KR100323492B1 - Thermoelectric material by the mechanical grinding method and its manufacturing method - Google Patents

Thermoelectric material by the mechanical grinding method and its manufacturing method Download PDF

Info

Publication number
KR100323492B1
KR100323492B1 KR1019980042228A KR19980042228A KR100323492B1 KR 100323492 B1 KR100323492 B1 KR 100323492B1 KR 1019980042228 A KR1019980042228 A KR 1019980042228A KR 19980042228 A KR19980042228 A KR 19980042228A KR 100323492 B1 KR100323492 B1 KR 100323492B1
Authority
KR
South Korea
Prior art keywords
zro
thermoelectric material
manufacturing
thermoelectric
raw material
Prior art date
Application number
KR1019980042228A
Other languages
Korean (ko)
Other versions
KR20000025229A (en
Inventor
이길근
김병기
하국현
이동원
Original Assignee
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원 filed Critical 황해웅
Priority to KR1019980042228A priority Critical patent/KR100323492B1/en
Publication of KR20000025229A publication Critical patent/KR20000025229A/en
Application granted granted Critical
Publication of KR100323492B1 publication Critical patent/KR100323492B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Abstract

(1) 용해, 응고, 분쇄를 거쳐 Bi2Te3계 원료 분말을 제조하는 단계와,(1) dissolving, solidifying and pulverizing to produce Bi 2 Te 3 -based raw material powder;

(2) 상기 원료 분말을 메카니칼그라인딩(mechanical grinding)하여 미세한 입자의 혼합물로 분산시키는 단계와,(2) mechanically grinding the raw powder to disperse it into a mixture of fine particles;

(3) 그라인딩된 원료를 성형 및 소결하는 단계로 이루어지는 열전재료 제조방법 및,(3) a method for manufacturing a thermoelectric material, comprising forming and sintering the ground raw material;

상기 공정 (1)로 제조된 원료분말에 나노미터(nanometer) 크기의 ZrO2입자를 4 vol.% 이하로 첨가하는 것을 특징으로 하는 열전재료 제조방법,Method for producing a thermoelectric material, characterized in that the addition of nanometer (nanometer) ZrO 2 particles of 4 vol.% Or less to the raw material powder prepared in step (1),

그리고, 상기 방법들에 의하여 생산되는, 나노미터(nanometer) 크기의 ZrO2가 4 vol.% 이하로 함유되는 것을 특징으로 하는 열전재료를 제공한다.In addition, it provides a thermoelectric material, characterized in that the nanometer-sized ZrO 2 produced by the above method is contained in 4 vol.% Or less.

Description

메카니칼그라인딩법에 의한 열전재료 그 제조방법Thermoelectric material manufacturing method by mechanical grinding method

본 발명은 메카니칼그라인딩법(mechanical grinding)에 의한 열전재료 및 그 제조방법에 관한 것이다.The present invention relates to a thermoelectric material by mechanical grinding and a method of manufacturing the same.

열전재료의 열전 에너지변환능은 재료의 성능지수(z=α2/γκ, α:Seebeck 계수, γ: 전기비저항, κ: 열전도도)로 나타내며 성능지수가 클수록 열전재료의 에너지 변환효율이 높다. 성능지수를 좌우하는 함수 중에서 Seebeck계수, 전기비저항은 주로 전하의 산란에 의존하고, 열전도도는 주로 격자(phonon)의 산란에 의존한다. 전하의 산란이 증가하면 전기비저항이 증가하고, 격자(phonon)의 산란이 증가하면 열전도도가 저하하여, 전하의 산란과 격자의 산란은 성능지수에 서로 상반된 효과를 발휘한다.The thermoelectric energy conversion capability of thermoelectric material is expressed by the material's performance index (z = α 2 / γκ, α: Seebeck coefficient, γ: electric resistivity, κ: thermal conductivity), and the higher the performance index, the higher the energy conversion efficiency of the thermoelectric material. Among the functions that influence the figure of merit, the Seebeck coefficient and the electrical resistivity depend mainly on the scattering of charges, and the thermal conductivity mainly depends on the scattering of the phonons. As the scattering of the charge increases, the electrical resistivity increases, and when the scattering of the lattice (phonon) increases, the thermal conductivity decreases. Thus, scattering of the charge and scattering of the lattice have opposite effects on the performance index.

종래, 열전재료의 성능지수를 높이기 위한 제조방법으로 단결정성장법이 주로 이용되어 왔다. 그러나, 이 방법은 제조된 재료의 결정립 크기가 조대하게 되어 전하의 산란을 감소시켜 전기비저항의 저하에는 효율적이나, 효율적으로 격자의 산란을 유발시키지 못하여 열전도도의 저하에는 한계가 있다. 또한, 단결정성장법으로 제조된 단상의 열전재료는 결정립의 크기가 조대하여 쉽게 벽개파괴가 발생하여, 열전소자 제조를 위한 후속공정인 절단공정에서 재료의 손실이 많은 문제점을 지니고 있다.Conventionally, the single crystal growth method has been mainly used as a manufacturing method for increasing the performance index of thermoelectric materials. However, in this method, the grain size of the manufactured material becomes coarse, which reduces the scattering of charges and thus is effective in lowering the electrical resistivity, but it is not effective in inducing lattice scattering. In addition, the single-phase thermoelectric material manufactured by the single crystal growth method has a large grain size and easily cleavage occurs, which causes a lot of material loss in the cutting process, which is a subsequent process for manufacturing a thermoelectric device.

이와 같은 문제점을 극복하기 위하여 분말야금공정(용해+분쇄+소결)을 이용한 다결정의 단상 열전재료 제조법이 이용되고 있다. 이 방법은 재료의 결정립을 미세화시켜 벽개파괴는 억제시킬 수 있으나, 결정립이 미세화되어 많은 결정입계에서의 전하의 산란 증가로 인하여 전기비저항이 증가하여 열전특성이 저하되는 단점을 가지고 있다. 따라서 재료의 벽개파괴를 억제하기 위한 분말야금공정에 있어서는 어느 정도의 전하의 산란 증가는 피할 수 없으므로, 격자(phonon)의 산란을 효율적으로 제어하여 열전특성이 우수한 열전재료를 제조할 수 있는 제조방법의 개발이 요구된다.In order to overcome this problem, a polycrystalline single phase thermoelectric material manufacturing method using a powder metallurgy process (dissolution + pulverization + sintering) has been used. This method can reduce the cleavage by miniaturizing the grains of the material, but has the disadvantage that the thermoelectric properties are deteriorated due to the increase in the electrical resistivity due to the increase in the scattering of charges at the grain boundaries due to the refinement of the grains. Therefore, in the powder metallurgy process for suppressing cleavage of materials, an increase in scattering of charges to some extent is inevitable. Therefore, a manufacturing method capable of producing thermoelectric materials having excellent thermoelectric properties by efficiently controlling scattering of lattice (phonon) Development is required.

본 발명은, 상기와 같은 종래 방법들의 문제를 해결하기 위하여 안출된 것으로서, 전하의 산란과 격자의 산란을 효율적으로 제어하여 열전재료의 에너지변환능의 향상을 달성할 수 있는 다결정 열전재료 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the problems of the conventional methods as described above, and polycrystalline thermoelectric material and its manufacture capable of efficiently controlling the scattering of charge and scattering of the lattice to achieve the improvement of the energy conversion ability of the thermoelectric material It is an object to provide a method.

도 1은 본 발명의 제조공정의 흐름도,1 is a flow chart of the manufacturing process of the present invention,

도 2는 본 발명에 의해 제조된 열전재료의 열전특성을 나타내는 도면이다.2 is a view showing the thermoelectric properties of the thermoelectric material produced by the present invention.

상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

(1) 용해, 응고, 분쇄를 거쳐 원료 분말을 제조하는 단계와,(1) dissolving, solidifying and pulverizing to produce a raw powder;

(2) 상기 원료 분말을 메카니칼그라인딩(mechanical grinding)하여 미세한 입자의 혼합물로 분산시키는 단계와,(2) mechanically grinding the raw powder to disperse it into a mixture of fine particles;

(3) 그라인딩된 원료를 성형 및 소결하는 단계로 이루어지는 열전재료 제조방법을 제공한다.(3) It provides a thermoelectric material manufacturing method comprising the step of forming and sintering the ground raw material.

또한, 본 발명은 상기 공정 (1)로 제조된 원료분말에 나노미터(nanometer) 크기의 ZrO2입자를 4 vol.% 이하로 첨가하는 것을 특징으로 하는 열전재료 제조방법을 제공한다.In addition, the present invention provides a method for producing a thermoelectric material, characterized in that the addition of nanometer-sized ZrO 2 particles of 4 vol.% Or less to the raw material powder prepared in the step (1).

더욱이, 본 발명은 상기 제조방법에 의하여 제조되는, 주원료 외에 4 vol.% 이하의 나노미터(nanometer) 크기의 ZrO2가 함유되는 것을 특징으로 하는 열전재료를 제공한다.Furthermore, the present invention provides a thermoelectric material, which is prepared by the above method, in which ZrO 2 having a nanometer size of 4 vol.% Or less is contained in addition to the main raw material.

이하, 본 발명의 실시예를 도면을 참조하여 구체적으로 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명에 의한 열전재료의 제조공정을 나타내는 흐름도이다. 본 발명에 의한 열전재료 제조방법은 이하의 세부공정을 포함한다.1 is a flowchart illustrating a manufacturing process of a thermoelectric material according to the present invention. The thermoelectric material manufacturing method according to the present invention includes the following detailed steps.

원료분말제조Raw material powder manufacturing

본 실시예에서는, Bi와 Te성분을 함유하는 분말 혹은 벌크를 Bi2Te3조성으로 칭량(稱量)하고 10-5torr의 진공로에서 진공용해하여 합금 주괴(ingot)를 제조한후, 알루미나 유발을 이용하여 분쇄하여 평균입경 200㎛의 Bi2Te3시초분말을 제조하였다.In this embodiment, the powder or bulk containing Bi and Te components is weighed in a Bi 2 Te 3 composition and vacuum-melted in a vacuum furnace of 10 -5 torr to produce an alloy ingot, followed by alumina. Grinding using a mortar to prepare Bi 2 Te 3 starting powder having an average particle diameter of 200㎛.

ZrOZrO 22 분말의 첨가Addition of powder

상기와 같이 제조된 Bi2Te3분말에 10㎚ 크기의 ZrO2분말을 4 vol.%의 범위 내에서 첨가하였다. Bi2Te3계 열전재료라도 Bi와 Te만으로 이루어지는 경우는 없으며 일반적으로는 Sb2Te3, Bi2Se3등이 고용(固溶)되지만, 종래 방법 중 ZrO2가 첨가되는 경우는 아직 없었다. 그러나, 본 발명자들은 기지내에 고용되지 않는 나노미터 크기의 ZrO2가 첨가되면 열전재료의 열전도도(κ)가 효율적으로 저하되며, 이는 z=α2/γκ에서 알 수 있듯이 성능지수(z)를 증가시키는 효과가 있음을 발견하였다.To the Bi 2 Te 3 powder prepared as described above, ZrO 2 powder having a size of 10 nm was added within a range of 4 vol.%. Although Bi 2 Te 3 -based thermoelectric materials do not consist solely of Bi and Te, and generally Sb 2 Te 3 , Bi 2 Se 3, and the like are dissolved, ZrO 2 has not yet been added in the conventional method. However, the present inventors found that the addition of nanometer-sized ZrO 2, which is not dissolved in the matrix, effectively lowers the thermal conductivity (κ) of the thermoelectric material, which indicates that the figure of merit z is as shown by z = α 2 / γκ. It was found to have an increasing effect.

한편 ZrO2은 Bi2Te3와 반응하지 않고 Bi2Te3기지내에 ZrO2의 상태로 안정적으로 존재하게 되어 ZrO2중의 Zr 혹은 O 성분이 Bi2Te3의 고유특성을 향상시키는 효과는 유발하지 않으며, ZrO2는 소결시 결정립 성장을 억제하여 결정립을 미세화 시키게 된다. ZrO2의 첨가량이 과도하게 되면 결정립 성장 억제효과가 과도하게 되어 결정립이 필요이상으로 미세화 되고, 그에 따라 전하의 산란이 증가하게 되어 상기 식에서 γ를 증가시켜 오히려 성능지수를 낮추는 작용을 한다. 따라서 본 발명에서는 ZrO2첨가에 따른 결정립 미세화를 최소화하고, 나노크기의 ZrO2에 의한격자(phonon) 산란을 극대화하기 위하여, ZrO2첨가량은 4 vol.% 이하로 하였다.The ZrO 2 is to exist stably in a state of ZrO 2 in the Bi 2 Te 3 bases do not react with the Bi 2 Te 3 the effect of the Zr or O component in the ZrO 2 improves the inherent properties of the Bi 2 Te 3 is not induced ZrO 2 suppresses grain growth during sintering, thereby miniaturizing grains. When the amount of ZrO 2 is excessive, the grain growth inhibiting effect becomes excessive and the grains become finer than necessary, thereby increasing the scattering of charges, thereby increasing γ in the above formula and lowering the performance index. Therefore, in the present invention to minimize the grain size of the ZrO 2 addition, maximizing grid (phonon) scattering due to ZrO 2 of nano-size, ZrO 2 addition amount was less than 4 vol.%.

또한 첨가되는 ZrO2의 크기는, 마이크로미터 이상이면 입자가 기지에 균일하게 분산되지 않을 뿐만 아니라, 진동 진폭의 크기가 나노미터 범위인 격자(phonon)만을 효율적으로 산란시키지 못하게 되고 전하를 산란시키게 되어 그 첨가효과가 없어지므로, 나노미터 수준의 것을 사용하는 것이 바람직하며, 진동 진폭의 크기가 나노미터 범위인 격자(phonon)의 산란에 의한 열전도도의 감소를 극대화하기 위해서는 50㎚ 이하로 하는 것이 더욱 바람직하다.In addition, the size of the added ZrO 2 not only does not uniformly disperse particles in the matrix at a micrometer or larger, but also effectively scatters charges and scatters charges only in a phonon having a magnitude of vibration amplitude in the nanometer range. It is preferable to use a nanometer level, since the addition effect is lost, and in order to maximize the reduction of thermal conductivity due to scattering of the phonon whose magnitude of vibration amplitude is in the nanometer range, it is more preferable to set it to 50 nm or less. desirable.

메카니칼그라인딩Mechanical Grinding

상기와 같이 ZrO2가 첨가된 원료를 회전식 볼밀(ball mill)을 이용하여 메카니칼그라인딩하였다.As described above, the raw material to which ZrO 2 was added was mechanically ground using a rotary ball mill.

메카니칼그라인딩은 내경 70㎜, 길이 10㎜의 스테인레스강제 밀용기와 직경 6㎜의 스테인레스강제 볼을 이용하였으며, 볼 장입량은 밀용기 체적의 50%, 볼과 분말의 장입비는 50:1로 하여 Ar 분위기 중에서 최대 100시간 실시하였다.For mechanical grinding, a stainless steel mill container with an internal diameter of 70 mm and a length of 10 mm and a stainless steel ball with a diameter of 6 mm were used. The ball loading was 50% of the volume of the mill container, and the loading ratio of the ball and powder was 50: 1. Up to 100 hours were carried out in the atmosphere.

이와 같은 메카니칼그라인딩에 의하면, 미세한 첨가 입자가 기계적으로 강제 분산되므로 종래 단결정성장법이나 분말야금법에 의한 경우와 달리 ZrO2가 편석되지 않고 나노미터 수준으로 분산된 상태를 유지할 수 있다. 한편 열전도도(κ)는 입자의 크기가 작아질수록 감소되는 관계에 있음이 알려져 있다. 따라서 상기와 같이 입자가 작은 크기로 분산되면, z=α2/γκ 식에서 재료의 성능지수가 향상됨을 알수 있다. 게다가, 이와 같이 메카니칼그라인딩에 의하여 제조된 열전재료는 다결정 구조이므로 벽개파괴가 쉽게 일어나지 않아 후속 절단공정에서 다결정 재료에 비하여 재료의 손실이 적게 된다.According to such mechanical grinding, since the finely added particles are mechanically dispersed by force, unlike the conventional single crystal growth method or the powder metallurgy method, ZrO 2 can be dispersed at the nanometer level without segregation. On the other hand, it is known that the thermal conductivity κ decreases as the particle size decreases. Therefore, when the particles are dispersed in a small size as described above, it can be seen that the performance index of the material is improved in the equation z = α 2 / γκ. In addition, since the thermoelectric material manufactured by mechanical grinding has a polycrystalline structure, cleavage failure does not easily occur, resulting in less material loss than in the subsequent cutting process.

성형 및 소결Forming and sintering

메카니칼그라인딩한 분말을 금형 다이스를 이용하여 1 t/㎠의 성형압력으로 성형한 후 고온 프레스(hot press)를 이용하여 Ar 분위기 중에서 1 t/㎠의 압력으로 500℃에서 1시간 가압소결하여 열전재료를 제조하였다.The mechanically ground powder is molded at a molding pressure of 1 t / cm 2 using a mold die, and then pressed and sintered at 500 ° C. for 1 hour at a pressure of 1 t / cm 2 in an Ar atmosphere by using a hot press. Was prepared.

도 2에 메카니칼그라인딩한 소결체의 ZrO2함량에 따른 성능지수의 변화를 나타내었다. 비교를 위하여 ZrO2을 첨가하지 않고 종래의 일반 분말야금공정(용해+분쇄+소결)으로 제조한 Bi2Te3단상 소결체의 성능지수를 함께 나타내었다.Figure 2 shows the change in the performance index according to the ZrO 2 content of the mechanically ground sintered body. For comparison, the performance index of the Bi 2 Te 3 single phase sintered body prepared by the conventional general powder metallurgical process (dissolution + pulverization + sintering) without ZrO 2 is shown.

도 2에서 메카니칼그라인딩에 의하면 ZrO2를 첨가하지 않아도 종래의 분말야금법으로 제조한 경우에 비하여 성능지수가 향상됨을 알 수 있다. 또한, ZrO2을 첨가할 경우, 그 첨가량의 증가에 따라 성능지수는 증가하여 1 vol.% 첨가시 최대치를 나타내며 이후로는 감소하는 것을 알 수 있다. 특히, ZrO2을 1 vol.% 첨가하고 메카니칼그라인딩법으로 제조한 경우에는, 종래의 일반 분말야금공정(용해+분쇄+소결)에 의해 제조된 경우에 비해서는 약 160%, ZrO2을 첨가하지 않고 단순 메카니칼그라인딩한 경우에 비해서는 약 60% 성능지수가 증가됨을 알 수 있다.According to the mechanical grinding in Figure 2 it can be seen that even if the ZrO 2 is not added, the performance index is improved as compared with the case of the conventional powder metallurgy manufacturing method. In addition, when ZrO 2 is added, the figure of merit increases as the amount is increased, indicating a maximum value when 1 vol.% Is added, and then decreasing. In particular, when 1 vol.% Of ZrO 2 is added and manufactured by the mechanical grinding method, about 160% of ZrO 2 is not added compared to the case prepared by the conventional powder metallurgy process (dissolution + grinding + sintering). It can be seen that the performance index is increased by about 60% compared to the simple mechanical grinding.

이와 같은 나노미터 크기의 ZrO2첨가에 따른 성능지수의 향상은, ZrO2첨가에 따른 결정립 미세화에 의한 전기비저항의 증가보다, 격자(phonon)산란 증가에 의한 열전도도의 저하가 성능지수에 더 크게 기여하였기 때문이다.The improvement of the performance index according to the addition of nanometer-sized ZrO 2 is such that the decrease in the thermal conductivity due to the lattice (phonon scattering) is greater in the performance index than the increase in the electrical resistivity due to the grain refinement by the addition of ZrO 2 Because it contributed.

이상, Bi2Te3열전재료에 대하여 설명하였으나, 본 발명의 기본사상은 기지내에 고용되지 않는 나노미터 크기의 입자를 전기비저항이 크게 증가하지 않는 범위내에서 기지 중에 균일 분포시켜, 열전도도를 좌우하는 격자(phonon)산란의 증가를 유도하여 열전도도를 저하시켜 열전재료의 성능지수를 향상시키고자 하는 것으로, 원료가 Bi2Te3가 아닌 경우에도 마찬가지로 적용될 수 있음은 물론이다.As described above, the Bi 2 Te 3 thermoelectric material has been described, but the basic idea of the present invention is to uniformly distribute the nanometer-sized particles not dissolved in the matrix in the matrix within the range where the electrical resistivity does not increase significantly, thereby affecting the thermal conductivity. In order to improve the performance index of the thermoelectric material by reducing the thermal conductivity by inducing an increase in lattice (phonon) scattering, it can be applied even if the raw material is not Bi 2 Te 3 .

이상 설명한 바와 같이 본 발명에 의하면 종래 열전재료의 제조방법에 비하여 높은 성능지수를 가지는 열전재료를 얻을 수 있다.As described above, according to the present invention, it is possible to obtain a thermoelectric material having a higher performance index than the conventional method of manufacturing a thermoelectric material.

Claims (3)

(1) 용해, 응고, 분쇄를 거쳐 Bi2Te3계 원료 분말을 제조하는 단계와,(1) dissolving, solidifying and pulverizing to produce Bi 2 Te 3 -based raw material powder; (2) 상기 원료 분말에 ZrO2입자를 4 vol.% 이하로 첨가하는 단계와,(2) adding ZrO 2 particles to the raw material powder at 4 vol.% Or less, (3) 상기 ZrO2입자가 첨가된 상기 원료 분말을 메카니칼그라인딩(mechanical grinding)하여 미세한 입자의 혼합물로 분산시키는 단계와,(3) mechanically grinding the raw material powder to which the ZrO 2 particles are added and dispersing the mixture into a mixture of fine particles; (4) 상기 (3)단계에서 나온 혼합물 원료를 성형 및 소결하는 단계로 이루어지는 열전재료 제조방법.(4) A method of manufacturing a thermoelectric material, comprising forming and sintering the mixture raw material obtained in the step (3). 제1항에 있어서, 상기 ZrO2입자는 입경이 50㎚ 이하인 것을 특징으로 하는 열전재료 제조방법.The method of claim 1, wherein the ZrO 2 particles have a particle diameter of 50 nm or less. 제1항 또는 제2항의 방법에 의하여 제조된 열전재료.A thermoelectric material produced by the method of claim 1.
KR1019980042228A 1998-10-09 1998-10-09 Thermoelectric material by the mechanical grinding method and its manufacturing method KR100323492B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980042228A KR100323492B1 (en) 1998-10-09 1998-10-09 Thermoelectric material by the mechanical grinding method and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980042228A KR100323492B1 (en) 1998-10-09 1998-10-09 Thermoelectric material by the mechanical grinding method and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20000025229A KR20000025229A (en) 2000-05-06
KR100323492B1 true KR100323492B1 (en) 2002-05-13

Family

ID=19553476

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980042228A KR100323492B1 (en) 1998-10-09 1998-10-09 Thermoelectric material by the mechanical grinding method and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100323492B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795194B1 (en) 2006-06-08 2008-01-16 한국기계연구원 Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
KR101409404B1 (en) 2012-10-09 2014-06-20 한양대학교 에리카산학협력단 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473751B1 (en) 2013-04-30 2014-12-18 재단법인대구경북과학기술원 Fabrication method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and thermoelectric nanocompound thereby
KR101473750B1 (en) 2013-04-30 2014-12-18 재단법인대구경북과학기술원 Fabrication method for synthesizing a Bi2TeySe3-y thermoelectric nanocompound and thermoelectric nanocompound thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244167A (en) * 1990-02-22 1991-10-30 Mitsubishi Heavy Ind Ltd Manufacture of thermoelectric conversion element material
JPH04257278A (en) * 1991-02-12 1992-09-11 Matsushita Electric Ind Co Ltd Production of thermoelectric material
JPH08111546A (en) * 1994-10-11 1996-04-30 Yamaha Corp Thermoelectric material and thermoelectric transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244167A (en) * 1990-02-22 1991-10-30 Mitsubishi Heavy Ind Ltd Manufacture of thermoelectric conversion element material
JPH04257278A (en) * 1991-02-12 1992-09-11 Matsushita Electric Ind Co Ltd Production of thermoelectric material
JPH08111546A (en) * 1994-10-11 1996-04-30 Yamaha Corp Thermoelectric material and thermoelectric transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795194B1 (en) 2006-06-08 2008-01-16 한국기계연구원 Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
KR101409404B1 (en) 2012-10-09 2014-06-20 한양대학교 에리카산학협력단 Manufacturing method for thermoelectric material and thermelectric material manufactured thereby

Also Published As

Publication number Publication date
KR20000025229A (en) 2000-05-06

Similar Documents

Publication Publication Date Title
US5929351A (en) Co-Sb based thermoelectric material and a method of producing the same
KR100995196B1 (en) Sputtering target, transparent conductive film, and their manufacturing method
KR20010022821A (en) Varistors based on nanocrystalline powders produced by mechanical grinding
KR101683687B1 (en) Nanocomposite thermoelectric material and process for preparing the same
KR100786633B1 (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIALS
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP3458587B2 (en) Thermoelectric conversion material and its manufacturing method
KR100323492B1 (en) Thermoelectric material by the mechanical grinding method and its manufacturing method
JP2003243734A (en) Thermoelectric conversion material and method for manufacturing the same
JPH09260729A (en) Thermoelectric transducer material and manufacture thereof
JP4502493B2 (en) Zinc oxide sintered body and method for producing the same
WO2009154019A1 (en) ALUMINUM-CONTAINING ZINC OXIDE-BASED n-TYPE THERMOELECTRIC CONVERSION MATERIAL
Mahesh et al. Effect of two-step sintering on rare earth (RE= Y 2 O 3, Pr 6 O 11) doped ZnO–Bi 2 O 3 varistors processed from ‘nano-precursor’powders
JPH04224111A (en) Rare earth type oxide superconductor and its production
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
JPH08186294A (en) Thermoelectric material
Wang et al. Enhanced Sinterability and Microwave Dielectric Performance of (1− x) ZnAl 2 O 4-x Li 4/3 Ti 5/3 O 4 Ceramics
JP5931413B2 (en) P-type thermoelectric conversion material, method for producing the same, thermoelectric conversion element, and thermoelectric conversion module
US5700418A (en) Method of manufacture of components made of sintered indium-tin-oxide solid-solution crystals
Yamashita et al. Thermoelectric properties of p-and n-type FeSi 2 prepared by spray drying, compaction and sintering technique
Tzou et al. Microwave dielectric characteristics of glass-added (1-x) Al2O3–xTiO2 ceramics
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
Drofenik et al. Origin of the Positive Temperature Coefficient of Resistivity Anomaly in the ZnO‐NiO System
JPH06169110A (en) Manufacture of thermoelectric conversion material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 17

EXPY Expiration of term