KR100329032B1 - Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase - Google Patents

Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase Download PDF

Info

Publication number
KR100329032B1
KR100329032B1 KR1019990020723A KR19990020723A KR100329032B1 KR 100329032 B1 KR100329032 B1 KR 100329032B1 KR 1019990020723 A KR1019990020723 A KR 1019990020723A KR 19990020723 A KR19990020723 A KR 19990020723A KR 100329032 B1 KR100329032 B1 KR 100329032B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
optical fiber
coated
light
bundle
Prior art date
Application number
KR1019990020723A
Other languages
Korean (ko)
Other versions
KR20000017691A (en
Inventor
이태규
전명석
주현규
Original Assignee
손재익
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손재익, 한국에너지기술연구원 filed Critical 손재익
Priority to KR1019990020723A priority Critical patent/KR100329032B1/en
Publication of KR20000017691A publication Critical patent/KR20000017691A/en
Application granted granted Critical
Publication of KR100329032B1 publication Critical patent/KR100329032B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 광촉매와 광에너지를 활용하여 휘발성유기물질(Volatile Organic Compound; VOC)등의 대기나 실내공기에 존재하는 기상오염물질이나 오염수를 처리할 수 있는 광촉매가 코팅된 광섬유 광화학 반응 장치 및 방법에 관한 것으로서, 보다 구체적으로는 태양에너지 또는 램프(lamp)의 광에너지와 불균일계 반도체 광촉매를 활용하여 기체 또는 액체상태로 존재하는 유독 유기물질을 무해한 물질로 분해처리하는 광화학 반응 장치와 방법에 관한 것이다.The present invention is a photocatalyst photochemical reaction apparatus and method for treating photocatalytic pollutants or contaminated water present in air or indoor air such as volatile organic compounds (VOC) using photocatalyst and light energy. More specifically, the present invention relates to a photochemical reaction apparatus and method for decomposing toxic organic substances present in gaseous or liquid state into harmless substances by utilizing solar energy or light energy of a lamp and a heterogeneous semiconductor photocatalyst. will be.

인공 램프(1) 혹은 태양광(2)으로부터 발생되는 빛을 복수 개 설치된 광학필터 (3)내를 통과시키고, 파장범위별로 필터(3)를 통과한 빛을 다시 렌즈(4)로 투입되게 하고, 렌즈(4)를 통과하여 집광된 빛을 수나사(16)형태로 구성된 캡(14)과 암나사(15)형태로 구성된 기상 반응기(6)의 나사부가 결합된 광화학 반응기(100) 내부로 조사시켜서 반응을 유발시키는 반응장치로서, 렌즈(4)를 통과한 빛이 조사, 전달되도록 광섬유 다발(7)을 광화학 반응기(100)의 캡(14) 상부에 고정되게 하도록 캡(14)의 내부를 광다발 묶음의 외경 크기로 구멍을 뚫고 고무 패킹(13)으로 다발을 고정시키는 다발 홀더(5)를 통과시켜 광촉매(18)가 코팅된 광섬유 다발(7)에 도달하게 하는 것으로 구성되어진 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 장치이다.The light generated from the artificial lamp (1) or the sunlight (2) is passed through the optical filter (3) installed a plurality of times, and the light passing through the filter (3) for each wavelength range is fed back into the lens (4) The light collected through the lens 4 is irradiated into the photochemical reactor 100 in which the threaded portion of the cap 14 formed in the form of the male screw 16 and the gas phase reactor 6 formed in the form of the female screw 15 is combined. As a reaction device for causing a reaction, the inside of the cap 14 is fixed so that the optical fiber bundle 7 is fixed on the cap 14 of the photochemical reactor 100 so that the light passing through the lens 4 is irradiated and transmitted. Characterized in that the photocatalyst (18) reaches the coated optical fiber bundle (7) by passing through the bundle holder (5) for drilling holes to the outer diameter size of the bundle and securing the bundle with the rubber packing (13). Fiber-optic photochemical reaction device coated with photocatalyst for processing gaseous pollutants .

Description

기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 장치 및 방법{Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase}Fiber optic photochemical reaction apparatus and method coated with photocatalyst for treating gaseous pollutants {photovoltaic system coated with photocatalysts for the deatruction of pollutant in gas phase}

본 발명은 광촉매와 광에너지를 활용하여 휘발성유기물질 (Volatile Organic Compound; VOC)등의 대기나 실내공기에 존재하는 기상오염물질이나 오염수를 처리할 수 있는 광촉매가 코팅된 광섬유 광화학 반응 장치 및 방법에 관한 것으로서, 보다 구체적으로는 태양에너지 또는 램프(lamp)의 광에너지와 불균일계 반도체 광촉매를 활용하여 기체 또는 액체상태로 존재하는 유독 유기물질을 무해한 물질로 분해처리하는 광화학 반응 장치와 방법에 관한 것이다.The present invention provides a photocatalyst photochemical reaction apparatus and method for treating photocatalytic pollutants or contaminated water present in air or indoor air such as volatile organic compounds (VOCs) using photocatalysts and light energy. More specifically, the present invention relates to a photochemical reaction apparatus and method for decomposing toxic organic substances present in gaseous or liquid state into harmless substances by utilizing solar energy or light energy of a lamp and a heterogeneous semiconductor photocatalyst. will be.

일반적으로 반도체성 물질이 보유하고 있는 띠간격에너지(Bandgap energy) 이상의 파장의 빛이 조사되면, 이 빛을 흡수한 후 전자/정공쌍을 생성시켜 이들을 이용한 산화/환원반응을 유발시키는 물질들을 광촉매라고 한다. 이러한 작용을 하는 광촉매들로는 n-type 반도체 특성을 지니고 있는 금속산화물 (대개 아나타제 결정구조의 이산화티타니아)이 주로 사용된다. 반도체 성질의 광촉매, 그것 자체가 빛과 화학변화를 일으키는 일이 거의 없어서 반영구적으로 사용가능하며, 주변 분위기에 존재하는 산소/수분과 생성된 전자/ 정공의 반응에 의하여 만들어지는 활성산소와 OH라디칼은 강한 산화력을 가지고 있어서 대부분의 처리대상(대기이건 수질이건)의 유독 유기물질들을 산화 처리시키거나 전자의 직접 반응참여에 의한 환원처리 또한 가능한 장점을 지니고 있다. 실제 기상유기물질 처리에는 광촉매 고정화와 고정화에 따른 반응효율 감소를 최대한 줄여주는 시스템 구성이 필수적이다.In general, when light with a wavelength above the bandgap energy possessed by the semiconductor material is irradiated, materials that generate an electron / hole pair after absorbing the light and cause an oxidation / reduction reaction using them are called photocatalysts. do. As photocatalysts having such a function, metal oxides having n-type semiconductor properties (usually titania of anatase crystal structure) are mainly used. Semi-permanent photocatalysts, which rarely cause light and chemical changes themselves, can be used semi-permanently. Active oxygen and OH radicals produced by the reaction of oxygen / moisture and electrons / holes in the surrounding atmosphere Because of its strong oxidizing power, it is also possible to oxidize most of the toxic organic substances (whether in air or water) or reduce by direct electron participation. Actually, it is essential to construct a system that minimizes photocatalytic immobilization and reduction of reaction efficiency due to immobilization.

환경개선을 위한 현행기술들은 단순한 질량이동인 흡착용 필터링(adsorption filtering), 저효율의 수동의 에어 필터링(passive air filtering), 그리고 고가의 높은 온도 스크로버 시스템(high temperature scrubber system) 그리고 생물학적 처리 기술 등이 있으며, 기존에 많이 사용이 시도되고 있는 평면코팅형 광화학 반응 장치는 물질전달 효과의 장애에 의하여 효율이 낮으며, 빛의 효율적 사용이 불가능하다. 이와 더불어 충진형 광화학 반응 장치에 있어서도 도 6에 도시한 바와 같이 담지체(50)의 내측벽에만 광촉매(52) 코팅이 되어 있어 조사되는 빛의 효율적 사용과 담지된 광촉매(52)의 효율적 활용도 실용화를 위하여 해결하여야할 문제점이 되고 있다.Current technologies for environmental improvement include simple mass transfer adsorption filtering, low-efficiency passive air filtering, expensive high temperature scrubber systems, and biological treatment technologies. In addition, the planar-coated photochemical reaction device that has been tried a lot of existing is low efficiency due to the obstacle of the material transfer effect, it is impossible to use the light efficiently. In addition, in the filling type photochemical reaction apparatus, as shown in FIG. 6, the photocatalyst 52 is coated only on the inner wall of the carrier 50 so that efficient use of irradiated light and efficient utilization of the supported photocatalyst 52 are commercialized. In order to solve the problem.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서, 태양에너지 또는 램프(lamp)의 광에너지와 불균일계 반도체 광촉매를 활용하여 기체 또는액체상태로 존재하는 유독 유기물질을 무해한 물질로 분해 처리할 수 있도록 하는데 그 목적이 있는 것이다.The present invention has been made to solve the above problems, by using the solar energy or the light energy of the lamp (lamp) and the heterogeneous semiconductor photocatalyst to decompose the toxic organic substances present in the gas or liquid state to a harmless substance. The purpose is to make it possible.

상기의 목적을 달성하기 위해 본 발명은 광촉매를 광섬유에 코팅하여 다발을 이루어 여러 가지 형태의 광반응기에 적용되며 평면이 아닌 반응기의 부피 단위로 반응이 이루어지므로 물질전달의 제약을 제거할 수 있어서 고효율이 유지되며 빛의 전달이 용이하여 지하시설의 공기정화에도 사용이 가능하고, 분해처리 도중에 2차 환경오염이 발생하지 않고, 운전조건이 수월하다는 장점과, 다른 광화학 반응장치와는 달리 태양빛을 아주 효율적으로 활용할 수 있다는 것을 제공함에 있는 것이다.In order to achieve the above object, the present invention is applied to various types of photoreactors by forming a bundle by coating a photocatalyst on an optical fiber, and the reaction is carried out in the unit of volume of the reactor rather than a plane, thereby eliminating the restriction of material transfer. It is maintained, and it is easy to transmit light, so it can be used for air purification of underground facilities, and it does not generate secondary environmental pollution during the decomposition treatment, and it is easy to operate conditions, and unlike other photochemical reaction devices, Is to provide a very efficient use.

도 1 은 본 발명 광촉매가 코팅된 광섬유 광화학반응기와 응용시스템 개념도1 is a conceptual diagram of an optical fiber photochemical reactor and an application system coated with a photocatalyst of the present invention

도 2 는 본 발명을 적용한 상태의 지하시설 공기정화 개념도Figure 2 is a conceptual diagram of air purification of underground facilities in the state to which the present invention is applied

도 3 은 본 발명 광섬유 광화학 반응기의 부피반응 원리도3 is a volume reaction principle diagram of the optical fiber photochemical reactor of the present invention

도 4 는 본 발명 광섬유에 광촉매를 코팅하는 방법의 절차도Figure 4 is a flow chart of a method for coating a photocatalyst on the optical fiber of the present invention

도 5 는 본 발명 코팅된 광섬유 내부의 빛이 전달 과정의 상태도Figure 5 is a state diagram of the light transmission process inside the coated optical fiber of the present invention

도 6 은 종래 광반응기와 광섬유 광화학 반응기의 부피 반응 원리도6 is a volume reaction principle diagram of a conventional photoreactor and an optical fiber photochemical reactor

도 7 은 본 발명 반응기를 사용하여 기상오염물질 트라이클로로에틸렌을 처 리한 결과도7 is a result of the treatment of the gaseous pollutant trichloroethylene using the reactor of the present invention

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

(1) : 인공 램프 (2) : 태양광(1): artificial lamp (2): sunlight

(3) : 필터 (4) : 렌즈(3): filter (4): lens

(5) : 다발 홀더 (6) : 기상 반응기(5): bundle holder (6): gas phase reactor

(7) : 광촉매가 코팅된 광섬유 다발 (8) : 지하 공간(7): optical fiber bundle coated with photocatalyst (8): underground space

(9) : 실리카 코아 (10) : 실리카 클래딩(9): silica core (10): silica cladding

(11) : 실리콘과 버터 코팅 (13) : 고무 패킹(11): Silicone and Butter Coating (13): Rubber Packing

(14) : 캡 (15) : 암나사(14): Cap (15): Female thread

(16) : 수나사 (17) : 담지체(16): male thread (17): carrier

(18) : 광촉매 (100) : 광화학 반응기(18): photocatalyst (100): photochemical reactor

첨부된 도면에 의거하여 본 발명의 구성 및 작용을 상세히 설명하면 다음과 같다.Referring to the configuration and operation of the present invention in detail based on the accompanying drawings as follows.

도 1은 본 발명 광촉매가 코팅된 광섬유 광화학반응기와 응용시스템 개념도,1 is a conceptual diagram of an optical fiber photochemical reactor and an application system coated with a photocatalyst of the present invention;

도 2는 본 발명을 적용한 상태의 지하시설 공기정화 개념도,2 is a conceptual diagram of air purification of underground facilities in the state to which the present invention is applied;

도 3은 본 발명 광섬유 광화학 반응기의 부피반응 원리도,3 is a volume reaction principle diagram of the optical fiber photochemical reactor of the present invention,

도 4는 본 발명 광섬유에 광촉매를 코팅하는 방법의 절차도,Figure 4 is a flow chart of a method for coating a photocatalyst on the optical fiber of the present invention,

도 5는 본 발명 코팅된 광섬유 내부의 빛이 전달 과정의 상태도Figure 5 is a state diagram of the light transmission process inside the coated optical fiber of the present invention

도 7은 본 발명 반응기를 사용하여 기상오염물질 트라이클로로에틸렌을 처 리한 결과도를 도시한 것이다.Figure 7 shows the result of the treatment of the gaseous pollutant trichloroethylene using the reactor of the present invention.

인공 램프(1) 혹은 태양광(2)으로 부터 발생되는 빛을 복수 개 설치된 광학필터 (3)내를 통과시키고, 파장범위별로 필터(3)를 통과한 빛을 다시 렌즈(4)로 투입되게 하고, 렌즈(4)를 통과하여 집광된 빛을 수나사(16)형태로 구성된 캡(14)과 암나사(15)형태로 구성된 기상 반응기(6)의 나사부가 결합된 광화학 반응기(100) 내부로 조사시켜서 반응을 유발시키는 반응장치로서, 렌즈(4)를 통과한 빛이 조사, 전달되도록 광섬유 다발(7)을 광화학 반응기(100)의 캡(14) 상부에 고정되게 하도록 캡(14)의 내부를 광다발 묶음의 외경 크기로 구멍을 뚫고 고무 패킹(13)으로 다발을 고정시키는 다발 홀더(5)를 통과시켜 광촉매(18)가 코팅된 광섬유 다발(7)에 도달하게 하는 것으로 구성되어진 것이다.The light generated from the artificial lamp (1) or the sunlight (2) is passed through the optical filter (3) installed in plural, and the light passing through the filter (3) for each wavelength range is inputted to the lens (4) again. The light collected through the lens 4 is irradiated into the photochemical reactor 100 in which the cap 14 formed in the form of the male screw 16 and the threaded portion of the gas phase reactor 6 formed in the form of the female screw 15 are combined. As a reaction apparatus for causing a reaction by causing a reaction, the inside of the cap 14 is fixed so that the optical fiber bundle 7 is fixed on the cap 14 of the photochemical reactor 100 so that light passing through the lens 4 is irradiated and transmitted. It consists of allowing the photocatalyst 18 to reach the coated optical fiber bundle 7 by passing it through a bundle holder 5 which drills holes to the outer diameter size of the bundle of optical bundles and secures the bundle with the rubber packing 13.

본 발명의 작용은 다음과 같다.The operation of the present invention is as follows.

인공 램프(1)로부터 발생되는 빛을 복수개 설치된 필터(3) 내를 통과시킨다. 태양광(2)을 이용할시에는 태양광(2)을 꼭 필터(3)를 통과시키지 않아도 된다.Light generated from the artificial lamp 1 is passed through the filter 3 provided in plurality. When using the sunlight 2, the sunlight 2 does not necessarily have to pass through the filter 3.

상기 인공 램프(1)에서 발생되는 빛을 설치 고정된 필터(3) 내를 통과시키는 목적은 인공 램프(1)에서 발생되는 빛의 파장을 걸러 필요한 파장만 선별하여 광촉매가 코팅된 광섬유 다발(7)로 보내기 위한 것이다.The purpose of passing the light generated by the artificial lamp 1 through the fixed filter 3 is to filter the wavelength of the light generated by the artificial lamp 1 and to select only the required wavelength to bundle the optical catalyst coated optical fiber 7 To send).

필터(3)를 통과한 빛은 빛을 한곳으로 모을 수 있는 렌즈(4)로 보내어지고 렌즈(4)는 다시 빛을 모아 다발 홀더(5) 내를 통과하게 하는 것이다.The light passing through the filter 3 is sent to the lens 4 which can collect the light in one place, and the lens 4 collects the light again and passes through the bundle holder 5.

상기의 다발 홀더(5)는 수나사(16)가 형성된 캡(14)과 암나사(15)가 형성된 기상 반응기(6)의 나사부가 결합된 광화학 반응기(100)의 캡(14) 상부에 고정되고 고무 패킹(13)으로 외경 크기로 구멍을 뚫고 고무 패킹(13)으로 다발을 고정시키는것이며, 렌즈(4)가 모은 빛은 상기에 기술한 광화확 반응기(100)의 상부에 고정된 다발 홀더(5) 내를 통과한 후 광촉매(18)가 코팅된 광섬유 다발(7)로 도 3에 도시한 바와 같이 빛이 전달되게 되는 것이며 도 2에 도시한 바와 같이 유독 유기물이 존재하는 지하 공간(8)에 광섬유가 코팅된 광섬유 다발(7)를 삽입하여 유체 및 기체의 유독 유기물(S)이 광섬유가 코팅된 광섬유에 접촉하도록 하여 독성을 분해하여 정화할 수 있는 것이다.The bundle holder 5 is fixed to the upper portion of the cap 14 of the photochemical reactor 100 in which the cap 14 of the male screw 16 is formed and the threaded portion of the gas phase reactor 6 in which the female screw 15 is formed. The packing 13 is punched out to an outer diameter and the bundle is fixed with the rubber packing 13, and the light collected by the lens 4 is fixed to the upper part of the photochemical reactor 100 described above. After passing through the photocatalyst 18, the light is transferred to the optical fiber bundle 7 coated with the photocatalyst 18, as shown in FIG. 3 and in the underground space 8 where toxic organic matter is present as shown in FIG. By inserting the optical fiber-coated optical fiber bundle (7) is to toxic organic matter (S) of the fluid and gas to contact the optical fiber coated optical fiber can decompose and cleanse the toxicity.

코팅에 사용한 광촉매(18)들은 순수 이산화티타니아, Fe2O3(이산화철), ZnO (산화아연) 등이며, 혼합광촉매로는 TiO2/SiO2(이산화티타니아-실리카 혼합), Fe/Ti(이산화철-이산화티타니아 혼합광촉매), Ni/Ti(산화니켈-이산화티타니아 혼합광촉매), Mo/Ti(산화 몰리브데늄-이산화티타니아 혼합광촉매), Nb/Ti (산화 나이오비움-이산화티타니아 혼합광촉매), Li/Ti (산화 리티움-이산화티타니아 혼합광촉매),백금담지 이산화티타니아(Pt/Ti) 광촉매, 팔라듐담지 이산화티타니아(Pd/Ti) 광촉매를 사용하며, 담지체(17) 종류로는 광섬유(optical fiber)를 사용한다.The photocatalysts 18 used for coating are pure titania, Fe 2 O 3 (iron dioxide), ZnO (zinc oxide), and the like, and mixed photocatalysts include TiO 2 / SiO 2 (mixed titania-silica), Fe / Ti ( Iron dioxide-titania mixed photocatalyst), Ni / Ti (nickel oxide-titanium dioxide mixed photocatalyst), Mo / Ti (molybdenum oxide-titanium dioxide mixed photocatalyst), Nb / Ti (niobium oxide-titanium dioxide mixed photocatalyst) ), Li / Ti (lithium oxide-titanium dioxide mixed photocatalyst), platinum-supported titania (Pt / Ti) photocatalyst, palladium-supported titania (Pd / Ti) photocatalyst, and as the carrier (17) (optical fiber) is used.

본 발명 광화학 반응 장치 및 방법은 기존의 처리기술과 비교하여 보면, 운전조건이 수월하고, 에너지 소모가 적으며 (태양광 이용 극대화) 가장 크게는 식(1) 같은 완전한 무기화(mineralization)을 통하여 2차처리 공정이 생략될 수 있다는 장점이 있다.Compared with the conventional treatment technology, the photochemical reaction apparatus and method of the present invention are easy to operate, low in energy consumption (maximization of solar use), and most greatly through complete mineralization as shown in Equation (1). There is an advantage that the difference treatment process can be omitted.

또한이 기술은 광촉매를 광섬유에 코팅하여 다발을 이루어 여러가지 형태의 광반응기(100)에 적용되며, 평면이 아닌 반응기의 부피 단위로 반응이 이루어지므로 물질전달의 제약을 제거할 수 있어서 고효율이 유지되며 빛의 전달이 용이하여 지하시설의 공기정화에도 사용이 가능하다 하겠다. In addition, this technology is applied to various types of photoreactor 100 by forming a bundle by coating a photocatalyst on the optical fiber, and because the reaction is performed by the unit of volume of the reactor rather than a plane, it is possible to remove the constraint of material transfer, thereby maintaining high efficiency. It is easy to transmit light, so it can be used for air purification of underground facilities.

본 발명에서는 광섬유를 코팅 담지체로 사용하여 빛의 전달을 용이하게 하고 단면이 아닌 부피에서의 광화학 반응을 유발시키고자 하였다. 이러한 광화학 반응장치를 기존의 처리기술과 비교하여 보면, 운전조건이 수월하고 2차 처리공정이 생략될 수 있는 일반적인 장점이외에 빛이 존재하지 않는 공간 또는 부분으로의 적용범위 확대와 가장 문제가 되어왔던 광촉매 고정화에 따른 효율감소를 방지할 수 있다는 것이다. 왜냐하면 기존에는 광촉매를 고정화할 때에 빛을 받는 면적단위로 반응이 일어났으나 다발로 만들어진 광섬유를 이용할 때는 반응기 내부에 부피단위로 도 3에 도시한 바와 같이 고루고루 반응이 진행되기 때문이다. 다시 기술하면 반응속도에 미치는 물질전달의 영향이 극소화 될 수 있다는 것이다.In the present invention, the optical fiber is used as a coating carrier to facilitate light transmission and to cause a photochemical reaction in a volume rather than a cross section. Comparing these photochemical reactors with conventional treatment technologies, the range of application to spaces or parts where no light is present has been most problematic, in addition to the general advantages of easy operating conditions and the elimination of secondary treatment processes. It is possible to prevent the efficiency decrease due to the photocatalyst immobilization. This is because, in the past, when the photocatalyst was immobilized, the reaction occurred in the area unit receiving light, but when using the bundle made of optical fiber, the reaction proceeds evenly as shown in FIG. In other words, the effect of mass transfer on the reaction rate can be minimized.

광섬유에 광촉매를 코팅하는 방법은 다음과 같다. 도 4에 도시한 바와 같이 광섬유의 순수 실리카 코어(silica core)(9)부분에 광촉매를 코팅하기 위하여 광섬유의 실리카 버퍼 코딩(coating)(11)을 벗기고 얇은 막인 실리카 클래딩(cladding)(10)을 완전하게 없앤다. 그 이후 실리카 코어(silica core)(9)부분을 아세톤과 에탄올을 사용하여 에칭(etching)시키며, 이 때 아세톤 → 증류수 → 에탄올 → 증류수 → 아세톤...의 순으로 3 ~ 4회 반복한다.The photocatalyst is coated on the optical fiber as follows. As shown in FIG. 4, in order to coat the photocatalyst on the pure silica core 9 portion of the optical fiber, the silica buffer coating 11 of the optical fiber is stripped and a thin film silica cladding 10 is removed. Get rid of it completely. After that, the silica core (9) portion is etched using acetone and ethanol, at which time acetone → distilled water → ethanol → distilled water → acetone.

이러한 과정과 동시에 광촉매(청구범위에 명시된 종류들 모두 해당)를 약15wt%로 수용액에 넣고 마그네틱바(magnetic bar)를 이용하여 하루정도 슬러리를 교반시킨다. 이때에 슬러리의 pH는 약 3-4를 유지하여 실리카와 광촉매 간의 전기적 인력을 증가시켜서 보다 안정된 코팅이 형성되도록 하였다. 에칭작업이 끝난 후의 광섬유 다발을 광촉매가 혼합된 용액에 약 10분 정도 담그고, 꺼내어 건조시킨 후 한시간 정도 300oC에서 열처리를 하며, 이런 과정을 5 ~ 10회 반복하여 원하는 광촉매 코팅양과 안정성을 얻는다.At the same time, the photocatalyst (all types specified in the claims) was added to the aqueous solution at about 15wt% and the slurry was stirred for one day using a magnetic bar. At this time, the pH of the slurry was maintained at about 3-4 to increase the electrical attraction between the silica and the photocatalyst to form a more stable coating. After the etching process, the optical fiber bundle is immersed in the solution mixed with the photocatalyst for about 10 minutes, taken out, dried, and then heat treated at 300 ° C. for about an hour, and repeated 5 to 10 times to obtain the desired photocatalyst coating amount and stability. .

빛이 조사되는 광섬유 다발의 한쪽면은 빛이 조사될 때 난반사 등의 손실을 방지하기 위하여 평활하게 처리하여야 한다. 이와 같이 완성된 광섬유의 한 가닥을 도 5를 참조하여 설명하면 다음과 같다.One side of the optical fiber bundle to which light is irradiated should be smoothed to prevent the loss of diffuse reflection or the like when the light is irradiated. One strand of the completed optical fiber is described as follows with reference to FIG. 5.

빛이 조사되는 광섬유의 한쪽면을 통하여 전송되는 빛은 반사와 굴절을 반복하면서 다른 끝으로 전송된다. 이 과정에서 굴절되어 광섬유의 외부로 나오는 빛은 광섬유의 표면에 코팅되어 있는 광촉매에 흡수되어 광촉매를 활성화시키게 된다. 이를 조금 더 상세하게 살펴보면 입사각 θi로 조사되어 파형의 형태로 전송되는 빛은 굴절율 n1의 실리카(반사율은 ν1) 그리고 외부에 코팅된 굴절율 n2의 광촉매(반사율은 ν2)에 의하여 반사. 굴절되면서 전파된다. Snell의 법칙에 의하면 입사각과 굴절각의 sin함수의 비는 일정하기 때문에 다음과 같은 식(2)를 나타낼 수 있다.Light transmitted through one side of the optical fiber to which light is irradiated is transmitted to the other end while repeating reflection and refraction. In this process, the light refracted and emitted to the outside of the optical fiber is absorbed by the photocatalyst coated on the surface of the optical fiber to activate the photocatalyst. In more detail, the light irradiated at the incidence angle θ i and transmitted in the form of a wave is reflected by silica having a refractive index n 1 (reflectance ν 1 ) and a photocatalyst having a refractive index n 2 (reflectance ν 2 ) coated on the outside. . It propagates as it is refracted. According to Snell's law, the ratio of the sin function between the incident angle and the refracted angle is constant so that the following equation (2) can be expressed.

여기서 θrefr은 굴절각을 나타낸다. 이와같은 광섬유시스템에서 내부 실리카의 굴절율이 비흡수성 매체의 굴절율보다 크면 빛은 광섬유의 내부에서 100% 전파된다. 그러나 내부 실리카의 굴절율이 외부의 코팅보다 굴절율이 낮으면 어떠한 각도로 빛이 조사되건 굴절이 일어난다. 따라서 빛이 굴절되어 코팅된 광촉매로의 전달, 흡수되는 정도는 각 반사되어 조사되는 각도에 직접적으로 영향을 받는다.Where refr represents the angle of refraction. In such an optical fiber system, if the index of refraction of the internal silica is greater than that of the non-absorbent medium, light propagates 100% inside the optical fiber. However, if the index of refraction of the inner silica is lower than that of the outer coating, refraction occurs regardless of the angle at which light is irradiated. Therefore, the degree to which light is refracted and transmitted to the coated photocatalyst is directly influenced by the angles reflected and irradiated.

이러한 과정으로 활성화된 광촉매는 전자-정공의 전하쌍을 생성하고 다시 산소와 물분자와 반응하여 산소 음전하이온과 하이드록실 라디칼을 생성하여 주변의 유독물질과 산화/환원반응을 유도하게 된다. 이러한 광화학반응을 유발하는 주요성분들은 전자, 정공, 하이드록실 라디칼 그리고 산소음전하 이온들이며, 반응기구 해석시 중요한 역할을 하게된다.The photocatalyst activated by this process generates electron-hole charge pairs and reacts with oxygen and water molecules to generate oxygen negative charge ions and hydroxyl radicals to induce oxidation / reduction reactions with surrounding toxic substances. The main components that induce the photochemical reaction are electrons, holes, hydroxyl radicals and oxygen negatively charged ions, and play an important role in the analysis of the reactor.

상기에 기술한 본 발명은 휘발성유기물질, 탄소유기화학물질, 알코올류, 알데하이드류, 할로겐유기화학물질, 질소산화물, 황산화물, 악취 유발물질 등의 대기 오염물질과, 각종 폐수, 음용수, 지하수 처리 등에 사용할 수 있어 생태계 의 보존 및 자연 환경 개선을 행할 수 있는 발명이다.The present invention described above is an air pollutant such as volatile organic substances, carbon organic chemicals, alcohols, aldehydes, halogen organic chemicals, nitrogen oxides, sulfur oxides, odor causing substances, and various wastewater, drinking water, and groundwater treatment. This invention can be used for the conservation of ecosystem and improvement of natural environment.

그러므로 본 발명은 광촉매가 코팅된 광섬유를 이용하여 액체나 기체의 유독 물질을 분해하여 자연 환경을 보존하고 넓게는 오염으로 찌들어가고 병들어가는 지구를 구할 수 있는 발명인 것이다. 본 발명의 광섬유 반응기 및 주변시스템을 구성하여 기상오염물질 중의 하나인 트라이클로로에틸렌을 조사하는 광의 강도에 따라서 처리능력을 조사하여 도 7에 나타내었다.Therefore, the present invention is an invention that can preserve the natural environment by decomposing toxic substances of liquids or gases using optical fibers coated with a photocatalyst, and save the earth that is crushed and diseased. The optical fiber reactor and the peripheral system of the present invention are constructed and treated according to the intensity of light irradiating trichloroethylene, which is one of the gaseous pollutants, is shown in FIG. 7.

Claims (5)

인공 램프(1) 혹은 태양광(2)으로 부터 발생되는 빛을 복수 개 설치된 광학필터(3)와 렌즈(4)로 투입되게 하고, 수나사(16)형태로 구성된 캡(14)의 내부를 광촉매(18)가 코팅된 광섬유다발(7)의 외경크기로 구멍을 뚫은 고무패킹(13)과 다발홀더(5)로 고정시켜서 암나사(15) 형태로 구성된 기상 반응기(6)의 나사부가 결합된 광화학 반응기(100) 내부로 조사시켜서 반응을 유발시키는 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 장치.The light generated from the artificial lamp 1 or the sunlight 2 is introduced into the optical filter 3 and the lens 4 installed in plural, and the photocatalyst is formed inside the cap 14 formed in the form of a male screw 16. The photochemical combined with the threaded portion of the gas phase reactor (6) consisting of a female screw (15) by fixing the rubber packing (13) and the bundle holder (5) punched in the outer diameter of the optical fiber bundle (7) coated with (18) Optical photocatalyst device coated with a photocatalyst for treating gaseous pollutants, characterized in that to cause a reaction by irradiating the inside of the reactor (100). 인공 램프(1) 혹은 태양광(2)으로부터 발생되는 빛을 복수 개 설치된 광학필터 (3)내를 통과시키고, 파장범위별로 필터(3)를 통과한 빛을 다시 렌즈(4)로 투입되게 하고, 렌즈(4)를 통과하여 집광된 빛을 다발 홀더(5)를 통과시켜 광촉매(18)가 코팅된 광섬유 다발(7)에 전달되게 하여 유체 및 기체의 유독유기물(S)이 광섬유다발(7)에 접촉하게 되어 독성을 분해, 정화하는 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 방법The light generated from the artificial lamp (1) or the sunlight (2) is passed through the optical filter (3) installed a plurality of times, and the light passing through the filter (3) for each wavelength range is fed back into the lens (4) The light collected through the lens 4 is passed through the bundle holder 5 so that the photocatalyst 18 is transferred to the coated optical fiber bundle 7 so that the toxic organic substances S of the fluid and gas are transferred to the optical fiber bundle 7. ) Photocatalyst photochemical reaction method coated with photocatalyst for treating gaseous pollutants 제 1항에 있어서;The method of claim 1; 코팅에 사용한 광촉매들은 순수 이산화티타니아, Fe2O3(이산화철), ZnO (산화아연) 등이며, 혼합광촉매로는 TiO2/SiO2(이산화티타니아-실리카 혼합), Fe/Ti(이산화철-이산화티타니아 혼합광촉매), Ni/Ti(산화니켈-이산화티타니아 혼합광촉매), Mo/Ti(산화 몰리브데늄-이산화티타니아 혼합광촉매), Nb/Ti (산화 나이오비움-이산화티타니아 혼합광촉매), Li/Ti (산화 리티움-이산화티타니아 혼합광촉매),백금담지 이산화티타니아(Pt/Ti) 광촉매, 팔라듐담지 이산화티타니아(Pd/Ti) 광촉매인 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 장치.The photocatalysts used in the coating are pure titania, Fe 2 O 3 (iron dioxide), ZnO (zinc oxide), etc., and mixed photocatalysts include TiO 2 / SiO 2 (mixed titania-silica) and Fe / Ti (iron dioxide- Titanium dioxide mixed photocatalyst), Ni / Ti (nickel oxide-titanium dioxide mixed photocatalyst), Mo / Ti (molybdenum oxide-titanium dioxide mixed photocatalyst), Nb / Ti (niobium oxide-titanium dioxide mixed photocatalyst), Li / Ti (lithium oxide-titania mixed photocatalyst), platinum-supported titania (Pt / Ti) photocatalyst, palladium-supported titania (Pd / Ti) photocatalyst, coated photocatalyst for treating gaseous pollutants Reaction device. 제 1 항에 있어서,The method of claim 1, 코팅에 사용된 광촉매(18)는 광반응 면적을 확대하여 반응효과를 높이기 위해 광촉매(18)의 담지체(17)로서 광섬유(optical fiber)를 사용하는 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 장치.The photocatalyst 18 used in the coating is a photocatalyst for treating gaseous pollutants, characterized in that an optical fiber is used as the carrier 17 of the photocatalyst 18 in order to increase the photoreaction area to increase the reaction effect. Coated Fiber Optic Photochemical Reactors. 광섬유의 순수 실리카 코어(silica core) (9)부분에 광촉매를 코팅함에 있어서,In coating the photocatalyst on the pure silica core (9) portion of the optical fiber, 광섬유의 실리카 버퍼 코딩(coating)(11)과 실리카 클래딩(cladding)(10)을 완전하게 제거하고, 실리카 코어(silica core)(9)부분을 아세톤 → 증류수 → 에탄올 → 증류수 → 아세톤...의 순으로 3 ~ 4회 반복하며, 이와 동시에 광촉매를 약 15wt%로 수용액에 넣고 마그네틱바(magnetic bar)를 이용하여 하루정도 슬러리를 교반시키며 슬러리의 pH는 약 3-4를 유지하고, 에칭작업이 끝난 후의 광섬유 다발을 광촉매가 혼합된 용액에 약 10분 정도 담그고, 꺼내어 건조시킨 후 한시간 정도 300℃에서 열처리를 하는 과정을 5 ~ 10회 반복하는 것으로 구성되어진 것을 특징으로 하는 기상오염물질 처리용 광촉매가 코팅된 광섬유 광화학반응 방법.Completely remove the silica buffer coding (11) and silica cladding (10) of the optical fiber, and remove the silica core (9) part from acetone → distilled water → ethanol → distilled water → acetone. Repeat 3 to 4 times in order, and at the same time, put the photocatalyst at about 15wt% in the aqueous solution and stir the slurry for about one day using a magnetic bar, and maintain the pH of the slurry at about 3-4. Photocatalyst for treating gaseous pollutants, comprising dipping the optical fiber bundle in a solution containing a photocatalyst for about 10 minutes, removing and drying, and repeating the heat treatment at 300 ° C. for 5 hours for 10 hours. Coated optical fiber photochemical reaction method.
KR1019990020723A 1999-06-04 1999-06-04 Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase KR100329032B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990020723A KR100329032B1 (en) 1999-06-04 1999-06-04 Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990020723A KR100329032B1 (en) 1999-06-04 1999-06-04 Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase

Publications (2)

Publication Number Publication Date
KR20000017691A KR20000017691A (en) 2000-04-06
KR100329032B1 true KR100329032B1 (en) 2002-03-18

Family

ID=19590167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990020723A KR100329032B1 (en) 1999-06-04 1999-06-04 Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase

Country Status (1)

Country Link
KR (1) KR100329032B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425774B1 (en) * 2001-05-11 2004-04-03 주식회사 엔비오 Method for making a bundle of photocatalyst-coated plastic optical fibers
KR100967624B1 (en) * 2008-02-20 2010-07-05 전남대학교산학협력단 The apparatus and method for optical-fiber-guided light emission to maintain the cultivation conditions
KR20130012886A (en) 2011-07-26 2013-02-05 현대자동차주식회사 Photocatalytic reactor and treatment method for pollutant using thereof
CN112781164B (en) * 2021-02-01 2022-12-27 深圳绿蓝技术有限公司 Photocatalytic air purification and sterilization fiber, manufacturing method and application thereof, photocatalytic air purification and sterilization filter and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136946A (en) * 1981-02-18 1982-08-24 Mitsubishi Heavy Ind Ltd Catalyst for removing fine particles in waste gas
JPH08332372A (en) * 1995-06-09 1996-12-17 Mitsubishi Rayon Co Ltd Optical reaction apparatus
JPH09225262A (en) * 1996-02-28 1997-09-02 Hoya Corp Photocatalytic filter, device therefor and treatment of liquid using the same
JPH1071322A (en) * 1996-08-30 1998-03-17 Seiwa Denki Kk Photocatalytic reaction fiber and photocatalytic reaction apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136946A (en) * 1981-02-18 1982-08-24 Mitsubishi Heavy Ind Ltd Catalyst for removing fine particles in waste gas
JPH08332372A (en) * 1995-06-09 1996-12-17 Mitsubishi Rayon Co Ltd Optical reaction apparatus
JPH09225262A (en) * 1996-02-28 1997-09-02 Hoya Corp Photocatalytic filter, device therefor and treatment of liquid using the same
JPH1071322A (en) * 1996-08-30 1998-03-17 Seiwa Denki Kk Photocatalytic reaction fiber and photocatalytic reaction apparatus

Also Published As

Publication number Publication date
KR20000017691A (en) 2000-04-06

Similar Documents

Publication Publication Date Title
Wu et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review
Zhou et al. Kinetic studies for photocatalytic degradation of Eosin B on a thin film of titanium dioxide
Sun et al. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds
Peill et al. Chemical and physical characterization of a TiO2-coated fiber optic cable reactor
CN101288839B (en) Light-transmitting tubular honeycomb type photocatalytic reactor
Kumar et al. Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state-of-art review
Singh et al. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector
CN101385964A (en) Tubular photocatalysis reactor
Xiang et al. Working principle and application of photocatalytic optical fibers for the degradation and conversion of gaseous pollutants
JP5566801B2 (en) Wastewater treatment equipment
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
KR100329032B1 (en) Fiber optic cable system coated with photocatalysts for the deatruction of pollutant in gas phase
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
CN2913337Y (en) Sewage treatment apparatus
Mukherjee et al. Degradation of methyl orange by TiO2/polymeric film photocatalyst
Al Mashari et al. Characterization and Photocatalytic Treatment of Oil Produced Water Using TiO2
CN102626612A (en) TiO2 hollow sphere polymer photocatalyst and preparation method and application thereof
Gonzalez-Martin et al. Photodegradation of organic compounds in the vapor phase using TiO2-coated optical fibers
Jinyu et al. Photocatalytic degradation of methylene blue with side-glowing optical fiber deliverying visible light
Nyangiwe et al. The decolourisation of Methyl Orange and textile effluent under UV using commercial and synthesized nano-TiO2
CN106082388A (en) Organic membrane is utilized to produce hydroxyl radical free radical and the method removing organic pollutants
JP5594985B2 (en) Waste water treatment apparatus and waste water treatment method
CN203459071U (en) Photo-catalytic reactor
Pacheco et al. Developments in solar photocatalysis for destruction of organics in water
Aisien et al. Application of solar-irradiated photocatalyst (periwinkle shell ash) for the degradation of ethylbenzene in aqueous solution

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early publication
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130307

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140304

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 18

EXPY Expiration of term