KR100328052B1 - A method for manufacturing high-clean steel - Google Patents

A method for manufacturing high-clean steel Download PDF

Info

Publication number
KR100328052B1
KR100328052B1 KR1019970063382A KR19970063382A KR100328052B1 KR 100328052 B1 KR100328052 B1 KR 100328052B1 KR 1019970063382 A KR1019970063382 A KR 1019970063382A KR 19970063382 A KR19970063382 A KR 19970063382A KR 100328052 B1 KR100328052 B1 KR 100328052B1
Authority
KR
South Korea
Prior art keywords
molten steel
powder
ladle
hydrogen
steel
Prior art date
Application number
KR1019970063382A
Other languages
Korean (ko)
Other versions
KR19990042540A (en
Inventor
김정식
이철무
안상복
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970063382A priority Critical patent/KR100328052B1/en
Publication of KR19990042540A publication Critical patent/KR19990042540A/en
Application granted granted Critical
Publication of KR100328052B1 publication Critical patent/KR100328052B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D2027/002Gas stirring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To manufacture high clarity steel by floating inclusions entrained in molten steel by refluxing. CONSTITUTION: The method includes the steps of transferring a ladle(1) into which molten steel(2) tapped from converter is introduced for powder injection; dipping a top lance from upper side of the ladle into the molten steel; injecting a hydrogen gas through the top lance at an injection rate of 30 to 70 kg·powder/min accompanied with inert gas injection at a pressure of 5.0 to 10.0 kg/cm¬2 and in a flow rate of 0.5 to 1.0 Nm¬3/min, wherein the hydrogen gas includes powdery Ca(OH)2 in an amount of 0.4 to 1.2 kg/ton·molten steel or powdery TiH4 in an amount of 0.14 to 0.42 kg/ton·molten steel; transferring the ladle into RH degassing facility; blowing argon gas at a blow rate of 0.32 to 0.80 Nm¬3/hr and at a pressure of 5.0 to 10.0 kg/cm¬2 for reflux, thereby stripping dissolved hydrogen gas entrapped in the molten steel in the form of hydrogen bubbles(11).

Description

고청정강의 제조방법{A method for manufacturing high-clean steel}A method for manufacturing high-clean steel

본 발명은 제강공정에서 고청정강을 제조하는 방법에 관한 것으로, 보다 상세하게는 전로에서 출강한 용강에 가용성 가스성분을 함유하는 분체(flux)를 취입하여 강제용해시키고, 감압단계에서 용강중 비금속개재물(이하, "개재물"이라 함)을 가스기포 발생에 의해 포착(trap)시켜 제거, 분리하여 고청정강을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing high-clean steel in the steelmaking process, more specifically, by injecting a molten steel (flux) containing molten gas components in the molten steel tapping in the converter forcibly dissolved, non-metallic inclusions in the molten steel in the decompression step (Hereinafter referred to as "inclusion") relates to a method for producing a high-purity steel by trapping, removing, and separating by generating gas bubbles.

제강조업의 기본구성은 주로 전로→이차정련→연속주조공정으로 구성되며, 전로조업은 송산취련시 용철에 산소를 분사하여 탄소(C), 망간(Mn), 실리콘(SI), 인(P) 등의 불순원소를 제거하고, 전로정련을 종료한 용강에는 수백 ppm의 용존산소(free oxygen)가 함유된다. 이러한 용존산소를 제거하기 위하여 전로출강중에 알루미늄, 실리콘, 망간 등을 첨가하게 되고, 그 결과 탈산생성물이 용강에 현탁, 산재하게 된다. 이러한 탈산생성물은 최종제품까지 잔류하여 표면결함을 유발하게 되므로 연속주조가 실시되기 이전단계에서 용강으로부터 분리제거시켜야 하며, 이들을 용이하게 제거시키기 위한 고청정강 제조방법들이 다수 제안되어 있다.The basic composition of steelmaking industry is mainly composed of converter → secondary refining → continuous casting process. In the converter operation, oxygen is injected to molten iron during the Songsan blasting process, and carbon (C), manganese (Mn), silicon (SI) and phosphorus (P) Hundreds of ppm of free oxygen is contained in the molten steel after removing impurity elements such as back and refining the converter. In order to remove such dissolved oxygen, aluminum, silicon, manganese, and the like are added to the converter steel. As a result, the deoxidation product is suspended and dispersed in the molten steel. Since the deoxidation product remains until the final product causes surface defects, it must be separated and removed from molten steel before the continuous casting is carried out, and a number of high-purity steel production methods for easily removing them have been proposed.

종래 고청정강을 제조하는 방법으로 전로 출강중 또는 출강후 슬래그개질재를 첨가하여 슬래그 물성을 변화시키거나 재산화를 방지함으로써, 고청정강을 제조하는 방법(대한민국 특허등록 제37363호, 제93299호, 제118956호, 제110322호, 특허출원 제95-45965호, 제95-56445호, 제96-67584호)들이 다수 제안되었다. 이러한 방법이 고청정강을 제조하는데 기여하고 있으나, 슬래그개질재나 슬래그탈산제를 용강 1톤당 1∼10kg 첨가함으로써, 슬래그 발생량을 더욱 증가시키는 결점을 지니고 있다. 이렇게 발생된 슬래그는 일종의 폐기물로 분류되며, 환경의 오염원이기도 하다. 따라서, 슬래그 발생량 증가는 곧 폐기물 발생량 증가를 의미하므로 환경적인 측면에서 불리하고, 또한, 슬래그를 무해한 물질로 재처리해야 하는데 이를 재처리하기 위해서는 막대한 비용이 소요된다.Conventionally, high-purity steel is manufactured by adding slag modifiers during and after the converter's tapping and / or tapping to change slag properties or prevent reoxidation. (Korean Patent Registration No. 3736,393299) No. 118956, 110322, Patent Application Nos. 95-45965, 95-56445, and 96-67584. Although this method contributes to the production of high clean steel, the slag modifier or slag oxidizer is added to 1 to 10kg per ton of molten steel, has the disadvantage of further increasing the slag generation. The slag generated is classified as a kind of waste and is also a source of environmental pollution. Therefore, an increase in the amount of slag generated means an increase in the amount of waste generated, which is disadvantageous in terms of the environment. In addition, the slag has to be reprocessed with a harmless material, which requires a huge cost.

한편, 고청정강을 제조하는 방법 중에서 한가지 방법으로 RH 진공탈가스 장치(이하, 간단히 "RH"라 함)에서 용강을 환류시키는 상승관과 하강관 등 2개의 환류관으로 구성된 침적관의 길이를 서로 다르게 형성시켜 용강교반력을 향상시켜 개재물의 조대화를 촉진시키는 방법(대한민국 특허등록 제95381호)이 제안되어 있다. 그러나, 이 방법은 길이가 긴 침적관의 내화물 침식이 극심하여 침적관의 유지보수가 매우 어렵고, 유지비용이 가중되며, 유지보수를 위한 별도의 인력이 필요하다는 결점이 있다.On the other hand, one of the methods of manufacturing high-purity steel, the length of the immersion pipe consisting of two reflux pipes, such as the rising pipe and the down pipe to reflux the molten steel in the RH vacuum degassing apparatus (hereinafter referred to simply as "RH") Forming differently to improve the molten steel stirring force to promote coarsening of inclusions (Korean Patent Registration No. 95381) has been proposed. However, this method has the disadvantage that the refractory erosion of the long length of the immersion pipe is extremely difficult, the maintenance of the immersion pipe is very difficult, the maintenance cost is increased, and a separate manpower for maintenance is required.

이에, 본 발명자들은 상기 문제점들을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 전로에서 출강된 용강에 가용성가스를 함유하는 화합물 분체(Powder)를 용강중에 침적시키는 방법으로 취입하여, 용강중 가용성 가스성분을 강제고용시키고, 이어서 RH에서 감압정련을 실시함에 있어 가용성가스가 기포로 발생할 때 용강중 개재물이 이들 기포의 발생장소가 된다는 사실을 응용하여 용강을 환류시킴으로서, 용강중 개재물을 용이하게 부상제거시키는 고청정강 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the above problems and propose the present invention based on the results, and the present invention provides a compound powder containing soluble gas in molten steel withdrawn from the converter. Blowing by immersion in molten steel, forced employment of the soluble gas component in the molten steel, and then under reduced pressure refining in RH, the molten steel is applied to the fact that the inclusions in the molten steel becomes the place where these bubbles are generated when the soluble gas is generated as bubbles. By reflux, it is to provide a high-purity steel manufacturing method to easily remove the inclusions in the molten steel, the object is.

도 1은 분체 취입장치(PI process)의 개략도1 is a schematic diagram of a powder blowing device (PI process)

도 2는 알에이치(RH) 정련장치의 개략도2 is a schematic diagram of an RH refining apparatus;

도 3은 본 발명에 따라 정련할 때, 개재물의 부상분리 메카니즘을 설명하기 위한 모식도Figure 3 is a schematic diagram for explaining the separation mechanism of the inclusion when refining in accordance with the present invention

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 레이들 2 : 용강1: ladle 2: molten steel

3 : 슬래그 4 : 개재물3: slag 4: inclusions

5 : 수소화합물분체 6 : 상취랜스5: hydrogen compound powder 6: phase lance

7 : 진공조 8a : 상승관7: vacuum chamber 8a: riser

8b : 하강관 9 : 환류가스 공급장치8b: down pipe 9: reflux gas supply device

10 : 용강류 11 : 수소기포10: molten steel 11: hydrogen bubble

12 : 개재물과 결합된 수소기포12: hydrogen bubbles combined with inclusions

상기 목적을 달성하기 위한 본 발명은 고청정강을 제조하는 방법에 있어서, 전로로부터 출강된 용강을 담은 레이들(ladle)을 분체취입이 가능한 공정으로 이송하는단계; 레이들 상부로부터 상취랜스를 하강하여 용강에 침적시키고, 랜스를 통해 수소가스를 함유한 화합물 분체 Ca(OH)2또는 TiH4을 수송가스와 동시에 취입하는 단계; 및 레이들을 RH로 이송하여 용강을 환류함으로써 용강에 다량 용해된 수소가 레이들의 용강내부에서 수소기포로 발생되게 하여 개재물을 제거하는 단계를 포함하여 구성되는 고청정강의 제조방법에 관한 것이다.In order to achieve the above object, the present invention provides a method for manufacturing high-clean steel, comprising: transferring a ladle (ladle) containing molten steel outgoing from the converter into a process capable of powder injection; Lowering the upper lance from the upper ladle and depositing the molten steel in the molten steel, and simultaneously blowing the compound powder Ca (OH) 2 or TiH 4 containing hydrogen gas together with the transport gas through the lance; And transferring the ladle to RH to reflux the molten steel so that hydrogen dissolved in the molten steel is generated as hydrogen bubbles in the molten steel to remove inclusions.

이하, 본 발명을 단계별로 구분하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail by dividing step by step.

본 발명에서는 전로로부터 출강된 용강을 담은 레이들(ladle)을 분체취입이 가능한 공정으로 이송하는 과정을 거친다.In the present invention, the ladle (ladle) containing the molten steel outgoing from the converter is subjected to the process of transferring the powder blowing.

전로로부터 출강된 용강을 담은 레이들을 분체 취입이 가능한 공정으로 이송한다. 이때, 분체취입공정으로는 분체를 레이들 상부로 취입할 수 있는 장치를 갖춘 공정, 예를 들면 레이들로(LF, Ladle Furnace), 바프(BAP, Bubbling, Al-wire feeding & Powder injection), 피아이(PI, Powder Injection) 등이 있다.The ladle containing the molten steel from the converter is transferred to a process capable of blowing powder. At this time, the powder injection process is a process having a device that can blow the powder to the upper ladle, for example, ladle (LF, Ladle Furnace), BAF (BAP, Bubbling, Al-wire feeding & Powder injection), Powder Injection (PI).

본 발명에서는 레이들 상부로부터 상취랜스를 하강하여 용강에 침적시키면서, 랜스를 통해 수소가스를 함유한 화합물 분체 Ca(OH)2또는 TiH4을 취입하는 과정을 거친다.In the present invention, while lowering the upper lance from the top of the ladle and deposited in the molten steel, the compound powder Ca (OH) 2 or TiH 4 containing hydrogen gas is blown through the lance.

상기 분체를 레이들 상부로 취입할 수 있는 장치중에서 분체취입장치(PI process)를 일예로 들어 설명한다. 도 1은 분체취입장치(PI process)를 개략적으로 나타낸 개략도이다.Among the apparatuses capable of blowing the powder onto the ladle, a powder processing apparatus (PI process) will be described as an example. 1 is a schematic diagram schematically showing a powder blowing device (PI process).

상부로부터 랜스(6)를 하강하여 용강(2)에 침적시키고, 이 랜스를 통해 수소성분을함유한 분체(5) Ca(OH)2또는 TiH4등을 수송가스(carrier gas)와 동시에 취입하는 것이다. 이때, 상기 분체의 입자크기는 직경이 1mm 이하가 바람직하다. 1mm를 초과하는 경우, 분체취입시 관통류가 발생되어 수송가스만 취입되고 분체가 취입되지 않는 경향이 있으므로 불리하다.The lance 6 is lowered from the top to be deposited in the molten steel 2, and the powder 5 containing Ca (OH) 2 or TiH 4 containing hydrogen components is simultaneously blown with the carrier gas. will be. At this time, the particle size of the powder is preferably 1mm or less in diameter. When it exceeds 1 mm, penetrating flow is generated when blowing the powder, which is disadvantageous because only the transport gas is blown and the powder does not tend to be blown.

상기 수송가스로는 아르곤, 질소, 네온 등 불활성 성질을 지닌 가스를 사용할 수 있으나, 질소의 경우 용강에 용존되어 용강의 질소함량을 불필요하게 증가시키게 되므로 불리하고, 네온가스의 경우 가격이 비싸 경제적으로 불리하며, 따라서 아르곤 가스를 사용하는 것이 가장 바람직하다.As the transport gas, a gas having an inert property such as argon, nitrogen, and neon may be used. However, nitrogen is dissolved in molten steel to increase the nitrogen content of the molten steel unnecessarily, and neon gas is expensive and economically disadvantageous. Therefore, argon gas is most preferably used.

또한, 상기 수송가스는 압력 5.0∼10.0kg/cm2, 유량 0.5∼1.0 Nm3/min 범위로 제어하는 것이 바람직하다. 압력 5.0 이하의 경우 랜스의 막힘현상(clogging)이 발생되어 분체를 취입하기 어렵고, 10.0 이상에서는 용강이 레이들 밖으로 비산될수 있기 때문에 조업이 불가능하다. 수송가스 유량이 0.5 이하일 때, 랜스의 막힘현상이 발생되어 불리하고, 1.0에서는 용강이 비산되고, 관통류가 발생되기 때문에 야금효과에 불리하게 작용할 수 있다.In addition, the transport gas is preferably controlled to a pressure of 5.0 to 10.0kg / cm 2 , flow rate 0.5 to 1.0 Nm 3 / min range. If the pressure is less than 5.0, clogging of the lance occurs, it is difficult to blow the powder, and at 10.0 or more, it is impossible to operate because molten steel may be scattered out of the ladle. When the flow rate of the transport gas is 0.5 or less, clogging of the lance occurs and is disadvantageous. In 1.0, molten steel is scattered and through flow is generated, which may adversely affect the metallurgical effect.

상기 분체는 용강중 수소용해량이 10-30ppm이 되도록 취입하며, 예를들어 Ca(OH)2를 취입하는 경우, 용강 1톤당 0.4∼1.2kg, TiH4는 용강 1톤당 0.14∼0.42kg을 취입하면 수소함량이 10-30ppm을 얻을 수 있게 된다. 수소함량이 10ppm 이하의 경우 소기의 개재물 제거효과를 얻기가 어렵고 30ppm 이상의 경우 분체취입량은 증가되나 분체취입량이 증가되는 만큼의 개재물 제거효과를 얻을 수 없기 때문에 경제성 및 작업성에 불리하다.The powder is molten steel, and blowing so that the amount of hydrogen dissolved 10-30ppm, for example, if blowing the Ca (OH) 2, the molten steel per ton 0.4~1.2kg, TiH 4 is hydrogen when blown per ton of the molten steel 0.14~0.42kg A content of 10-30 ppm can be obtained. If the hydrogen content is less than 10ppm, it is difficult to obtain the desired inclusions removal effect, and if it is 30ppm or more, the powder blowing amount is increased, but it is disadvantageous in economics and workability because the powder removing amount is not obtained.

상기 분체취입시 속도는 분당 30∼70kg 으로 설정하는 것이 바람직하다. 30kg이하의 경우 목적량의 분체를 취입하는데 소요되는 시간이 오래 걸리고 70kg 이상으로 하는 경우에는 수소성분을 용강중에 용해시키는데 분체취입량 대비 실수율이 낮아질수 있기 때문에 불리하다.The powder blowing rate is preferably set to 30 to 70 kg per minute. If it is less than 30kg, it takes a long time to blow the desired amount of powder, and if it is more than 70kg, it is disadvantageous because the error rate compared to the powder injection amount may be lowered to dissolve the hydrogen component in molten steel.

상기의 방법으로 분체를 취입하게 되면, Ca(OH)2의 경우 하기식(1)과 (2)의 반응으로 TiH4는 하기식(3)의 반응으로 용강에 용해되어 용강중 수소함량이 증가하게 된다.When the powder is blown by the above method, in the case of Ca (OH) 2 , TiH 4 is dissolved in molten steel by the reaction of the following formula (1) and (2) to increase the hydrogen content in the molten steel. do.

Ca(OH) SUB { 2 } ~=~CaO(s)~+~H SUB { 2 } OCa (OH) SUB {2} ~ = ~ CaO (s) ~ + ~ H SUB {2} O

H SUB { 2 } O~=~2[H]~+~[O]H SUB {2} O ~ = ~ 2 [H] ~ + ~ [O]

TiH SUB { 4 } ~=~[Ti]~+~4[H]TiH SUB {4} ~ = ~ [Ti] ~ + ~ 4 [H]

본 발명에서는 레이들을 RH로 이송하여 용강을 환류함으로써 용강에 다량 용해된 수소가 레이들의 용강내부에서 수소기포로 발생되게 하여 개재물을 제거하는 과정을 거친다.In the present invention, by transferring the ladle to RH to reflux the molten steel, hydrogen dissolved in a large amount of molten steel is generated as hydrogen bubbles in the molten steel to remove the inclusions.

도 2는 RH정련장치를 이용하여 용강환류를 실시하는 공정의 일예를 개략적으로 보이는 개략도이다. 상기 수소화합물 분체(5)를 취입한 용강(2)을 진공조(7),상승관(8a), 하강관(8b), 환류가스 공급장치(9) 등으로 구성된 RH로 이송하여, 용강환류를 실시한다. 상승환류관(8a)과 하강환류관(8b)을 레이들(1)내 용강(2)에 침적시키면서 진공조(7) 내부압력을 0.01기압까지 낮추고, 상승관에 아르곤가스를 불어넣으면서 용강을 강제환류시킨다.2 is a schematic view schematically showing an example of a process for performing molten steel reflux using the RH refining apparatus. The molten steel 2 into which the hydrogen compound powder 5 is blown is transferred to RH composed of a vacuum chamber 7, a rising pipe 8a, a falling pipe 8b, a reflux gas supply device 9, and the like. Is carried out. The internal pressure of the vacuum chamber (7) is lowered to 0.01 atm while the rising reflux pipe (8a) and the down reflux pipe (8b) are deposited on the molten steel (2) in the ladle (1), and the molten steel is blown while blowing argon gas into the rising pipe. Forced reflux.

상기 용강의 환류를 원활하게 하기 위하여 용강환류용 가스는 유량을 용강 1톤당 0.32∼0.80Nm3/hr, 압력을 5.0∼10.0kg/cm2범위로 제어하는 것이 바람직하다. 환류가스유량이 0.32 이하의 경우, 용강환류에 필요한 부상능력이 부족하여 용강을 효과적으로 환류시키기 어렵고, 0.80 이상의 경우, 용강환류는 용이하나 진공조 내부에 다량의 지금이 부착되고 노즐부의 용손이 심하여 조업시 장애요인이 될 수 있다. 압력 5.0 이하의 경우, 환류가스의 취입이 곤란하고 10.0 이상에서는 환류가스가 목료유량보다 지나치게 많이 분사되어 진공조 내부에 다량의 지금이 부착되거나 노즐부의 내화물 용손이 심하게 될 수 있다.In order to facilitate the reflux of the molten steel, the molten steel reflux gas is preferably controlled in a flow rate of 0.32 to 0.80 Nm 3 / hr per ton of molten steel and a pressure of 5.0 to 10.0 kg / cm 2 . If the reflux gas flow rate is less than 0.32, it is difficult to reflux molten steel effectively due to the lack of floating capacity necessary for reflux of molten steel.In the case of 0.80 or more, it is easy to reflux molten steel, but a large amount of current is attached inside the vacuum chamber and the loss of nozzle part is severe. Can be a barrier to city. When the pressure is 5.0 or less, reflux of the reflux gas is difficult, and when the reflux gas is more than 10.0, the reflux gas is injected more than the wood flow rate, so that a large amount of current is attached to the inside of the vacuum chamber or the refractory loss of the nozzle portion may be severe.

상기와 같이 RH에서 용강을 환류시킴으로써, 레이들(1)내 용강(2)에서는 용강에서의 수소분압 P(H2)이 철정압 P(m)과 교반동력(ε)의 합을 초과하는 영역에서 수소가스의 미세기포(11)가 발생하게 된다. 수소발생에 대한 반응식은 하기식(4), 이의 화학평형 상수 K, H2분압, 용강중 수소농도 및 용강온도의 관계식은 하기식(5), 철정압은 하기식(6), 용강의 교반동력은 하기식(7)로 각각 표기할 수 있다. 하기식(5)에서 K는 하기식(4)의 화학반응에 대한 평형정수, P(H2)는 용강에서의 수소분압(기압), [%H2]는 용강중 수소용해량(wt%), T는 용강의 절대온도(K)를 나타내고, 하기식(6)에서 P는 용강밀도(g/cm3), g는 중력가속도(m/sec2), h는 용강높이(m)를 의미한다. 또한, 하기식(7)에서 M은 레이들내 용강량(ton), Q는 용강환류속도(ton/sec), U는 하강관에서의 용강유출 선속도(m/sec)를 각각 나타낸다.By refluxing molten steel at RH as described above, in the molten steel 2 in the ladle 1, the hydrogen partial pressure P (H 2 ) in the molten steel exceeds the sum of the iron static pressure P (m) and the stirring power (ε). In the micro-bubbles 11 of the hydrogen gas is generated. The reaction formula for hydrogen evolution is the following equation (4), its chemical equilibrium constant K, H 2 partial pressure, the relationship between the hydrogen concentration and molten steel temperature in the molten steel is the following formula (5), the iron static pressure is the following formula (6), the stirring power of the molten steel Can be respectively represented by following formula (7). In Equation (5), K is the equilibrium constant for the chemical reaction of Equation (4), P (H 2 ) is the partial pressure of hydrogen in the molten steel (atm), and [% H 2 ] is the amount of dissolved hydrogen in the molten steel (wt%). , T denotes the absolute temperature (K) of the molten steel, in the formula (6), P is the molten steel density (g / cm 3 ), g is the acceleration of gravity (m / sec 2 ), h is the molten steel height (m) do. In the following formula (7), M represents the amount of molten steel in the ladle (ton), Q is the molten steel reflux speed (ton / sec), U represents the molten steel outflow linear velocity (m / sec) in the downcomer.

[H]~=~½H SUB { 2 } (g)[H] ~ = ~ ½H SUB {2} (g)

Figure pat00001
Figure pat00001

P(m)~=~p*g*hP (m) ~ = ~ p * g * h

ε~=~ρ~/~(2000*M)*Q*U SUP { 2 }ε ~ = ~ ρ ~ / ~ (2000 * M) * Q * U SUP {2}

한편, 용강(2)에서 개재물(4)의 부상분리는 용강과 개재물의 비중차에 의한 분리, 즉 Stokes 방정식을 하기식(8)에 의해 설명할 수 있으며, 여기서 V는 비금속개재물의 부상속도, g는 중력가속도(=9.8m/sec2), r는 개재물 반경(m), ρFa와 ρinclu는 각각 용강 및 개재물의 밀도(ton/m3), η는 용강의 점성계수(=0.005kg/m-sec)를 의미한다. 하기식(8)로부터 개재물의 입자가 클수록 개재물의 밀도가 작을수록 부상속도가 빨라진다는 것을 알 수 있다.Meanwhile, floating separation of inclusions 4 in molten steel 2 can be explained by separation of molten steel and inclusions, that is, the Stokes equation by the following equation (8), where V is the floating speed of nonmetallic inclusions, g is gravitational acceleration (= 9.8 m / sec 2 ), r is inclusion radius (m), ρ Fa and ρ inclu are molten steel and inclusion density (ton / m 3 ), and η is the viscosity coefficient of molten steel (= 0.005kg, respectively). / m-sec). It can be seen from Equation (8) that the larger the particles of the inclusions are, the faster the flotation speed is, the smaller the density of the inclusions is.

V~=~(2/9)~*[g*r2*(ρ SUB { Fe } -ρ SUB { inclu } )]~/~ηV ~ = ~ (2/9) ~ * [g * r2 * (ρ SUB {Fe} -ρ SUB {inclu})] ~ / ~ η

도 3은 본 발명에 따라 정련할 때 개재물의 부상분리 메카니즘을 설명하기 위한 모식도이다. 도 3에 나타낸 바와같이, 상기 레이들내 용강(2)내부에서 발생된 수소기포(11)가 주변의 개재물(4)과 충돌하여 결합하게 된다. 이때, 수소기포와 결합된 부상속도는 수소기포(11)의 부상속도와 유사한 값을 갖게 된다. 즉, 수소기포와 결합된 개재물(12)의 부피가 크게 증가하고 밀도는 크게 감소하게 되므로 상기식(8)에 따라 개재물의 부상속도는 크게 증가한다. 본 발명은 상기의 방법으로 용강중 개재물의 부상속도를 크게 증가시킴으로써, 고청정강을 효과적으로 제조할 수 있게 되는 것이다.Figure 3 is a schematic diagram for explaining the floating separation mechanism of inclusions when refining according to the present invention. As shown in FIG. 3, the hydrogen bubbles 11 generated inside the molten steel 2 in the ladle collide with each other by interposing the inclusions 4. At this time, the floating speed combined with the hydrogen bubble has a value similar to the floating speed of the hydrogen bubble (11). That is, since the volume of the inclusions 12 combined with the hydrogen bubbles is greatly increased and the density is greatly reduced, the floating speed of the inclusions is greatly increased according to Equation (8). The present invention is to increase the floating speed of the inclusions in the molten steel by the above method, it is possible to effectively produce high clean steel.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예1Example 1

탄소 0.01∼0.90wt%, 실리콘 0.10wt% 이하, 망간 0.10∼1.00wt%, 알루미늄 0.02∼0.08wt%의 용철을 대상으로, 100톤 전로에서 송산정련을 종료하고 출강시 용강에 알루미늄을 첨가시켜 용강을 탈산하고, 합금철을 첨가하여 용강성분을 조정하였다. 용강(2)을 담을 레이들(1)을 PI 정련장치로 이송하고, 상부로 부터 랜스(6)를 내려 용강에 침적시키고 Ca(OH)2를 취입하였다. 분체취입량은 용강 1톤당 각각 하기 표1과 같이 0내지 1.4kg이었으며, 분체취입속도는 분당 50kg으로 제어하였다.이때 아르곤을 수송가스로 사용하고 수송가스 압력은 8.0kg/cm2, 유량은 0.75Nm3/min로 조절하였다. 분체취입후 용강시료를 채취하여 분석한 결과 용강의 수소함량과 개재물의 함량을 대표하는 전산소량(total oxygen)은 각각 하기 표1과 같았다.For molten iron of 0.01 ~ 0.90wt% of carbon, 0.10wt% of silicon, 0.10 ~ 1.00wt% of manganese, and 0.02 ~ 0.08wt% of aluminum, finish the Songsan refining in 100 ton converter and add aluminum to molten steel during tapping Was deoxidized, and iron alloy was added to adjust the molten steel component. The ladle 1 to hold the molten steel 2 was transferred to a PI refining apparatus, and the lance 6 was lowered from the top to be deposited on the molten steel and Ca (OH) 2 was blown. The powder blowing amount was 0 to 1.4 kg per ton of molten steel, respectively, as shown in Table 1 below, and the powder blowing rate was controlled to 50 kg per minute. At this time, argon was used as the transport gas, and the transport gas pressure was 8.0 kg / cm 2 and the flow rate was 0.75. Adjusted to Nm 3 / min. As a result of collecting and analyzing the molten steel sample after powder injection, the total oxygen amount representing the hydrogen content and the inclusion content of the molten steel was as shown in Table 1 below.

구 분division 비교예1Comparative Example 1 비교예2Comparative Example 2 발명예1Inventive Example 1 발명예2Inventive Example 2 발명예3Inventive Example 3 비교예3Comparative Example 3 분체취입량(kg/t-s)Powder blowing amount (kg / t-s) 00 0.30.3 0.40.4 0.80.8 1.21.2 1.41.4 수소함량(ppm)Hydrogen content (ppm) ≤2≤2 88 1111 2121 2929 3131 전산소량(ppm)Oxygen amount (ppm) 117117 108108 116116 113113 121121 119119

상기 표1에 나타난 바와같이, 분체취입을 하지 않은 비교예(1)의 경우, 수소함량이 2ppm 이하로 매우 낮음을 알 수 있다.As shown in Table 1, in Comparative Example (1) without powder injection, it can be seen that the hydrogen content is very low, 2ppm or less.

상기 용강을 담은 레이들을 RH 진공탈가스 장치로 이송하고, 용강환류를 실시하였다. 용강을 환류시킬 때 진공조의 내부압력을 0.01 기압 이하로 낮추면서 상승관에 아르곤가스를 유량 용강1톤당 0.40Nm3/min, 압력 8.0kg/cm2범위로 제어하였다. RH에서 상기 용강을 각각 12분 환류시킨후 용강시료를 채취하고 분석한 결과를 하기표 2에 나타내었다.The ladle containing the molten steel was transferred to an RH vacuum degassing apparatus, and molten steel was refluxed. When the molten steel was refluxed, the argon gas was controlled to 0.40 Nm 3 / min per ton of flow rate molten steel at a pressure of 8.0 kg / cm 2 while lowering the internal pressure of the vacuum chamber to 0.01 atm or less. After the molten steel was refluxed for 12 minutes at RH, the molten steel sample was collected and analyzed. The results are shown in Table 2 below.

구 분division 비교예1Comparative Example 1 비교예2Comparative Example 2 발명예1Inventive Example 1 발명예2Inventive Example 2 발명예3Inventive Example 3 비교예3Comparative Example 3 수소함량(ppm)Hydrogen content (ppm) ≤2≤2 22 33 22 22 33 전산소량(ppm)Oxygen amount (ppm) 2626 2424 1010 99 88 1313

상기 표2에서 알 수 있는 바와 같이, Ca(OH)2분체를 취입하는 경우에도 RH환류후 수소함량은 2-3ppm으로 낮아지며 이는 수소함유분체를 취입하지 않는 경우 즉 비교예(1)과 유사한 값을 나타내는 것으로 확인되었다. 반면에 RH 환류후 전산소량은 발명예(1)-(3)이 8-10ppm으로, 분체를 취입하지 않은 비교예(1)과 분체취입량이 상대적으로 적은 비교예(2)보다 현저하게 낮음을 알 수 있다. 이는 RH에서 용강환류중 용강에서 수소기포가 발생되어 개재물과 충돌하여 개재물을 포집하고, 부상분리하기 때문에 얻어진 결과이다. 한편, 분체를 용강 1톤당 1.4kg 취입한 비교예(3)이 경우 전산소량을 저감시키는 측면에서 발명예와 유사한 결과를 나타내고 있으나, 분체취입량이 증가된 효과를 나타내지는 못하는 것으로 밝혀졌다. 이와같이 분체를 과량 취입하면 제강온도에서 용강내 수소가스가 일정치 이상은 용해되지 않으며 이로 인해 취입분체는 용강에 용해되지 못한채 부상되어버린 결과로 생각되어진다.As can be seen from Table 2, even when Ca (OH) 2 powder is blown, the hydrogen content after RH reflux is lowered to 2-3 ppm, which is similar to that of Comparative Example (1) when the hydrogen-containing powder is not blown. It was confirmed to represent. On the other hand, the total oxygen amount after RH reflux was 8-10 ppm of Inventive Examples (1)-(3), which was significantly lower than that of Comparative Example (1) without powder injection and Comparative Example (2) with relatively low powder injection amount. Able to know. This is the result obtained because hydrogen bubbles are generated in molten steel during the reflux of molten steel at RH, collide with the inclusions, trap the inclusions, and float. On the other hand, Comparative Example (3) in which the powder was blown at 1.4 kg per ton of molten steel showed similar results to the invention example in terms of reducing the total oxygen, but it was found that the powder blowing amount did not show an increased effect. In this way, when excessively blown the powder, hydrogen gas in the molten steel does not dissolve more than a certain value at the steelmaking temperature, and thus the blown powder is not dissolved in the molten steel.

실시예 2Example 2

상기 실시예 1과 동일한 용철을 대상으로 100톤 전로에서 송산취련을 종료하고 출강시 용강에 알루미늄을 첨가시켜 용강을 탈산하였다. 용강을 담은 레이들을 PI 정련장치로 이송하고 상부로부터 랜스를 용강에 침적시키고 TiH4를 취입하였다. 분체취입량은 용강1톤당 각각 하기 표3과 같이 0내지 0.5kg이었으며, 분체취입속도는 분당 40kg으로 제어하였다. 이때 수송가스의 압력과 유량은 실시예 1과 동일하게 하였다. 분체취입후 및 RH에서 용강을 12분 환류시킨 후 용강시료를 채취하여 분석한 결과를 하기 표3에 나타내었다. RH에서 용강환류조건은 실시예 1과 동일하게 유지시켰다.For the same molten iron as in Example 1, the termination of the Songsan blow in a 100 ton converter and aluminum was added to the molten steel during tapping to deoxidize the molten steel. The ladle containing the molten steel was transferred to a PI refining apparatus, from which the lance was deposited in the molten steel and TiH 4 was blown. The powder blowing amount was 0 to 0.5kg per ton of molten steel, respectively, as shown in Table 3 below, and the powder blowing rate was controlled to 40kg per minute. At this time, the pressure and flow rate of the transport gas were the same as in Example 1. After powder injection and after 12 minutes of refluxing molten steel at RH, the molten steel sample was collected and analyzed. The molten steel reflux condition in RH was maintained the same as in Example 1.

구 분division 비교예1Comparative Example 1 비교예4Comparative Example 4 발명예4Inventive Example 4 발명예5Inventive Example 5 발명예6Inventive Example 6 비교예5Comparative Example 5 분체취입량(kg/t-s)Powder blowing amount (kg / t-s) 00 0.070.07 0.140.14 0.280.28 0.420.42 0.500.50 분체취입후After powder blowing 수소함량(ppm)Hydrogen content (ppm) 22 66 1111 2020 3131 3030 전산소량(ppm)Oxygen amount (ppm) 117117 104104 116116 128128 112112 120120 RH환류후After RH reflux 수소함량(ppm)Hydrogen content (ppm) ≤2≤2 2-32-3 ≤2≤2 ≤2≤2 ≤2≤2 2-32-3 전산소량(ppm)Oxygen amount (ppm) 25-3025-30 25-3025-30 5-105-10 5-105-10 5-105-10 10-1510-15

상기 표3에서 알 수 있는 바와 같이, TiH4분체를 취입하는 경우에도, RH 환류후 수소함량은 2-3ppm 으로 낮아지는 것으로 밝혀졌으며, RH 환류후 전산소량은 발명예 (4)-(6)이 5-10ppm으로 분체를 취입하지 않은 비교예(1)과 분체취입량이 상대적으로 적은 비교예(5)보다 현저하게 낮음을 알 수 있다. 이는 RH에서 용강환류중 용강에서 수소기포가 발생되어 개재물과 충돌하여 개재물을 포집하고 부상분리하기 때문에 얻어진 결과이다. 분체를 용강 1톤당 0.50kg 취입한 비교예(5)의 경우 전산소량을 저감시키는 효과는 본발명과 유사하나 분체취입량이 증가된 효과를 나타내지 못하는 것으로 나타났다.As can be seen from Table 3, even when the TiH 4 powder is blown, the hydrogen content after RH reflux was found to be lowered to 2-3ppm, and the total oxygen content after RH reflux is inventive examples (4)-(6) It can be seen that it is significantly lower than Comparative Example (1) in which powder is not blown at 5-10 ppm and Comparative Example (5) in which the powder blowing amount is relatively small. This result is obtained because hydrogen bubbles are generated in molten steel during the reflux of RH and collide with inclusions to trap inclusions and float. In Comparative Example (5) in which 0.50 kg of powder was blown per ton of molten steel, the effect of reducing total oxygen was similar to that of the present invention, but the powder blowing amount was not shown to be increased.

상술한 바와 같이, 본 발명은 수소함유 화합물 분체를 용강중에 취입함으로써 처리후 수소농도는 종래와 유사하나, 전산소량의 저감효과는 종래의 20∼25ppm 수준에서 5-10ppm을 얻게됨으로써, 대폭적인 개재물 점감효과를 실현할 수 있게 되었다.As described above, the present invention is similar to the conventional hydrogen concentration after the treatment by injecting the hydrogen-containing compound powder in molten steel, but the effect of reducing the total oxygen amount is 5-10ppm at the conventional 20-25ppm level, thereby significantly including The taper effect can be realized.

Claims (1)

고청정강을 제조하는 방법에 있어서,In the method of manufacturing high clean steel, 전로로부터 출강된 용강(2)을 담은 레이들(1)을 분체취입이 가능한 공정으로 이송하는 단계;Transferring the ladle 1 containing the molten steel 2 pulled out of the converter to a process capable of powder blowing; 레이들(1) 상부로부터 상취랜스(6)를 하강하여 용강에 침적시키고, 랜스(6)를 통해 수소가스를 함유한 1mm이하의 화합물 분체(5) Ca(OH)2:용강 1톤당 0.4∼1.2kg또는 TiH4:용강 1톤당 0.14∼0.42kg을, 압력이 5.0∼10.0kg/cm2이고 유량이 0.5∼1.0 Nm3/min의 불황성의 수송가스와 동시에 분당 30∼70kg의 속도로 취입하는 단계; 및The upper lance 6 is lowered from the upper part of the ladle 1 and deposited in molten steel, and the compound powder of less than 1 mm containing hydrogen gas (5) Ca (OH) 2 : 0.4 to 1 ton of molten steel through the lance 6. 1.2 kg or TiH 4 : 0.14 to 0.42 kg per ton of molten steel, blown at a speed of 30 to 70 kg per minute simultaneously with inert transport gas with a pressure of 5.0 to 10.0 kg / cm 2 and a flow rate of 0.5 to 1.0 Nm 3 / min step; And 레이들(1)을 RH로 이송하여, 아르곤가스를 용강 1톤당 0.32∼0.80Nm3/hr범위의 유량과, 5.0∼10.0kg/cm2범위의 압력으로 불어넣어 용강을 환류함으로써 용강에 다량 용해된 수소가 레이들의 용강내부에서 수소기포(11)로 발생되게 하여 개재물을 제거하는 단계를 포함하여 구성되는 고청정강의 제조방법The ladle 1 is transferred to RH, and argon gas is melted in molten steel by refluxing the molten steel by blowing a flow rate in the range of 0.32 to 0.80 Nm 3 / hr per ton of molten steel and a pressure in the range of 5.0 to 10.0 kg / cm 2. Method for producing a high clean steel comprising the step of removing the inclusions by causing the generated hydrogen to be hydrogen bubbles in the molten steel inside the ladle
KR1019970063382A 1997-11-27 1997-11-27 A method for manufacturing high-clean steel KR100328052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970063382A KR100328052B1 (en) 1997-11-27 1997-11-27 A method for manufacturing high-clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970063382A KR100328052B1 (en) 1997-11-27 1997-11-27 A method for manufacturing high-clean steel

Publications (2)

Publication Number Publication Date
KR19990042540A KR19990042540A (en) 1999-06-15
KR100328052B1 true KR100328052B1 (en) 2002-05-13

Family

ID=37478488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970063382A KR100328052B1 (en) 1997-11-27 1997-11-27 A method for manufacturing high-clean steel

Country Status (1)

Country Link
KR (1) KR100328052B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752202B2 (en) 2012-05-14 2017-09-05 Posco High cleanliness molten steel production method and refining device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619006A (en) * 2022-02-14 2022-06-14 包头钢铁(集团)有限责任公司 Method for controlling inclusions in pipeline steel during ladle replacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752202B2 (en) 2012-05-14 2017-09-05 Posco High cleanliness molten steel production method and refining device

Also Published As

Publication number Publication date
KR19990042540A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US6436169B2 (en) Method of operating a copper smelting furnace
DE19608530C2 (en) Use of pure CO¶2¶ gas or a gas essentially containing CO¶2¶ as a carrier gas in the treatment of steel in an electric arc furnace
KR100328052B1 (en) A method for manufacturing high-clean steel
CN113667882A (en) Cold heading steel and production method thereof
KR100368239B1 (en) A process of refining molten steel for high clean steel
KR100530063B1 (en) Method for Manufacturing Steel Including Aluminum and Sulfur
KR100431866B1 (en) A method for manufacturing ultra low sulfur steel
KR20000042054A (en) Method for scouring high pure steel of aluminum deoxidation
KR100399220B1 (en) Refining method for steel sheet manufacturing
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
KR100213326B1 (en) Refining method of r.h vacuum degasing and the same device
KR20210109597A (en) Manufacturing method of Ti-containing ultra-low carbon steel
US3926623A (en) Process for purification of manganese alloys
JPH07224317A (en) Production of high cleanliness steel
SU1735408A1 (en) Process for treating slags for production of heavy nonferrous metals
KR100832997B1 (en) Method for Producing Al-Killed Steel with High Cleanliness
Hovestadt et al. Determining critical parameters of hydrogen reduction treatment of low copper-containing primary slags
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
WO2022270225A1 (en) Method for refining molten steel
JP2940358B2 (en) Melting method for clean steel
JP5387045B2 (en) Manufacturing method of bearing steel
JP2023003384A (en) Denitrification treatment method of molten steel
JP3736159B2 (en) Steel manufacturing method with excellent cleanliness
JPS59197532A (en) Dry refining of blister copper
KR940008457B1 (en) Desulfurising method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130225

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160229

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee