazine, sodium sulfite, formalin, sodium hydroxide or ammonium bicarbonate, the concentration of the diluent is 0.5M to 2.0M for the coating of titanium hydroxide, the metal hydroxide coating Photocatalyst manufacturing method to 1.0M ~ 3.0M 제1항에 있어서, 금속 수산화물은 반도체성 금속산화물로서 WO3, Fe2O3, SnO2, Cu2O 또는 Nb2O5로 하되 희석액의 농도는 0.005M ~ 0.05M로 하는 광촉매 제조방법.The method of claim 1, wherein the metal hydroxide is a semiconducting metal oxide, WO 3 , Fe 2 O 3 , SnO 2 , Cu 2 O or Nb 2 O 5 The concentration of the diluent is 0.005M ~ 0.05M. 제1항 있어서, 천연광물 담체 표면에 복합피복된 수산화물을 산화시키기 위한 열처리 온도를 500℃ ~ 700℃로 하고 열처리 시간은 3 ~ 5시간으로 하는 광촉매 제조방법.The photocatalyst production method according to claim 1, wherein the heat treatment temperature for oxidizing the composite coated hydroxide on the surface of the natural mineral carrier is 500 ° C to 700 ° C and the heat treatment time is 3 to 5 hours.
KR1019990055136A 1999-12-06 1999-12-06 Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide KR100330627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990055136A KR100330627B1 (en) 1999-12-06 1999-12-06 Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990055136A KR100330627B1 (en) 1999-12-06 1999-12-06 Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide

Publications (2)

Publication Number Publication Date
KR20010054342A KR20010054342A (en) 2001-07-02
KR100330627B1 true KR100330627B1 (en) 2002-03-29

Family

ID=19623717

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990055136A KR100330627B1 (en) 1999-12-06 1999-12-06 Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide

Country Status (1)

Country Link
KR (1) KR100330627B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435080B1 (en) * 2001-02-20 2004-06-09 한상목 The manufacturing method of titanium oxide photocatalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443197B1 (en) * 2001-11-23 2004-08-04 신호유화주식회사 A method for producing semiconductor oxide particles coated with titanium oxide
ITMI20072387A1 (en) * 2007-12-19 2009-06-20 Italcementi Spa PHOTOCATALYTIC COMPOSITES AND DERIVED PRODUCTS BASED ON TITANIUM DIOXIDE SUPPORTED ON METACAOLIN
KR101710835B1 (en) * 2016-07-27 2017-02-27 (주)청아숲 Non-discharge purification apparatus of wastewater
CN114956155A (en) * 2022-06-21 2022-08-30 中国船舶重工集团公司第七二五研究所 Composite anti-fouling agent and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950031221A (en) * 1994-02-07 1995-12-18 아끼자와 다까시 Titanium oxide for photocatalyst and its manufacturing method
JPH10277569A (en) * 1997-04-03 1998-10-20 Kuretsusendo Corp:Kk Water quality purifying ceramic material in which titanium dioxide is mixed
JPH10314584A (en) * 1997-05-20 1998-12-02 Usui Yoshio Photocatalyst and its manufacture
KR100225342B1 (en) * 1997-09-04 1999-10-15 명호근 Method for preparing titanium oxide photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950031221A (en) * 1994-02-07 1995-12-18 아끼자와 다까시 Titanium oxide for photocatalyst and its manufacturing method
JPH10277569A (en) * 1997-04-03 1998-10-20 Kuretsusendo Corp:Kk Water quality purifying ceramic material in which titanium dioxide is mixed
JPH10314584A (en) * 1997-05-20 1998-12-02 Usui Yoshio Photocatalyst and its manufacture
KR100225342B1 (en) * 1997-09-04 1999-10-15 명호근 Method for preparing titanium oxide photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435080B1 (en) * 2001-02-20 2004-06-09 한상목 The manufacturing method of titanium oxide photocatalyst

Also Published As

Publication number Publication date
KR20010054342A (en) 2001-07-02

Similar Documents

Publication Publication Date Title
US20080105535A1 (en) Composite Metal Oxide Photocatalyst Exhibiting Responsibility to Visible Light
KR100430405B1 (en) manufacturing method of titanium dioxide powder for photocatalyst
Zaleska Doped-TiO2: a review
KR100763226B1 (en) Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
Khanizadeh et al. Mg and La Co-doped ZnO nanoparticles prepared by sol–gel method: synthesis, characterization and photocatalytic activity
US7521039B2 (en) Photocatalytic rutile titanium dioxide
US7662359B2 (en) Titanium oxide product method for making the same and its use as a photocatalyst
WO2005087372A1 (en) Titanium oxide photocatalyst and method for preparation thereof
JP6154036B1 (en) Coating agent containing antibacterial catalyst and method for producing the same
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
CN105561975A (en) Preparation method of nanometer mesoporous SiO2/TiO2 photocatalytic composite material doped with metal ions
KR100330627B1 (en) Producing method for Photocatalyst being coated Metal Oxide and Titanium Dioxide
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
KR100356900B1 (en) Producing method of titania photocatalyst using coal fly ash as a carrier
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP2004161592A (en) Anatase type titania-silica composite and its production method
KR100404449B1 (en) The manufacturing method of titanium oxide powder by dropping precipitant
KR102562523B1 (en) Complex Photocatalyst for Decomposition of Pollutants and Manufacturing Method thereof
KR20010091498A (en) Producing method for titania photocatalyst using non-porous oxide carriers
Zhang et al. Structural characterization and photocatalytic activity of synthesized carbon modified TiO2 for phenol degradation
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
KR20050103602A (en) Photocatalyst coating agent for indoor and preparation method thereof
JP4246933B2 (en) Photocatalyst particles and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee