KR100325334B1 - Method for controlling thickness of strip in continuous cold rolling - Google Patents
Method for controlling thickness of strip in continuous cold rolling Download PDFInfo
- Publication number
- KR100325334B1 KR100325334B1 KR1019970033377A KR19970033377A KR100325334B1 KR 100325334 B1 KR100325334 B1 KR 100325334B1 KR 1019970033377 A KR1019970033377 A KR 1019970033377A KR 19970033377 A KR19970033377 A KR 19970033377A KR 100325334 B1 KR100325334 B1 KR 100325334B1
- Authority
- KR
- South Korea
- Prior art keywords
- rolling
- roll gap
- low speed
- obtaining
- speed normal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
- B21B37/18—Automatic gauge control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/28—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/02—Transverse dimensions
- B21B2261/04—Thickness, gauge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/12—Rolling load or rolling pressure; roll force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/02—Roll dimensions
- B21B2267/06—Roll diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2271/00—Mill stand parameters
- B21B2271/02—Roll gap, screw-down position, draft position
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
본 발명은 연속냉간압연 공정에서 자동 판두께제어시스템을 이용하여 냉연강판의 판두께를 제어하는 방법에 관한 것으로서, 특히 판두께제어시스템 내부의 중 요제어인자(factor)중 하나인 소성계수를 저속 정상압연구간에서 물리적인 압연현 상효과를 반영하는 방법으로 구하여, 보다 정도 높은 판두께를 얻을 수 있도록 한 것이다.The present invention relates to a method for controlling the plate thickness of a cold rolled steel sheet using an automatic plate thickness control system in a continuous cold rolling process, and in particular, a low plasticity factor, which is one of the important control factors in the plate thickness control system, It was obtained by a method that reflects the effect of physical rolling phenomenon during the steady pressure study, so that a higher plate thickness can be obtained.
일반적으로, 연속냉간압연에서 원하는 코일길이방향의 판두께 품질을 얻기위해 AGC(automatic gauge control)시스템이 갖추어져 있다.Generally, an automatic gauge control (AGC) system is provided to achieve the desired sheet thickness quality in the continuous coil rolling.
AGC시스템중에는 FF(Feed Forward) AGC라는 것과 FB(FeedBack) AGC가 있는데, 전자는 #1 스탠드 입측에서 들어오는 모재의 판두께편차 외란을 이용하여, 후 자는 #1 스탠드 출측에서 발생하는 판두께편차를 이용하여, 최종적으로, #1 스탠드 출측 판두께 편차를 최소로 하기 위한 롤겝(roll gap)제어량을 결정한다.Among the AGC systems, there are FF (Feed Forward) AGC and FB (FeedBack) AGC. The former uses plate thickness deviation disturbance of the base material coming from the # 1 stand entrance, and the latter uses the plate thickness deviation generated from the
일반적인 AGC시스템의 구성을 개략적으로 설명하면 다음과 같다.The general configuration of the AGC system is as follows.
통상적인 냉간압연공정은 순차적으로 압연판의 두께를 감소시키도록 여러개 의 압연기 스탠드가 순차적으로 설치되는데, 그 중 특히 1번 스탠드에 적절한 크기의 롤갭이 형성될 수 있도록 AGC시스템이 집중적으로 설치된다.In a typical cold rolling process, a plurality of rolling mill stands are sequentially installed to sequentially reduce the thickness of the rolled sheet, and in particular, an AGC system is intensively installed so that a roll gap of an appropriate size may be formed in the first stand.
즉, 주어진 압연조건하에서 최상위 컴퓨터에 의해 계산된 1번 스탠드 압연기의 롤갭, 즉 상하 작업롤간의 간격은 상부 작업롤의 상부에 설치된 스크류 다운에 의해 조절된다. 이렇게 초기치가 설정된 후 압연이 진행되면, 압연된 판의 두께는 1번 스탠드의 후단에 설치된 두께 측정기에 의해 계측되고, 이를 목표 두께와 비교하여 오차가 허용 범위내에 들면 계속 압연을 진행한다. 그러나 오차가 크게 되면 그 오차를 줄이기 위해 공정제어용 컴퓨터가 실시간 제어를 실시하게 된다.In other words, under the given rolling conditions, the roll gap of the No. 1 stand rolling mill calculated by the uppermost computer, that is, the gap between the upper and lower working rolls, is controlled by the screw down installed on the upper part of the upper working roll. When rolling proceeds after the initial value is set in this way, the thickness of the rolled plate is measured by a thickness measuring instrument installed at the rear end of No. 1 stand, and the rolling is continued if the error is within the allowable range compared to the target thickness. However, if the error is large, the process control computer performs real time control to reduce the error.
공정제어용 컴퓨터는 판두께 오차를 줄이기 위해 작동해야 할 유압시스템의 제어량을 계산하고 이를 하부 작업롤 하부에 설치된 유압시스템에 지령을 내리게 되며, 이와 같은 일련의 동작을 판두께 오차가 허용범위에 들 때까지 반복하게 된다. 이러한 판두께 제어의 실시간 제어를 통상 AGC라고 한다.The process control computer calculates the control amount of the hydraulic system to be operated in order to reduce the plate thickness error, and commands the hydraulic system installed under the lower work roll. Will be repeated. Real-time control of such plate thickness control is commonly referred to as AGC.
이러한 AGC에서 적절한 롤갭 제어량(△S)을 구하기 위하여는, 롤갭 제어량(△S)을 구하는데 이용되는 변수인 소성계수(M)가 구해져야 하며, 상기 소성계수(M)를 구하는데 압연하중 예측식이 이용되게 된다.In order to obtain an appropriate roll gap control amount (ΔS) in this AGC, the plasticity coefficient (M), which is a parameter used to obtain the roll gap control amount (ΔS), should be obtained, and the rolling load prediction is used to obtain the plasticity coefficient (M). The formula will be used.
상기한 바와 같이, 롤갭제어량을 결정하기 위한 AGC제어 블럭(block) 내부에 는, 소성계수(M)라는 인자가 있는데, 이는 압연의 상태를 반영하는 값으로서, 종래에는 압연개시 전 고속정상압연을 기준으로 하여 한 코일에 한번만 계산되어 사용 되어 왔다.As described above, in the AGC control block for determining the roll gap control amount, there is a factor of plasticity factor (M), which reflects the state of rolling, and conventionally, high-speed normal rolling before rolling starts. As a standard, only one coil has been calculated and used.
그런데, 연속냉간압연은 코일이 연속적으로 연결되어 작업하므로 고속정상압연(1000m/min)뿐만 아니라, 코일간의 용접점 통과와, 권취를 위해 저속정상압연 (100∼200m/min정도)으로도 작업을 수행한다.However, in continuous cold rolling, the coils are continuously connected to each other, so not only high speed normal rolling (1000 m / min) but also low speed normal rolling (about 100 to 200 m / min) for welding and winding between coils is performed. To perform.
하지만 AGC에 필요한 소성계수는 고속정상압연을 기준으로 코일당 한 번만 계산되므로, 저속압연시 고속압연을 기준으로 구해진 소성계수를 가지고 AGC제어를 수행할 수 밖에 없으므로, 물리적인 압연상황과는 맞지 않는 계수를 사용함으로써However, since the coefficient of plasticity required for AGC is calculated only once per coil on the basis of high-speed normal rolling, AGC control can only be performed with the plasticity coefficient obtained on the basis of high-speed rolling at low rolling speed, which is not suitable for the physical rolling situation. By using coefficients
출측판두께제어의 효율성이 떨어질 수 밖에 없었다.The efficiency of the plate thickness control was deteriorated.
본 발명은 연속냉간압연 공정에서 자동 판두께제어시스템을 이용하여 냉연강판의 판두께를 제어하는 방법에 관한 것으로서, 특히 판두께제어시스템 내부의 중 요제어인자(factor)중 하나인 소성계수를 저속 정상압연구간에서 물리적인 압연현 상효과를 반영하는 방법으로 구하여, 보다 정도 높은 판두께를 얻을 수 있는 방법 을 제공함에 그 목적이 있는 것이다.The present invention relates to a method for controlling the plate thickness of a cold rolled steel sheet using an automatic plate thickness control system in a continuous cold rolling process, and in particular, a low plasticity factor, which is one of the important control factors in the plate thickness control system, The purpose of this study is to provide a method to obtain a higher plate thickness by obtaining a method that reflects the effect of physical rolling phenomenon during the steady pressure study.
도 1은 연속냉간압연에서의 스트립의 판두께 제어장치 개략도,1 is a schematic diagram of a plate thickness control device of a strip in continuous cold rolling;
도 2는 연속냉간압연에서 압연속도를 나타낸 상태도,Figure 2 is a state diagram showing the rolling speed in continuous cold rolling,
도 3은 압연의 물리적인 현상을 나타내는 탄소성곡선을 나타낸 그래프,3 is a graph showing an elasticity curve showing the physical phenomenon of rolling;
도 4는 소성곡선에서 섭동방법에 의해 소성계수를 구하는 것을 설명하기 위한 그래프,4 is a graph for explaining the calculation of the plasticity coefficient by the perturbation method in the plasticity curve,
도 5는 본 발명에 의한 방법과 종래의 방법에 의해 제어된 출측판두께편차를 나타낸 그래프이다.Fig. 5 is a graph showing the exit plate thickness deviation controlled by the method according to the present invention and the conventional method.
상기와 같은 목적을 달성하기 위한 본 발명은, 냉간압연공정에서 통상의 셋 업모델이 적용된 AGC시스템을 이용하여 압연기를 제어함에 있어서,In order to achieve the above object, the present invention, in the cold rolling process to control the rolling mill using an AGC system to which a conventional setup model is applied,
저속정상압연시의 실적데이타와 조업데이타를 하기의 식(2)으로 표시되는 압연하중 예측식에 대입하여 저속정상압연시의 초기치 압연하중 Po를 구하는 단계.Calculating the initial value rolling load Po at the time of low-speed normal rolling by substituting the performance data and the operation data at the time of low-speed normal rolling into the rolling load prediction equation represented by the following equation (2).
(단, B : 압연판의 폭(B, width of the rolled sheet
k : 압연된 소재의 변형저항k: strain resistance of rolled material
Kt :압연기 전후방의 장력에 의한 영향항Kt: Influence term due to tension in front and rear of rolling mill
Dp :마찰계수 영향항Dp: Friction coefficient influence term
R : 압연기의 작업롤 반경R: working roll radius of rolling mill
H, h : 압연기의 입. 출측판두께 ):H, h: mouth of the rolling mill. Published thickness):
상기와 같이 구해진 초기치 압연하중 Po를 이용하여, 하기의 식(3)으로 표시 되는 압연기의 탄성 변형식에 대입하여, 셋업모델 상에서 유압실린더의 롤갭초기치 So를 구하는 단계,Obtaining the roll gap initial value So of the hydraulic cylinder on the set-up model by substituting the elastic deformation equation of the rolling mill represented by the following formula (3) using the initial value rolling load Po obtained as described above;
(단, So : 롤갭초기시(However, So: Roll gap initial stage
h : 압연기의 출측판두께h: Outer plate thickness of rolling mill
Po : 초기치 압연하중Po: Initial value rolling load
K : 탄성계수 ):K: Elastic modulus):
상기 구해진 압연하중 초기치 Po를 중심으로 하기의 식(4)로 표시되는 섭동(perturbation)방법으로 소성계수 M을 구하는 단계,Obtaining a plasticity coefficient M by a perturbation method represented by Equation (4) below the obtained rolling load initial value Po,
(단, P : 압연하중 함수(압연하중 예측식)(However, P: rolling load function (rolling load prediction formula)
α: 섭동 계수(0.001) ):α: perturbation coefficient (0.001)
상기 구해진 소성계수 M을 하기의 식(1a)(1b)에 대입하여 롤갭제어량을 구하는 단계,Obtaining the roll gap control amount by substituting the obtained plasticity coefficient M into the following equation (1a) (1b),
(단, △SFF: FF AGC의 롤갭 제어량(However, roll gap control amount of ΔS FF : FF AGC
△SFB: FB AGC의 롤갭 제어량△ S FB : Roll gap control amount of FB AGC
△H : 입측판두께 편차ΔH: Depth of plate thickness
△h : 출측판두께 편차△ h: deviation of the thickness of the plate
K : 탄성계수K: modulus of elasticity
M : 소성계수 );M: plasticity coefficient);
를 포함하여 구성되어, 저속정상압연을 수행하는 구간에서는 저속정상압연의조건에서 구해진 롤갭초기치(So)와 롤갭제어량(△S)으로 운전 제어함을 특징으로 한다.And a roll gap initial value (So) and a roll gap control amount (ΔS) obtained under the conditions of the low speed normal rolling in the section for performing the low speed normal rolling.
상기한 바와 같이, 자동화된 연속 냉간압연공장에서의 압연작업은 모든 공정 이 계산기에 의해 제어되고 있는데, 특히 제품의 길이방향 판두께를 확보하기 위해 압연개시 전에 구동기의 초기치(롤갭, 롤속도)를 결정하는 셋업(Set up)시스템과, 압연작업중 발생하는 여러 외관을 효과적으로 제어하기 위한 AGC제어시스템이 일반 적으로 사용되고 있다.As mentioned above, the rolling work in the automated continuous cold rolling mill is controlled by a calculator. In particular, the initial value of the actuator (roll gap, roll speed) is determined before rolling starts in order to secure the longitudinal thickness of the product. A set up system for determining and an AGC control system for effectively controlling various appearances during rolling operations are commonly used.
통상의 AGC시스템은 도 1과 같이 1번 스탠드에 집중되어 있으며, FF(Feed Forward)와 FB(Feed Back)로 구성되어 있다.A typical AGC system is concentrated in the first stand as shown in FIG. 1 and is composed of FF (Feed Forward) and FB (Feed Back).
FF는 1번 스탠드 입측에 존재하는 판두께편차를, FB는 1번 스탠드 출측에 존재하는 판두께편차를 제어하기 위해 통상 다음과 같은 로직으로 구성되어 있다.FF is generally composed of the following logic to control the plate thickness deviation existing on the
단, △SFF: FF AGC의 롤갭 제어량However, △ S FF : Roll gap control amount of FF AGC
△SFB: FB AGC의 롤갭 제어량△ S FB : Roll gap control amount of FB AGC
△H : 입측판두께 편차ΔH: Depth of plate thickness
△h : 출측판두께 편차△ h: deviation of the thickness of the plate
K : 탄성계수K: modulus of elasticity
M : 소성계수M: plasticity coefficient
이때, 롤갭제어량을 결정하기 위해 △H, △h는 각각 입측 및 출측판두께 센 서에서 측정되는 값이고, K는 압연기의 기계적인 성질을 나타내는 값으로서, 미리 측정되어 결정되는 값이다. 소성계수 M은 스트립의 물리적인 특성을 나타나는 값으 로서 스트립 및 압연조건에 따라 변화한다.At this time, in order to determine the roll gap control amount, ΔH and Δh are values measured by the entry and exit plate thickness sensors, respectively, and K is a value representing the mechanical properties of the rolling mill, and is a value measured and determined in advance. The plasticity coefficient M is a value that represents the physical properties of the strip and changes with strip and rolling conditions.
한편, 연속 냉간압연은 스트립을 용접하여 연속적으로 압연을 수행하기 때문에, 용접 시간 및 권취를 위해 압연속도를 도 2와 같이 저속정상, 가속, 고속정상, 감속, 저속정상을 반복하여 압연을 수행한다.On the other hand, since continuous cold rolling continuously performs the rolling by welding the strip, the rolling speed is repeated by repeating the low speed, acceleration, high speed, deceleration, and low speed as shown in FIG. 2 for welding time and winding. .
그런데, 종래에는 소성계수 M을 고속정상을 기준으로 하여 한 코일당 한 번 만 연산하여, 전 구간에 적용하여 사용되어 왔다.In the related art, the plasticity coefficient M has been calculated and used only once per coil based on the high-speed normal, and has been applied to all sections.
따라서, 고속정상을 벗어난 구간에서는 물리적인 현상과 맞지 않는 소성계수 M을 사용함으로써 두께제어정도가 떨어질 수 밖에 없는 단점을 갖고 있다.Therefore, the use of the plasticity coefficient M that does not match the physical phenomenon in the section out of the high-speed normal has a disadvantage that the thickness control accuracy can not be reduced.
본 발명은 연속냉간압연에서 판두께를 제어하는데 있어 통상의 방법이 갖고 있는 문제점을 해결하기 위해, 물리적인 현상을 보다 정확하게 예측할 수 있는 소성계수 M을 구하여 AGC에 대입함으로써 판두께 정도를 높이는 방법을 제시한 것이다.The present invention is to solve the problem of the conventional method in controlling the plate thickness in continuous cold rolling, to obtain a plastic coefficient M that can predict the physical phenomenon more accurately and to substitute the AGC method to increase the plate thickness degree It is presented.
이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
먼저, 하기표 1에 나타낸 것과 같은 저속정상압연 실적데이타(실제 조업시의 경험에 의해 축적된 데이타)와 도 3에 도시된 바와 같은 통상적인 탄소성곡선을 이용하여 물리적으로 전개하여 초기치 압연하중 Po를 구한다.First, the initial rolling load Po was physically developed by using low-speed normal rolling performance data (data accumulated by actual operation experience) as shown in Table 1 and a conventional elastoplastic curve as shown in FIG. Obtain
여기서 도 3의 통상적인 탄소성곡선을 이용하여 구한다는 의미는, 탄소성곡 선을 도출하는 압연하중 예측식에 상기와 같은 저속정상압연 실적데이타와 필요한 조업데이터를 대입하여 직접 계산을 통해 구한다는 의미도 된다.In this case, the calculation using the conventional elasto-plastic curve of FIG. 3 means that the low-speed normal rolling performance data and necessary operation data are obtained by direct calculation into the rolling load prediction equation for deriving the elasto-plastic curve. You may also
압연하중 P는 Hill식으로도 널리 알려진 압연하중 예측식을 이용하여 구할 수 있다. 압연하중 예측식은 냉간압연공정, 특히, AGC시스템이 적용된 공정에 있어서 공정과 제어를 위하여 일반적으로 사용되는 식이며, 하기의 수학식2와 같이 표시된다.The rolling load P can be obtained by using the rolling load prediction equation, also known as the Hill equation. The rolling load prediction formula is a formula generally used for a process and control in a cold rolling process, in particular, a process to which an AGC system is applied, and is represented by Equation 2 below.
여기서, B : 압연판의 폭Where B is the width of the rolled plate
k : 압연된 소재의 변형저항k: strain resistance of rolled material
Kt : 압연기 전후방의 장력에 의한 영향항Kt: Influence term due to tension in front and rear of rolling mill
Dp : 마찰계수 영향항Dp: coefficient of friction influence
R : 압연기의 작업롤 반경R: working roll radius of rolling mill
H, h : 압연기의 입, 출측판두께H, h: mouth and exit plate thickness of rolling mill
다음으로, 상기와 같이 구해진 초기치 압연하중 Po를 이용하여, 셋업모델 상에서 유압실린더의 롤갭초기치So를 구한다. 롤갭초기치 So를 구하기 위하여 셋업모델에서는 하기의 수학식3과 같은 압연기의 탄성 변형식을 이용한다. 하기의 압연기 의 탄성 변형식은 압연기의 셋업모델에서 롤갭초기치So를 구하기 위하여 일반적으로 사용되는 식이다.Next, the roll gap initial value So of the hydraulic cylinder is calculated | required on a setup model using the initial stage rolling load Po calculated | required as mentioned above. In order to calculate the roll gap initial value So, the setup model uses the elastic deformation formula of the rolling mill as shown in Equation 3 below. The following elastic deformation formula of the rolling mill is a formula generally used to obtain the roll gap initial value So in the setup model of the rolling mill.
여기서, So : 롤갭초기치Where So: Roll gap initial value
h : 압연기의 출측판두께h: Outer plate thickness of rolling mill
Po : 초기치 압연하중Po: Initial value rolling load
K : 탄성계수K: modulus of elasticity
그 다음, 앞에서 구한 압연하중 초기치 P를 중심으로 도 4에서와 같이 섭동(perturbation)방법으로 소성계수 M을 구한다. 수식전개는 다음과 같다.Next, the plasticity coefficient M is calculated | required by the perturbation method as shown in FIG. 4 centering on the rolling load initial value P calculated | required previously. The expression evolution is as follows.
여기서, P : 압연하중 함수(압연하중 예측식)Where P: rolling load function (rolling load prediction equation)
α: 섭동 계수(0.001)α: perturbation coefficient (0.001)
상기 α는 섭동계수로서, 소성계수(M)를 수치해석적인 방법으로 계산하는데있어서 사용되는 계수이다. 즉, 본 발명에서는 수치해석 방법 중의 하나인 중앙 편차법(central difference method)을 사용하였는데, 이 방법은 압연판의 목표 두께 h에 비해 약간 두꺼운 경우, 즉 h + αh 에 대해 압연하중을 계산하고, 또다시 목표두께 h 에 비해 약간 얇은 경우, 즉 h - αh 에 대해 압연하중을 계산하는데, 여기서 α의 크기는 0.001로써 목표두께의 약 0.1% 정도로 한다. 이렇게 구해진 두 개의 압연하중의 차이는 수학식4의 분자에 해당하는 △P가 되고, 수학식4의 분포는 두 경우의 판두께 차이인 △h = 2αh가 된다.Α is a perturbation coefficient, which is a coefficient used in calculating the plasticity coefficient M by a numerical method. That is, in the present invention, the central difference method (central difference method), which is one of numerical methods, is used, which is slightly thicker than the target thickness h of the rolled plate, that is, the rolling load is calculated for h + αh, Again, the rolling load is calculated for h-αh where it is slightly thinner than the target thickness h, where α is 0.001, about 0.1% of the target thickness. The difference between the two rolling loads thus obtained is ΔP corresponding to the molecule of Equation 4, and the distribution of Equation 4 is Δh = 2αh, which is the difference in plate thickness in both cases.
여기서, 구해진 소성계수 M을 상기 식(1)에 대입하고 롤갭제어량(△S)을 구 하여, 용접 및 권쥐를 위해 저속정상압연을 수행하는 구간에서는 저속정상압연의 조건에서 구해진 롤갭초기치(So)를 적용하고 상기 구해진 롤갭제어량(△S)으로 운 전 제어함으로써, #1 스탠드 출측판두께를 압연속도의 변화에 대응하여 효과적으로 보다 정도높게 제어할 수 있다.Here, the roll gap initial value (So) obtained under the conditions of low speed normal rolling in the section where the obtained plasticity coefficient M is substituted into Equation (1) to obtain the roll gap control amount (ΔS), and the low speed normal rolling is performed for welding and winding. By applying and controlling the operation with the obtained roll gap control amount (ΔS), it is possible to effectively control the # 1 stand exit plate thickness to a higher degree effectively in response to the change of the rolling speed.
다음은 본 발명이 제시한 방법에 의해, 상기 표 1의 실제 압연조건으로 실시한 예이다.The following is an example carried out under the actual rolling conditions of Table 1 by the method proposed by the present invention.
5개의 스탠드로 구성된 연속냉간압연기에서 1번 스탠드의 출측판두께를 제어 하기 위해 본 발명이 제시한 방법으로 판두께제어를 수행하였다.In the continuous cold rolling mill consisting of five stands, plate thickness control was performed by the method proposed by the present invention to control the exit plate thickness of
도 5는 1번 스탠드 출측판두께편차를 나타낸 것으로서 횡축은 압연시간, 종축은 출측판두께편차를 나타낸다. 여기서 실선은 본 발명이 제시한 방법으로 얻은 값이고, 점선은 통상의 방법으로 얻은 출측판두께편차이다. 이때 1번 스탠드 출측 판두께편차가 약 50%정도 개선된 효과를 보이고 있다.5 shows the stand plate thickness deviation of the first stand, the horizontal axis represents the rolling time, the vertical axis represents the plate thickness deviation. Here, the solid line is the value obtained by the method proposed by the present invention, and the dotted line is the plate thickness deviation obtained by the conventional method. At this time, the plate thickness deviation of stand No. 1 shows about 50% improvement.
이상과 같은 본 발명은 연속냉간압연 공정에서 자동 판두께제어시스템을 이 용하여 냉연강판의 판두께를 제어하는 방법에 관한 것으로서, 특히 판두께제어시스템 내부의 중요제어인자(factor)중 하나인 소성계수를 저속 정상압연구간에서 물리적인 압연현상효과를 반영하는 방법으로 구하여, 보다 정도 높은 판두께를 얻을 수 있는 효과가 있다.As described above, the present invention relates to a method of controlling the thickness of a cold rolled steel sheet using an automatic sheet thickness control system in a continuous cold rolling process, and in particular, a plasticity factor, which is one of important control factors in the sheet thickness control system. Is obtained by a method that reflects the effect of physical rolling phenomenon between low-speed steady pressure studies, and it is effective to obtain a higher sheet thickness.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970033377A KR100325334B1 (en) | 1997-07-18 | 1997-07-18 | Method for controlling thickness of strip in continuous cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970033377A KR100325334B1 (en) | 1997-07-18 | 1997-07-18 | Method for controlling thickness of strip in continuous cold rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990010571A KR19990010571A (en) | 1999-02-18 |
KR100325334B1 true KR100325334B1 (en) | 2002-08-21 |
Family
ID=37478194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970033377A KR100325334B1 (en) | 1997-07-18 | 1997-07-18 | Method for controlling thickness of strip in continuous cold rolling |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100325334B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100920574B1 (en) * | 2002-12-23 | 2009-10-08 | 주식회사 포스코 | Continuous cold rolling method of sheet steel |
-
1997
- 1997-07-18 KR KR1019970033377A patent/KR100325334B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19990010571A (en) | 1999-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101648215B (en) | Method for controlling strip-steel edge drop of tandem mills | |
CN109821909B (en) | Method for controlling thickness deviation of two sides of wide and thick plate | |
US3650135A (en) | Control for rolling means having successine rolling stands | |
US3940598A (en) | Method and apparatus for controlling roll gaps of cold rolling mills | |
JP4808670B2 (en) | Skin pass rolling shape control method | |
KR100325334B1 (en) | Method for controlling thickness of strip in continuous cold rolling | |
JPS641210B2 (en) | ||
KR100314840B1 (en) | Automatic stop control method of tail end of strip of hot coiler | |
KR100758237B1 (en) | Control method of edge drop of tendem mill | |
JP2001269706A (en) | Method for controlling shape at continuous cold rolling | |
KR0148612B1 (en) | Reverse rolling control system of pair cross rolling mill | |
KR100721918B1 (en) | Apparatus for improving the form of cold-rolled strip using supporting rolls | |
JP4813014B2 (en) | Shape control method for cold tandem rolling mill | |
KR100939377B1 (en) | Method for the meandering control in strip-casting process | |
KR100431843B1 (en) | Method for controlling gap of rolls in cold mill | |
JP2000015409A (en) | Continuous casting method | |
KR20020002044A (en) | A method of controlling roll gap in a rolling machine | |
JPH05208204A (en) | Method for controlling shape in strip rolling | |
JP3506119B2 (en) | Method of changing rolling load distribution of tandem rolling mill | |
JPS5852724B2 (en) | Metal rolling machine and setting method | |
KR100273949B1 (en) | Device and method for control of thickness of plate in cold rolling | |
KR950009985B1 (en) | Thickness control method for cold rolling steel plate | |
KR100929015B1 (en) | Prediction of rolling load by calibrating plasticity factor of rolled material | |
RU1773553C (en) | Method of controlling ingot day-out on continuous casting machine | |
KR100368262B1 (en) | Method for setting up roll force in cold roll mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130201 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140204 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150203 Year of fee payment: 14 |
|
LAPS | Lapse due to unpaid annual fee |