KR100329316B1 - Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens - Google Patents

Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens Download PDF

Info

Publication number
KR100329316B1
KR100329316B1 KR1019990010565A KR19990010565A KR100329316B1 KR 100329316 B1 KR100329316 B1 KR 100329316B1 KR 1019990010565 A KR1019990010565 A KR 1019990010565A KR 19990010565 A KR19990010565 A KR 19990010565A KR 100329316 B1 KR100329316 B1 KR 100329316B1
Authority
KR
South Korea
Prior art keywords
interference filter
wavelength
division multiplexer
wavelength division
coating
Prior art date
Application number
KR1019990010565A
Other languages
Korean (ko)
Other versions
KR20000061497A (en
Inventor
김대연
Original Assignee
권문구
엘지전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권문구, 엘지전선 주식회사 filed Critical 권문구
Priority to KR1019990010565A priority Critical patent/KR100329316B1/en
Publication of KR20000061497A publication Critical patent/KR20000061497A/en
Application granted granted Critical
Publication of KR100329316B1 publication Critical patent/KR100329316B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Filters (AREA)

Abstract

본 발명은 유전체 박막을 이용한 필터링 파장분합기의 제조에 있어서, 반사단의 파장분리도를 향상시키기 위하여 반사단의 미세 캐필러리 끝단에서 내열 테잎으로 입사단만 가리고 반사단을 포함하여 미세 캐필러리 전면을 유전체 코팅함으로서 반사단에만 유전체 코팅을 반사단에만 유전체 코팅을 입히는 것을 특징으로 하는 그린렌즈를 이용한 간섭필터형 파장분합기 제조방법을 제공한다.The present invention, in the manufacture of a filtering wavelength combiner using a dielectric thin film, in order to improve the wavelength separation degree of the reflecting end of the capillary end of the reflecting end to cover only the incidence end with the heat-resistant tape and including the reflecting end microcapillary The present invention provides a method for manufacturing an interference filter type wavelength divider using a green lens, wherein a dielectric coating is applied only to a reflective end and a dielectric coating is applied only to a reflective end by coating the entire surface.

Description

간섭필터 및 그린렌즈를 이용한 파장분합기 제조방법{Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens}Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens}

본 발명은 유전체 박막을 이용한 필터링 파장분합기의 제조에 있어서, 그린렌즈를 이용한 간섭필터형 파장분합기 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an interference filter type wavelength divider using a green lens in the manufacture of a filtering wavelength combiner using a dielectric thin film.

파장분합기(WDM, Wavelength Division Multiplexer)는 하나의 광섬유로 전달되는 두 파장의 빛을 각각의 광섬유로 분리시켜 주거나 각각의 광섬유로 전달된 두 파장의 빛을 하나의 광섬유에 결합시켜주는 수동 소자이다.Wavelength Division Multiplexer (WDM) is a passive device that separates two wavelengths of light delivered to one optical fiber into each optical fiber or combines two wavelengths of light delivered to each optical fiber into one optical fiber. .

파장분합기가 가져야 할 광학적 특성에는 대표적으로 삽입손실(Insertion loss)과 파장분리도(Isolation)가 있는데, 삽입손실은 특정 파장이 원하는 광섬유로 분리되면서 잃는 빛의 양이다.The optical characteristics that a wavelength combiner should have include insertion loss and isolation, and the insertion loss is the amount of light lost when a specific wavelength is separated into a desired optical fiber.

파장분합기를 만드는 방법에는 도 1내지 도 4에 도시된 바와 같이, 4가지 방법이 있다.There are four methods for making a wavelength divider, as shown in FIGS. 1 to 4.

도 1에 도시된 바와 같이, 광섬유형은 삽입손실은 우수하나 파장분리도가 떨어지고, 도 2에 도시된 바와 같이, 그레이팅형은 여러 파장의 분리 및 결합에 유리하나 그 광학적 특성이 다른 방법에 비해 떨어지는 단점이 있다.As shown in FIG. 1, the optical fiber type has excellent insertion loss but has a low wavelength separation degree. As shown in FIG. There are disadvantages.

도 3과 도 4에 도시된 바와 같이, 간섭필터형과 도파로형은 다른 방법에 비해 비교적 광학적 특성이 우수하여 널리 사용되고 있다.As shown in FIG. 3 and FIG. 4, the interference filter type and the waveguide type are widely used because they are relatively superior in optical characteristics than other methods.

최근에는 선로감시시스템, PCS 광링크, Data Networking 등의 수요가 증가하면서 높은 파장분리도가 요구되는데 주로 간섭필터형과 도파로형이 이용되고 있다.Recently, as the demand for line monitoring system, PCS optical link, and data networking increases, high wavelength separation is required, and interference filter type and waveguide type are mainly used.

본 발명은 간섭필터 및 그린렌즈를 이용하여 높은 파장분리도를 갖는 파장분합기를 제조하기 위한 것이다.The present invention provides a wavelength divider having a high wavelength separation using an interference filter and a green lens.

상기의 목적을 달성하기 위하여 미세 캐필러리(Micro Capillary) 전면에 입사단과 반사단을 형성하고, 상기 그린렌즈를 이용하여 간섭필터형 파장분합기를 제조함에 있어서, 반사단의 미세 캐필러리 끝단에서 내열테잎으로 입사단만 가리고 반사단을 포함하여 미세 캐필러리 전면을 유전체 코팅함으로서 반사단에만 유전체 코팅을 입히는 것을 특징으로하는 그린렌즈를 이용한 간섭필터형 파장분합기 제조방법을 제공한다.In order to achieve the above object, an incident end and a reflecting end are formed on the front surface of a micro capillary, and in manufacturing an interference filter type wavelength divider using the green lens, The present invention provides a method for manufacturing an interference filter type wavelength divider using a green lens, wherein only an incidence end is covered by a heat resistant tape and a dielectric coating is applied only to the reflection end by dielectric coating the entire surface of the capillary including the reflection end.

도 1은 광섬유형 파장분합기의 개념도1 is a conceptual diagram of an optical fiber type wavelength divider

도 2는 그레이팅(Grating)형 파장분합기의 개념도2 is a conceptual diagram of a grating type wavelength divider

도 3은 간섭 필터형 파장분합기의 개념도3 is a conceptual diagram of an interference filter type wavelength divider

도 4는 도파로형 파장분합기의 개념도4 is a conceptual diagram of a waveguide type wavelength divider

도 5는 도 3의 A-A선 단면도5 is a cross-sectional view taken along the line A-A of FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

10 : 미세 캐필러리 11 : 그린렌즈10: fine capillary 11: green lens

12 : 입사단 13 : 반사단12: incident end 13: reflective end

14 : 간섭필터 15 : 내열테잎14 interference filter 15 heat resistant tape

첨부된 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다. 도 3은 간섭필터형 파장분합기의 개념도로서 본 발명이 적용되고, 도 5는 도 3의 A-A선 단면도이다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 3 is a conceptual diagram of an interference filter type wavelength divider, and FIG. 5 is a cross-sectional view taken along line A-A of FIG.

도 3 및 도 5에 도시된 바와 같이, 간섭필터형은 도파로형에 비해 제작공정이 간단하고 제작에 드는 설비 비용도 적은 장점이 있다. 이 방법은 필터의 파장에 따른 투과율의 차이를 이용하여, 한 파장은 투과시키고, 한 파장은 반사시켜 각각 투과된 빛과 반사된 빛을 광섬유에 집속시킨다.As shown in Figures 3 and 5, the interference filter type has the advantage that the manufacturing process is simple and the equipment cost is low compared to the waveguide type. This method takes advantage of the difference in transmittance according to the wavelength of the filter to transmit one wavelength and reflect one wavelength to focus the transmitted and reflected light on the optical fiber, respectively.

선로감시시스템, PCS 광링크, Data Networking등의 응용분야에서는 낮은 삽입손실(2dB 이하, 63% 이상 투과)과 높은 파장분리도(50dB 이상, 0.001% 이하 투과)의 광학특성을 요구한다.Applications such as line monitoring systems, PCS optical links, and data networking require optical characteristics with low insertion loss (less than 2dB, more than 63% transmission) and high wavelength separation (more than 50dB, less than 0.001% transmission).

간섭필터를 사용할 경우 이러한 광학특성을 모두 만족시키기 위해서는 투과 파장에서 99.999% 투과, 차단파장에서 99.999% 차단(반사)의 특성을 지녀야 한다.In order to satisfy all of these optical characteristics, the interference filter must have 99.999% transmission at the transmission wavelength and 99.999% blocking (reflection) at the blocking wavelength.

상기한 간섭필터는 유리기판에 주로 유전체 박막을 입혀서 만드는데 유전체박막의 특성상 투과 파장에서 99.999% 투과, 차단파장에서 99.999% 차단(반사)의 특성을 모두 만족시킬 수 없다. 대신 투과단과 반사단에 각각 또 다른 필터를 붙이는 등의 다른 방법을 써야 한다.The interference filter is mainly made of a dielectric thin film coated on a glass substrate. The characteristics of the dielectric thin film cannot satisfy 99.999% transmission at the transmission wavelength and 99.999% blocking at the blocking wavelength. Instead, different methods should be used, such as attaching another filter to the transmitting and reflecting ends.

이러한 이유로 초기에는 입사단과 반사단 그리고 투과단을 각각 분리시켜 반사단과 투과단에 필터를 붙였는데, 최근에는 도 3과 같이, 그린렌즈(Grade Index Lens)(11)를 사용하여 입사단(12)과 반사단(13)을 한 번에 정렬하는 비교적 간편한 방법을 사용하고 있다.For this reason, initially, the incidence end, the reflection end, and the transmission end were separated, and a filter was attached to the reflection end and the transmission end. In recent years, as shown in FIG. And a relatively simple method of aligning the reflection stage 13 at a time is used.

하지만 두 가닥의 광섬유(입사단과 반사단)를 동시에 정렬할 경우 두 광섬유(입사단과 반사단)가 아주 가까이 붙어 있기 때문에 반사단(13)에만 유전체 박막필터를 붙이기는 어렵다.However, when two strands of optical fibers (incidence end and reflection end) are aligned at the same time, it is difficult to attach a dielectric thin film filter only to the reflection end 13 because the two optical fibers (incidence end and reflection end) are very close together.

도 5는 중앙에 간섭필터(14)가 형성된 간섭 필터형 파장분합기에 미세 캐필러리(Micro Capillary)(10)와 그린렌즈(11)의 경계면을 나타내고 있다.FIG. 5 illustrates an interface between a micro capillary 10 and a green lens 11 in an interference filter type wavelength divider having an interference filter 14 formed at the center thereof.

도 5에 도시된 바와 같이, 상기 미세 캐필러리(10)는 광섬유와 같은 미세관을 지지하는 광섬유 고정용 보조기구로서 원형의 단면 내부에 형성된 두개의 구멍에 반사단(13)과 입사단(12)이 관통하고 있는데, 내열테잎(15)으로 입사단(12)을 가린 다음 미세 캐필러리(10) 전면을 유전체 코팅한다. 그 다음 내열테잎(15)을 떼내고 미세 캐필러리(10)와 그린렌즈(11)를 정렬한다. 즉 반사단(13)의 미세 캐필러리(10) 끝단에서 내열테잎(15)으로 입사단(12)만 가리고 반사단(13)을 포함하여 미세 캐필러리(10) 전면을 유전체 코팅함으로서 반사단(13)에만 유전체 코팅을 입히는 방법이다.As shown in FIG. 5, the fine capillary 10 is an auxiliary device for fixing an optical fiber such as an optical fiber, and includes a reflection end 13 and an incident end in two holes formed in a circular cross section. 12) penetrates, and covers the entrance end 12 with the heat-resistant tape 15, and then dielectric coating the entire surface of the fine capillary 10. Then, the heat resistant tape 15 is removed and the fine capillary 10 and the green lens 11 are aligned. That is, by covering only the entrance end 12 with the heat-resistant tape 15 at the end of the fine capillary 10 of the reflective end 13, and including the reflective end 13, the entire surface of the fine capillary 10 is dielectric-coated. It is a method of coating a dielectric coating only on the division 13.

전술한 바와 같이 선로 감시시스템, PCS 광링크, Data Networking 등의 응용 분야에서 파장분리도가 높은 파장분합기가 요구되는데, 간섭필터를 이용한 초기의 제품은 입사단과 반사단, 그리고, 투과단이 모두 분리되어 있어 반사단과 투과단에 각각 필터를 붙이는 방법을 썼다.As described above, a wavelength divider having a high wavelength separation is required in an application field such as a line monitoring system, a PCS optical link, and data networking.In the early products using an interference filter, an incident end, a reflection end, and a transmission end are all separated. Therefore, the method of attaching a filter to the reflecting end and the transmitting end, respectively.

하지만 이 방법은 제품의 부피가 크고, 또한 사용되는 부품도 많아 가격적인 면에서 불리하다. 대신 본 발명과 같이 그린렌즈를 이용하여 입사단과 반사단을 동시에 조절하게 되면 제품의 크기도 줄어들고, 또한 부품의 개수도 줄어들뿐 아니라 제조시간도 절약할 수 있어 가격적인 면에서 최소 30∼50% 유리하다. 하지만 입사단과 반사단이 거의 붙어 있고 또 하나의 미세 캐필러리 내에 고정되어 있어 이 둘을 한꺼번에 조절해야 하는 어려움이 있다.However, this method is disadvantageous in terms of price due to the large volume of the product and the large number of parts used. Instead, if the entrance and reflection stages are adjusted at the same time using the green lens, the size of the product can be reduced, and the number of parts can be reduced, as well as the manufacturing time can be saved. Do. However, since the incidence end and the reflection end are almost attached and fixed in another fine capillary, there is a difficulty in controlling both at once.

특히 간섭필터의 특성상 반사단의 높은 파장분리도를 위해서는 반드시 추가 필터가 요구된다. 이때 내열테잎을 이용하여 입사단만 가린 다음 미세 캐필러리 전면을 유전체 코팅을 한 후 내열테잎을 떼어내는 방법은 반사단에만 유전체 코팅을 입히는 방법 중에서 첫째 공정이 간단하고, 둘째 특별한 기술이 필요 없이 기존의 유전체 코팅 기술만 사용하면 쉽게 구현할 수 있다.In particular, an additional filter is required for the high wavelength separation of the reflection stage due to the characteristics of the interference filter. In this case, the first process is simpler, and the second process does not require any special technique. It can be easily implemented using only existing dielectric coating techniques.

Claims (1)

미세 캐필러리(10) 전면에 입사단(12)과 반사단(13)을 형성하고, 상기 미세 캐필러리(10) 후면에 간섭필터(14)와 그린렌즈(11)가 형성되며, 상기 그린렌즈(11)를 이용하여 간섭필터형 파장분합기를 제조함에 있어서,The incident end 12 and the reflective end 13 are formed on the front surface of the fine capillary 10, and the interference filter 14 and the green lens 11 are formed on the rear surface of the fine capillary 10. In manufacturing the interference filter type wavelength divider using the green lens 11, 상기 반사단(13)의 미세 캐필러리(10) 끝단에서 내열테잎(15)으로 입사단(12)만 가리고 반사단(13)을 포함하여 미세 캐필러리(10) 전면을 유전체 코팅함으로서 반사단(13)에만 유전체 코팅을 입히는 것을 특징으로 하는 그린렌즈를 이용한 간섭필터형 파장분합기 제조방법.By covering only the incidence end 12 with the heat-resistant tape 15 at the end of the fine capillary 10 of the reflective end 13 and including the reflective end 13, the surface of the fine capillary 10 is dielectric-coated. Method for manufacturing an interference filter type wavelength divider using a green lens, characterized in that the dielectric coating is applied only to the division (13).
KR1019990010565A 1999-03-26 1999-03-26 Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens KR100329316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990010565A KR100329316B1 (en) 1999-03-26 1999-03-26 Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990010565A KR100329316B1 (en) 1999-03-26 1999-03-26 Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens

Publications (2)

Publication Number Publication Date
KR20000061497A KR20000061497A (en) 2000-10-25
KR100329316B1 true KR100329316B1 (en) 2002-03-20

Family

ID=19577913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990010565A KR100329316B1 (en) 1999-03-26 1999-03-26 Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens

Country Status (1)

Country Link
KR (1) KR100329316B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107659A (en) * 2015-03-05 2016-09-19 (주) 빛과 전자 Optical signal monitoring unit for optical communication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107659A (en) * 2015-03-05 2016-09-19 (주) 빛과 전자 Optical signal monitoring unit for optical communication
KR102405633B1 (en) * 2015-03-05 2022-06-08 (주) 라이트론 Optical signal monitoring unit for optical communication

Also Published As

Publication number Publication date
KR20000061497A (en) 2000-10-25

Similar Documents

Publication Publication Date Title
CA2029171C (en) Multiport optical devices
US6031952A (en) Broadband coupler
US5946435A (en) Method and system for providing an improved three port wavelength division multiplexer
CA2241707C (en) Optical drop circuit having group delay compensation
JP3344446B2 (en) Optical transceiver module
JPH10123373A (en) Waveguide type optical module
WO2005026796A1 (en) Wavelength multiplexer/demultiplexer
US7171073B1 (en) Structure and method for multi-ports optical apparatus
EP1507153A1 (en) Signal cutout device, optical connector, and optical fiber coupler
KR100329316B1 (en) Micro Capillary Coating for Wavelength Division Multiplexer using interference Filter and Grade Index Lens
US8005328B2 (en) Optical add/drop module
KR200225158Y1 (en) Application of dielectric thin film for manufacture of wavelength division multiplexer using interference filter and grade index lens
US6556753B2 (en) Method for the manufacture of a fiber package incorporating therein dispersion compensating gratings
KR100518382B1 (en) High isolation WDM device using by mirror
JP2600507B2 (en) Optical multiplexer / demultiplexer
JP2002207135A (en) Optical wavelength multiplexer/demultiplexer circuit
JP3257785B2 (en) Manufacturing method of optical transceiver module
Li et al. Design of optical interference filter for DWDM
CA2211644C (en) Optical demultiplexor
KR200167070Y1 (en) 3-wave optical wdm(wavelength division multiplexer
KR100342533B1 (en) Tunable optical wavelength demultiplexer and method thereof
CN117647866A (en) Novel wavelength division multiplexing module
KR20040100293A (en) apparatus for add/drop of optical signal
JPS63106606A (en) Optical multiplexer and demultiplexer
JPH04345102A (en) Narrow-band filter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060926

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee