KR100321133B1 - Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof - Google Patents

Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof Download PDF

Info

Publication number
KR100321133B1
KR100321133B1 KR1019990000331A KR19990000331A KR100321133B1 KR 100321133 B1 KR100321133 B1 KR 100321133B1 KR 1019990000331 A KR1019990000331 A KR 1019990000331A KR 19990000331 A KR19990000331 A KR 19990000331A KR 100321133 B1 KR100321133 B1 KR 100321133B1
Authority
KR
South Korea
Prior art keywords
hollow fiber
nucleating agent
fiber membrane
polypropylene
diluent
Prior art date
Application number
KR1019990000331A
Other languages
Korean (ko)
Other versions
KR20000050445A (en
Inventor
김성수
장문석
김진호
유종범
Original Assignee
장문석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장문석 filed Critical 장문석
Priority to KR1019990000331A priority Critical patent/KR100321133B1/en
Publication of KR20000050445A publication Critical patent/KR20000050445A/en
Application granted granted Critical
Publication of KR100321133B1 publication Critical patent/KR100321133B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 폴리프로필렌 중량의 0.5 내지 3 중량%의 기핵제를 포함하는 폴리프로필렌 중공사막 및 그의 제조방법에 관한 것으로, 이러한 중공사막은 균일한 크기의 기공을 지니면서 향상된 가공성, 다공도 및 분리능을 가져 분리막으로서 유용하게 사용될 수 있다.The present invention relates to a polypropylene hollow fiber membrane comprising a nucleating agent of 0.5 to 3% by weight of polypropylene, and a method for producing the hollow fiber membrane, which has an improved processability, porosity and resolution while having pores of uniform size. It can be usefully used as a separator.

Description

기핵제를 포함하는 폴리프로필렌 중공사막 및 그의 제조방법{Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof}Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation

본 발명은 기핵제를 포함하는 폴리프로필렌 중공사막 및 그의 제조방법에 관한 것으로서, 구체적으로는 일정 중량의 기핵제를 포함하는, 균일한 크기의 기공을 지니면서 향상된 가공성, 다공도 및 분리능을 갖는 폴리프로필렌 중공사막, 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a polypropylene hollow fiber membrane comprising a nucleating agent and a method of manufacturing the same, and specifically, to a polypropylene having improved porosity, porosity, and separation ability while having pores of uniform size, including a predetermined weight of nucleating agent. It relates to a hollow fiber membrane and a method of manufacturing the same.

도 1은 통상적인 용융방사법에 의한 폴리올레핀 중공사형 분리막의 제조장치를 개략적으로 도시한 도이다. 도 1에 따르면, 혼합기(2) 내에 폴리올레핀과 희석제를 적당한 비율로 투입하여 일정시간동안 용융혼합한 후, 이 혼합물을 기어 펌프 모터(6)로 구동되는 기어 펌프를 사용하여 일정량씩 방사구금(7)으로 공급한다.막의 중공을 만들기 위해 역시 방사구금(7)으로 질소탱크(5)로부터의 질소가스를 공급한다. 방사구금(7)으로부터 방사노즐(8)을 통해 질소와 함께 방사된 혼합물은 그 구성성분인 폴리올레핀과 희석제의 분리가 계속 진행되면서 공기 중에서 일부 냉각 과정을 거치며 낙하한다. 이 혼합물은 응고조(9)에 침지되고, 응고조(9)에서 폴리올레핀과 희석제의 분리가 계속되면서 폴리올레핀은 완전 고화되어 중공사를 형성한다. 이어, 형성된 중공사를 여러 단계의 권취기를 거쳐 최종 두 개의 권취기(10) 사이에서 상온연신시키면서 권취시킨 후 분리하여, 분리된 중공사막에 잔존하는 희석제를 추출 및 증발시킨 다음 최종적으로 열처리하여 중공사막을 제조한다.1 is a view schematically showing an apparatus for producing a polyolefin hollow fiber separator by a conventional melt spinning method. According to FIG. 1, after the polyolefin and the diluent are added to the mixer 2 at an appropriate ratio and melt-mixed for a predetermined time, the mixture is spun by a predetermined amount using a gear pump driven by a gear pump motor 6. Nitrogen gas from the nitrogen tank (5) is also fed to the spinneret (7) to make the hollow of the membrane. The mixture spun together with nitrogen from the spinneret 7 through the spinneret 8 falls through some cooling process in the air while the separation of its constituent polyolefin and diluent continues. This mixture is immersed in the coagulation bath 9, and the separation of the polyolefin and the diluent in the coagulation bath 9 continues to solidify the polyolefin to form hollow fibers. Subsequently, the formed hollow fiber is wound and wound at room temperature between the final two winding machines 10 through several winding machines, and then separated. The diluent remaining in the separated hollow fiber membrane is extracted, evaporated, and finally heat-treated. Manufacture the desert.

상기 폴리올레핀과 희석제로 구성된 이성분계 상도에서의 상분리는 크게 액-액 상분리와 고-액 상분리로 나뉜다. 액-액 상분리는 계의 열역학적 불안정성에 기인하여 유도되고, 고-액 상분리는 용액의 유리화 또는 결정화 온도가 상분리 온도보다 높아서 고상의 고분자와 액상의 희석제로 상분리가 유도된다.Phase separation in a two-component phase composition consisting of the polyolefin and the diluent is largely divided into liquid-liquid phase separation and solid-liquid phase separation. Liquid-liquid phase separation is induced due to thermodynamic instability of the system, and solid-liquid phase separation leads to phase separation with a solid polymer and a liquid diluent because the vitrification or crystallization temperature of the solution is higher than the phase separation temperature.

기존에는, 형성된 중공사막의 투과성능을 개선하기 위하여 액-액 또는 고-액 상분리에 의한 막의 제조시 영향을 미치는 제조변수들에 관하여 주로 연구되어져 왔으나, 본 발명자들은 예의 연구를 계속한 결과, 중공사막 제조시 기핵제를 첨가함으로써 균일한 크기의 기공을 지니면서 향상된 가공성, 다공도 및 분리능을 갖는 중공사막을 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다.Conventionally, in order to improve the permeability of the formed hollow fiber membranes, research has been mainly conducted on the manufacturing parameters affecting the preparation of the membrane by liquid-liquid or solid-liquid phase separation. The present invention has been completed by discovering that it is possible to prepare hollow fiber membranes having improved porosity, porosity and resolution while having uniformly sized pores by adding a nucleating agent in desert production.

본 발명의 목적은 균일한 크기의 기공을 지니면서 향상된 가공성, 다공도 및 분리능을 갖는 폴리프로필렌 중공사막 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a polypropylene hollow fiber membrane having a uniform size of pores and having improved processability, porosity and resolution, and a method of manufacturing the same.

도 1은 통상적인 용융방사법에 의한 폴리올레핀 중공사형 분리막의 제조장치를 개략적으로 도시한 도이고,1 is a view schematically showing an apparatus for producing a polyolefin hollow fiber separator by a conventional melt spinning method,

도 2a, 2b 및 2c는 각각 기핵제의 사용량을 변화시켜 제조된 중공사막의 내부표면 사진이고, 도 3a, 3b, 3c, 및 4a, 4b, 4c는 각각 도 2a, 2b 및 2c에 해당하는 중공사막의 외부표면 및 단면 사진이며,Figures 2a, 2b and 2c is a photograph of the inner surface of the hollow fiber membrane prepared by varying the amount of nucleating agent, respectively, Figures 3a, 3b, 3c, and 4a, 4b, 4c are hollow corresponding to Figures 2a, 2b and 2c, respectively Outside surface and cross-section picture of the desert,

도 5a, 5b 및 5c는 기핵제를 첨가하지 않은 경우 각각 응고조의 온도를 변화시켜 제조된 중공사막의 외부표면 사진이고, 도 6a, 6b 및 6c는 기핵제를 첨가한 경우 각각 응고조의 온도를 변화시켜 제조된 중공사막의 외부표면 사진이고,Figures 5a, 5b and 5c is a photograph of the outer surface of the hollow fiber membrane prepared by changing the temperature of the coagulation bath when no nucleating agent is added, Figures 6a, 6b and 6c is a change in the temperature of the coagulation bath when the nucleating agent is added Is a photo of the outer surface of the hollow fiber membrane prepared by

도 7a 및 7b는 각각 열처리를 하지 않은 경우와 열처리를 한 경우에 대해 제조된 중공사막의 외부표면 사진이고,Figure 7a and 7b is a photograph of the outer surface of the hollow fiber membrane prepared for the case without heat treatment and the heat treatment, respectively,

도 8a, 8b 및 8c는 각각 권취율을 변화시켜 제조된 중공사막의 외부표면 사진이며,8a, 8b and 8c are photographs of the outer surface of the hollow fiber membrane prepared by varying the winding rate, respectively.

도 9a, 9b 및 9c는 각각 방사노즐과 응고조간의 거리를 변화시켜 제조된 중공사막의 외부표면 사진이다.9A, 9B and 9C are photographs of the outer surface of the hollow fiber membranes manufactured by varying the distance between the spinning nozzle and the coagulation bath, respectively.

〈도면 부호에 대한 간단한 설명〉<Brief Description of Drawings>

1: 압출기 모터2: 혼합기1: extruder motor 2: mixer

3: 압력계4: 밸브3: pressure gauge 4: valve

5: 질소탱크6: 기어 펌프 모터5: nitrogen tank 6: gear pump motor

7: 방사구금8: 방사노즐7: spinneret 8: spinning nozzle

9: 응고조10: 권취기9: solidification tank 10: winding machine

상기 목적을 달성하기 위하여 본 발명에서는 폴리프로필렌 중량의 0.5 내지 3 중량%의 기핵제를 포함하는 폴리프로필렌 중공사막을 제공한다.In order to achieve the above object, the present invention provides a polypropylene hollow fiber membrane comprising a nucleating agent of 0.5 to 3% by weight of the polypropylene weight.

또한, 본 발명에서는 폴리프로필렌, 기핵제 및 희석제를 포함하는 용융혼합물을 방사 및 응고시켜 기핵제를 포함하는 폴리프로필렌 중공사를 형성한 후, 이 중공사를 476 내지 579의 권취율을 갖도록 연신하고, 100 내지 140℃에서 열처리하는 것을 포함하는, 상기 폴리프로필렌 중공사막의 제조방법을 제공한다.Further, in the present invention, after spinning and solidifying the molten mixture containing the polypropylene, nucleating agent and diluent to form a polypropylene hollow fiber containing the nucleating agent, the hollow fiber is stretched to have a winding rate of 476 to 579 It provides a method for producing the polypropylene hollow fiber membrane, including heat treatment at 100 to 140 ℃.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 사용되는 "라멜라"는 선형의 고분자 사슬이 여러겹으로 겹쳐진 것을 지칭하며, 이 라멜라는, 높은 온도에서 완전히 용융되어 무질서하게 흩어졌던 고분자의 사슬이 온도가 낮아짐에 따라 일정한 결정 격자를 이루며 열역학적으로 안정한 상태로 진행되는, 즉 용융 상태(melt state)에서 결정 상태(crystalline state)로 변화하는 과정속에서 사슬이 일정한 방향으로 성장하다가 절첩(folding)되면서 생성된다.As used in the present invention, "lamellar" refers to the overlapping of linear polymer chains in multiple layers. The lamellar forms a uniform crystal lattice as the temperature of the polymer chains that are completely melted and disorderly dispersed at a high temperature decreases. It is produced as the chain grows in a constant direction and then folds in the process of going into a thermodynamically stable state, that is, changing from a melt state to a crystalline state.

또한, 본 발명에서 사용되는 "스페럴라이트"는 상기한 라멜라들의 집합체를 지칭한다.Also used in the present invention refers to the aggregate of lamellae described above.

본 발명에 사용되는 기핵제의 대표적인 예로서 아디프산, 1,2,3,4-디벤질리덴 솔비톨, 1,2,3,4-비스(p-메틸벤질리덴)솔비톨, 1,2,3,4-비스(p-에틸렌솔비톨), 비스(4-t-부틸페닐)소디움 포스페이트 및 활석 등을 들 수 있다. 기핵제는 고분자가 쉽게 결정화될 수 있는 핵을 제공함으로써 고분자의 결정화 온도를 높이며, 스페럴라이트의 수와 크기를 조절하여 스페럴라이트 사이 지역의 기공크기 및 다공도를 증가시켜 수투과량의 현격한 상승을 가져올 수 있고, 용융점도를 증가시켜 가공성을 높여주며, 막의 밀도를 증가시켜 막의 물성을 향상시키는 역할을 한다.As a representative example of the nucleating agent used in the present invention, adipic acid, 1,2,3,4-dibenzylidene sorbitol, 1,2,3,4-bis (p-methylbenzylidene) sorbitol, 1,2, 3, 4-bis (p-ethylene sorbitol), bis (4-t- butylphenyl) sodium phosphate, talc, etc. are mentioned. The nucleating agent increases the crystallization temperature of the polymer by providing a nucleus in which the polymer can be easily crystallized, and increases the pore size and porosity of the region between the sparrites by controlling the number and size of the sparite, thereby increasing the water permeability significantly. It increases the melt viscosity to increase the processability, and increases the density of the film serves to improve the physical properties of the film.

본 발명에 따르면, 상기 기핵제는 폴리프로필렌 중공사막 제조공정 중 폴리프로필렌과 희석제와의 혼합시 폴리프로필렌 중량의 0.5 내지 3 중량%로 첨가할 수 있으며, 0.5 중량%보다 적게 첨가하는 경우에는 기핵제의 효과를 볼 수 없고, 3 중량%를 초과하여 첨가하는 경우에는 기공지름이 커져 막의 용도가 제한될 수 있다.According to the present invention, the nucleating agent may be added in an amount of 0.5 to 3% by weight of the polypropylene weight when the polypropylene and the diluent are mixed in the polypropylene hollow fiber membrane manufacturing process, and when added less than 0.5% by weight The effect of not being seen, when added in excess of 3% by weight may increase the pore diameter may limit the use of the membrane.

본 발명의 폴리프로필렌 중공사막은 원료의 용융혼합, 방사, 응고, 연신 및 열처리단계를 포함하는, 통상적인 고분자 중공사막의 제조방법에 따라 제조할 수 있다.The polypropylene hollow fiber membrane of the present invention can be prepared according to a conventional method for producing a polymer hollow fiber membrane, including melt mixing, spinning, solidification, stretching and heat treatment of the raw materials.

본 발명에 따르면, 용융지수(melt index)가 0.1 내지 30인 폴리프로필렌을 막의 기재로서 사용할 수 있으며, 폴리프로필렌과 희석제의 용융혼합시 총 중량의 10 내지 80 중량%로 폴리프로필렌을 사용할 수 있다. 기핵제 및 폴리프로필렌과 혼합되어 방사된 후 응고시 분리되는 희석제로서 유동 파라핀, 대두유, 파라핀 왁스, 땅콩 기름, 올리브유, 피마자유, 디옥틸프탈레이트(DOP) 등의 통상적인 희석제를 사용할 수 있으며, 바람직하게는 유동 파라핀 및 대두유를 사용할 수 있다.According to the present invention, a polypropylene having a melt index of 0.1 to 30 may be used as a substrate of the membrane, and polypropylene may be used at 10 to 80% by weight of the total weight during melt mixing of the polypropylene and the diluent. Conventional diluents such as liquid paraffin, soybean oil, paraffin wax, peanut oil, olive oil, castor oil, dioctylphthalate (DOP) may be used as the diluent mixed with the nucleating agent and the polypropylene, and then separated upon solidification. Liquid paraffin and soybean oil may be used.

또한, 응고액으로서는 상기한 희석제 모두 뿐만 아니라 물을 사용할 수 있으며, 응고액의 온도는 통상적으로 3 내지 100℃의 범위로 조절된다. 기핵제를 포함하지 않는 중공사막의 경우에는 응고액의 온도가 증가할수록 액-액 상분리 지역 내에서의 체류시간이 상대적으로 길어져 기공크기가 증가하는 반면, 기핵제를 포함하는 경우에는 응고액의 온도가 감소할수록 핵의 생성, 즉 스페럴라이트의 생성이 촉진되고 기공크기가 증가한다.As the coagulating solution, not only all of the above diluents but also water can be used, and the temperature of the coagulating solution is usually adjusted in the range of 3 to 100 ° C. In the case of hollow fiber membranes containing no nucleating agent, the residence time in the liquid-liquid phase separation zone is relatively longer as the temperature of the coagulating solution increases, whereas the pore size increases when the nucleating agent is included. The decrease in promotes nucleation, i.e., the production of speralite and increases the pore size.

본 발명에 따르면, 기핵제, 폴리프로필렌 및 희석제의 혼합물이 방사되는 방사노즐로부터 응고조까지의 거리는 적절히 조절될 수 있으며, 적절한 범위내에서는 방사노즐과 응고조 간의 거리가 증가할수록 스페럴라이트가 성장할 수 있는 시간이 더욱 부여되어 스페럴라이트의 생성이 뚜렷해지고 스페럴라이트 간에 피브릴 구조가 잘 생성된다. 기핵제를 포함하는 폴리프로필렌과 희석액은 응고조의 응고액에 의해 분리되고, 폴리프로필렌은 완전 고화되어 중공사를 형성한다.According to the present invention, the distance from the spinning nozzle to which the mixture of nucleating agent, polypropylene, and diluent is spun can be adjusted appropriately, and within the appropriate range, spherite grows as the distance between the spinning nozzle and the coagulation bath increases. More time is given to make the production of sparlite distinct, and the fibril structure is well formed between sparrites. The polypropylene containing the nucleating agent and the diluent are separated by the coagulation liquid in the coagulation bath, and the polypropylene is completely solidified to form hollow fibers.

형성된 중공사는 여러 단계의 권취기를 거쳐 최종 두 개의 권취기 사이에서 상온연신되면서 권취되는데, 476 내지 579의 권취율을 갖도록 연신하는 것이 바람직하다(권취율=권취속도/방사속도). 일반적으로 권취율이 증가할수록 막의 기공크기가 증가하며, 권취율이 476보다 작은 경우에는 기공크기가 너무 작아 수투과율이 낮고, 권취율이 579보다 큰 경우에는 피브릴이 끊어진다.The hollow yarns formed are wound while being stretched at room temperature between the final two winding machines through several stages of winding machines, and are preferably drawn to have a winding rate of 476 to 579 (coiling rate = winding speed / spinning speed). In general, as the coiling rate increases, the pore size of the membrane increases. When the coiling rate is less than 476, the pore size is too small, the water permeability is low, and when the coiling rate is larger than 579, the fibrils are broken.

본 발명에 따르면, 권취된 중공사막을 권취기로부터 분리하여 중공사막에 잔존하는 희석제를 추출 및 증발시키는데, 추출시 에틸알콜, 이소프로필알콜, N-헥산 등의 지방족 탄화수소, 또는 염화 탄화수소, 불화 탄화수소, 염화불화 탄화수소 등의 할로겐화 탄화수소, 또는 프레온 등을 사용할 수 있다. 이어, 폴리프로필렌의 탄성회복 능력을 없애 스페럴라이트 사이의 피브릴 구조를 잘 형성시키기 위하여 상기 단계를 거친 중공사막을 최종적으로 100 내지 140℃에서 열처리할 수 있다.According to the present invention, the wound hollow fiber membrane is separated from the winding machine to extract and evaporate the diluent remaining in the hollow fiber membrane, and when extracted, an aliphatic hydrocarbon such as ethyl alcohol, isopropyl alcohol, N-hexane, or a chlorinated hydrocarbon or a fluorinated hydrocarbon And halogenated hydrocarbons such as chlorinated fluorinated hydrocarbons, or freons. Subsequently, the hollow fiber membrane subjected to the above step may be finally heat-treated at 100 to 140 ° C. in order to remove the elastic recovery ability of the polypropylene and form a fibrillated structure between sparite wells.

본 발명의 방법에 따라 제조된 폴리프로필렌 중공사막은 내경이 100 내지 500㎛이고, 막 두께가 10 내지 200㎛이며, 버블 포인트 압력(bubble point pressure) 측정법(ASTM F316-80, E128-61)으로 측정한 결과 0.1 내지 20㎛의 다양한 기공크기를 갖는다.The polypropylene hollow fiber membrane prepared according to the method of the present invention has an inner diameter of 100 to 500 μm, a film thickness of 10 to 200 μm, and a bubble point pressure measurement method (ASTM F316-80, E128-61). The measurement resulted in various pore sizes of 0.1 to 20 μm.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 중공사막의 성능 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the present invention, but are not limited thereto. Performance evaluation of the hollow fiber membranes prepared in Examples and Comparative Examples of the present invention was performed by the following method.

버블 포인트 압력 및 최대 기공지름 측정법Bubble Point Pressure and Maximum Pore Diameter Measurements

다섯가닥의 중공사막을 에폭시를 이용하여 한쪽은 완전히 막고 다른 한쪽은 질소가스가 유입될 수 있도록 포팅(potting)하였다. 이 모듈을 약 5분간 30 부피%의 에탄올 수용액에 침지시킨 후 질소가스를 서서히 주입하면서 중공사막의 기공을 통해 가스 방울이 처음 나오기 시작할 때의 압력을 버블 포인트 압력(kgf/cm2)이라 하였다. 이때, 에탄올을 사용한 이유는 폴리프로필렌이 소수성임을 감안하여 중공사막의 습윤성을 높여주기 위해서이다. 버블 포인트 압력과 최대 기공지름과의 상관관계로 이루어진 영-라플라스 식(Young-Laplace equation)에 측정된 버블 포인트압력을 대입하여 중공사막의 최대 기공지름(㎛)을 구했다.Five hollow fiber membranes were potted with epoxy to completely block one side and nitrogen gas on the other side. After immersing the module in 30% by volume of ethanol solution for about 5 minutes, the pressure when the gas bubbles first emerge through the pores of the hollow fiber membrane while slowly injecting nitrogen gas was called bubble point pressure (kgf / cm 2 ). At this time, the reason for using ethanol is to increase the wettability of the hollow fiber membrane in consideration of the hydrophobic polypropylene. The maximum pore diameter (μm) of the hollow fiber membrane was obtained by substituting the measured bubble point pressure into the Young-Laplace equation, which is a correlation between the bubble point pressure and the maximum pore diameter.

참조예 1 : 응고조의 온도 변화Reference Example 1: Temperature Change in a Solidification Bath

용융점도 2인 폴리프로필렌과 대두유(희석제)를 폴리프로필렌이 40 중량%가 되도록 170 내지 240℃에서 용융혼합한 후 이 혼합물을 방사시키고, 물을 응고액으로 사용하여 방사된 혼합물을 분리 및 응고시켰다(방사노즐과 응고조간의 거리=150cm). 이때, 폴리프로필렌과 대두유의 혼합물에 대해 폴리프로필렌 중량의 2 중량%의 아디프산을 기핵제로서 첨가한 경우와 첨가하지 않은 경우로 나누고, 응고조의 온도를 하기 표 1과 같이 3, 60 및 100℃로 변화시키면서 실험을 수행하였다.After melting and mixing polypropylene having a melt viscosity of 2 and soybean oil (diluent) at 170 to 240 ° C. to make 40% by weight of polypropylene, the mixture was spun, and the spun mixture was separated and solidified using water as a coagulant. (Distance between the radiation nozzle and the solidification bath = 150 cm). At this time, the mixture of polypropylene and soybean oil is divided into a case in which 2% by weight of adipic acid is added as a nucleating agent and a case in which no polycarbonate is added, and the temperature of the coagulation bath is 3, 60, and 100 as shown in Table 1 below. The experiment was performed while changing to ℃.

이와 같이 응고를 거쳐 성형된 중공사를 권취율 476으로 상온연신시키면서 권취한 후 분리하여, 중공사막에 잔존하는 대두유를 프레온 141B로 추출 및 증발시켰다. 이렇게 형성된 중공사막을 최종적으로 120℃에서 열처리하여 중공사막을 제조하였다. 제조된 중공사막의 수투과량(ml/min bar cm2) 및 버블 포인트 압력(kgf/cm2)에 따른 최대 기공지름(㎛)을 측정하여 그 결과를 하기 표 1에 나타내었다.The hollow fiber thus formed by solidification was wound up and separated while being stretched at room temperature at a winding rate of 476, and the soybean oil remaining in the hollow fiber membrane was extracted and evaporated with Freon 141B. The hollow fiber membrane thus formed was finally heat treated at 120 ° C. to prepare a hollow fiber membrane. The maximum pore diameter (μm) was measured according to the water permeation rate (ml / min bar cm 2 ) and the bubble point pressure (kgf / cm 2 ) of the prepared hollow fiber membrane, and the results are shown in Table 1 below.

응고조의 온도Temperature of the coagulation bath 기핵제를 첨가하지 않은 경우If no nucleating agent is added 기핵제를 첨가한 경우If nucleating agent is added 수투과량Water transmission 버블 포인트 압력Bubble point pressure 최대 기공지름Maximum pore diameter 수투과량Water transmission 버블 포인트 압력Bubble point pressure 최대 기공지름Maximum pore diameter 3℃3 ℃ 0.410.41 2.202.20 0.490.49 11.8911.89 0.790.79 1.361.36 60℃60 ℃ 0.460.46 1.551.55 0.690.69 6.996.99 1.291.29 0.830.83 100℃100 ℃ 1.071.07 1.311.31 0.820.82 6.586.58 1.421.42 0.760.76

도 5a, 5b 및 5c는 기핵제를 첨가하지 않은 경우 각각 응고조의 온도를 변화시켜 제조된 중공사막의 외부표면 사진이고, 도 6a, 6b 및 6c는 기핵제를 첨가한 경우 각각 응고조의 온도를 변화시켜 제조된 중공사막의 외부표면 사진이다. 상기 표 1, 및 도 5 및 6으로부터, 기핵제를 첨가하지 않은 경우에는 응고조의 온도가 증가할수록 기공크기가 증가하는 반면, 기핵제를 첨가한 경우에는 응고조의 온도가 감소할수록 스페럴라이트의 생성이 촉진되어 기공크기가 증가하고 피브릴 구조가 잘 형성됨을 알 수 있다.Figures 5a, 5b and 5c is a photograph of the outer surface of the hollow fiber membrane prepared by changing the temperature of the coagulation bath when no nucleating agent is added, Figures 6a, 6b and 6c is a change in the temperature of the coagulation bath when the nucleating agent is added The outer surface photograph of the hollow fiber membrane manufactured by From Table 1 and FIGS. 5 and 6, when the nucleating agent is not added, the pore size increases as the temperature of the coagulation bath increases, whereas when the nucleating agent is added, the spherorite is produced as the temperature of the coagulation bath decreases. This can be seen that the pore size increases and the fibril structure is well formed.

참조예 2 : 방사노즐과 응고조간의 거리 변화REFERENCE EXAMPLE 2 Distance Change Between Spinning Nozzle and Solidification Bath

용융점도 2인 폴리프로필렌과 유동 파라핀(희석제)을 폴리프로필렌이 50 중량%가 되도록 170 내지 240℃에서 용융혼합하고, 여기에 폴리프로필렌 중량의 2 중량%의 아디프산을 기핵제로서 첨가한 후 이 혼합물을 방사시키고, 상온의 물을 응고액으로 사용하여 방사된 혼합물을 분리 및 응고시켰다. 이때, 방사노즐과 응고조간의 거리를 45, 100 및 150cm로 변화시키면서 실험을 수행하였다. 이와 같이응고를 거쳐 성형된 중공사를 상기 참조예 1과 동일한 방법으로 처리하여 중공사막을 제조하였다.After melting and mixing polypropylene having a melt viscosity of 2 and a liquid paraffin (diluent) at 170 to 240 DEG C so that 50% by weight of polypropylene is added thereto, 2% by weight of adipic acid as the nucleating agent is added thereto. The mixture was spun and the spun mixture was separated and solidified using water at room temperature as the coagulation solution. At this time, the experiment was performed while changing the distance between the spinning nozzle and the coagulation bath to 45, 100 and 150 cm. The hollow fiber formed by coagulation was treated in the same manner as in Reference Example 1 to prepare a hollow fiber membrane.

도 9a, 9b 및 9c는 각각 방사노즐과 응고조간의 거리를 45, 100 및 150cm로 변화시켜 제조된 중공사막의 외부표면 사진으로서, 방사노즐과 응고조간의 거리가 길어질수록 스페럴라이트의 생성이 뚜렷해지고 피브릴 구조가 잘 형성되었다.9A, 9B and 9C are external surface photographs of hollow fiber membranes manufactured by changing the distance between the spinneret and the coagulation bath to 45, 100 and 150 cm, respectively. As the distance between the spinneret and the coagulation bath increases, Clear and fibrillated structures formed well.

참조예 3 : 기핵제가 용융점도에 미치는 영향Reference Example 3: Effect of the nucleating agent on the melt viscosity

용융점도 2인 폴리프로필렌과 유동 파라핀(희석제)을 폴리프로필렌이 40 중량%가 되도록 170 내지 240℃에서 용융혼합하고, 여기에 기핵제를 첨가하지 않은 경우와 폴리프로필렌 중량의 0.5 중량%의 아디프산을 기핵제로서 첨가한 경우에 대해 온도변화에 따른 용융점도(Pa·s)의 상관관계를 조사하여 하기 표 2에 나타내었다.A polypropylene having a melt viscosity of 2 and a liquid paraffin (diluent) were melt mixed at 170 to 240 ° C. so that 40% by weight of polypropylene was added, and 0.5% by weight of adip was not added to the nucleating agent. In the case of adding the acid as nucleating agent, the correlation between the melt viscosity (Pa · s) according to the temperature change was investigated and shown in Table 2 below.

160℃160 ℃ 170℃170 ℃ 180℃180 ℃ 190℃190 ℃ 200℃200 ℃ 기핵제 첨가하지 않은 경우If no nucleating agent is added 174.31174.31 152.34152.34 138.13138.13 128.59128.59 124.38124.38 기핵제 첨가한 경우If nucleating agent is added 183.47183.47 167.87167.87 150.08150.08 138.90138.90 135.40135.40

상기 표 2로부터, 두 경우 모두 온도가 낮아질수록 용융점도가 높아지는 경향을 나타내었으나, 기핵제를 첨가한 경우가 첨가하지 않은 경우에 비해 전반적으로 높은 용융점도를 가져 기핵제의 첨가에 의해 가공성이 향상됨을 알 수 있다.From the above Table 2, both cases showed a tendency to increase the melt viscosity as the temperature is lowered, but the addition of the nucleating agent generally has a higher melt viscosity than the case where no nucleating agent is added, thereby improving the processability by adding the nucleating agent. It can be seen.

실시예 1 내지 4, 및 비교예 1 및 2 : 기핵제의 사용량 변화Examples 1 to 4, and Comparative Examples 1 and 2: Change in the amount of nucleating agent used

상온의 물을 응고액으로 사용하고, 기핵제인 아디프산의 사용량을 하기 표 2와 같이 변화시킨 것을 제외하고는, 상기 참조예 1과 동일한 방법으로 중공사막을 제조하였다. 제조된 중공사막의 수투과량(ml/min bar cm2) 및 버블 포인트 압력(kgf/cm2)에 따른 최대 기공지름(㎛)을 측정하여 그 결과를 하기 표 3에 나타내었다.A hollow fiber membrane was prepared in the same manner as in Reference Example 1, except that water at room temperature was used as a coagulation solution and the amount of adipic acid serving as a nucleating agent was changed as shown in Table 2 below. The maximum pore diameter (μm) was measured according to the water permeation rate (ml / min bar cm 2 ) and the bubble point pressure (kgf / cm 2 ) of the prepared hollow fiber membrane, and the results are shown in Table 3 below.

기핵제 사용량(폴리프로필렌 중량 기준)Nucleating Agent Consumption (Based on Polypropylene Weight) 수투과량Water transmission 버블 포인트 압력Bubble point pressure 최대 기공지름Maximum pore diameter 비교예 1Comparative Example 1 00 0.330.33 1.301.30 0.830.83 실시예 1Example 1 0.5 중량%0.5 wt% 3.503.50 0.830.83 1.311.31 실시예 2Example 2 1 중량%1 wt% 9.899.89 0.720.72 1.491.49 실시예 3Example 3 2 중량%2 wt% 11.8911.89 0.680.68 1.581.58 실시예 4Example 4 3 중량%3 wt% 11.9811.98 0.660.66 1.621.62 비교예 2Comparative Example 2 4 중량%4 wt% 12.112.1 0.450.45 2.382.38

도 2a, 2b 및 2c는 각각 기핵제의 사용량을 0, 0.5 및 1 중량%로 변화시켜 제조된 중공사막의 내부표면 사진이고, 도 3a, 3b 및 3c, 및 4a, 4b 및 4c는 도 2a, 2b 및 2c에 해당하는 중공사막의 외부표면 및 단면 사진이다. 상기 표 3, 및 도 2, 3 및 4로부터, 기핵제를 첨가하지 않은 경우(비교예 1)에 비해 기핵제를 첨가한 경우가 스페럴라이트의 생성이 촉진되었으며 기공크기가 증가하고 피브릴 구조가 잘 형성됨을 알 수 있으며, 기핵제의 사용량이 증가할수록 스페럴라이트의 크기는 다소 감소하고 상대적으로 기공크기는 다소 증가하였다. 그러나, 기핵제를폴리프로필렌 중량의 3 중량% 이상 투입하는 경우(비교예 2)에는 목적하는 용도보다 최대 기공지름이 커졌다.2A, 2B and 2C are internal surface photographs of the hollow fiber membranes prepared by changing the amount of nucleating agent to 0, 0.5 and 1% by weight, respectively, and FIGS. 3A, 3B and 3C, and 4A, 4B and 4C are shown in FIGS. The external surface and cross-sectional photograph of the hollow fiber membranes corresponding to 2b and 2c. From Table 3 and FIGS. 2, 3 and 4, the addition of the nucleating agent promoted the production of spherite, and increased the pore size and the fibril structure, when the nucleating agent was not added (Comparative Example 1). It can be seen that the formation of the well, and as the amount of nucleating agent increases, the size of the spherite is slightly reduced and the pore size is slightly increased. However, when 3% by weight or more of the nucleating agent was added to the polypropylene weight (Comparative Example 2), the maximum pore diameter was larger than the intended use.

실시예 5 및 비교예 3 : 열처리의 유무Example 5 and Comparative Example 3: presence or absence of heat treatment

상온의 물을 응고액으로 사용하고, 기핵제인 아디프산을 폴리프로필렌 중량의 1 중량% 사용하고, 최종 열처리를 한 경우와 하지 않은 경우로 구분한 것을 제외하고는, 상기 참조예 1과 동일한 방법으로 중공사막을 제조하였다. 제조된 중공사막의 수투과량(ml/min bar cm2) 및 버블 포인트 압력(kgf/cm2)에 따른 최대 기공지름(㎛)을 측정하여 그 결과를 하기 표 4에 나타내었다.The same method as in Reference Example 1, except that water at room temperature was used as a coagulation solution, and adipic acid as a nucleating agent was used in an amount of 1% by weight of polypropylene, and the final heat treatment was performed. A hollow fiber membrane was prepared. The maximum pore diameter (μm) was measured according to the water permeation rate (ml / min bar cm 2 ) and the bubble point pressure (kgf / cm 2 ) of the prepared hollow fiber membrane, and the results are shown in Table 4 below.

열처리 유무Heat treatment presence 수투과량Water transmission 버블 포인트 압력Bubble point pressure 최대 기공지름Maximum pore diameter 실시예 5Example 5 5.015.01 0.960.96 1.131.13 비교예 3Comparative Example 3 ×× 4.524.52 1.151.15 0.930.93

도 7a 및 7b는 각각 열처리를 하지 않은 경우와 열처리를 한 경우에 대해 제조된 중공사막의 외부표면 사진이다. 상기 표 4, 및 도 7로부터, 열처리를 하지 않은 경우(비교예 3)는 막이 수축함으로써 기공의 크기가 작고 피브릴 구조가 거의 형성되지 않은 반면, 열처리를 한 경우(실시예 5)는 기공크기가 증가하고 피브릴 구조가 잘 형성됨을 알 수 있다.7A and 7B are external surface photographs of the hollow fiber membranes prepared for the case where the heat treatment is not performed and the case where the heat treatment is performed. Table 4 and FIG. 7 show that when the heat treatment is not performed (Comparative Example 3), when the membrane shrinks, the pore size is small and the fibril structure is hardly formed, whereas when the heat treatment is performed (Example 5), the pore size It can be seen that is increased and the fibril structure is well formed.

실시예 6 내지 8, 및 비교예 4 및 5 : 권취율 변화Examples 6 to 8, and Comparative Examples 4 and 5: winding rate change

상온의 물을 응고액으로 사용하고, 기핵제인 아디프산을 폴리프로필렌 중량의 1 중량% 사용하고, 권취율을 하기 표 5와 같이 변화시킨 것을 제외하고는, 상기 참조예 1과 동일한 방법으로 중공사막을 제조하였다. 제조된 중공사막의 수투과량(ml/min bar cm2) 및 버블 포인트 압력(kgf/cm2)에 따른 최대 기공지름(㎛)을 측정하여 그 결과를 하기 표 5에 나타내었다.Hollowed in the same manner as in Reference Example 1, except that water at room temperature was used as a coagulation solution, adipic acid serving as a nucleating agent was used in an amount of 1% by weight of polypropylene, and the winding ratio was changed as shown in Table 5 below. Desert was prepared. The maximum pore diameter (μm) was measured according to the water permeation rate (ml / min bar cm 2 ) and the bubble point pressure (kgf / cm 2 ) of the manufactured hollow fiber membrane, and the results are shown in Table 5 below.

권취율Coiling rate 수투과량Water transmission 버블 포인트 압력Bubble point pressure 최대 기공지름Maximum pore diameter 비교예 4Comparative Example 4 420420 3.343.34 1.211.21 0.890.89 실시예 6Example 6 476476 5.015.01 0.950.95 1.131.13 실시예 7Example 7 528528 5.295.29 0.800.80 1.341.34 실시예 8Example 8 579579 9.909.90 0.720.72 1.491.49 비교예 5Comparative Example 5 581581 피브릴이 끊어짐Fibril is broken

도 8a, 8b 및 8c는 각각 권취율을 476, 528 및 579로 변화시켜 제조된 중공사막의 외부표면 사진이다. 상기 표 5, 및 도 8로부터, 권취율이 증가함에 따라 기공크기가 증가함을 알 수 있으나, 권취율이 476보다 적은 경우(비교예 4)는 수투과량이 너무 적고, 권취율이 579보다 큰 경우(비교예 5)는 피브릴이 끊어졌다.8A, 8B and 8C are external surface photographs of the hollow fiber membranes prepared by changing the winding ratios to 476, 528 and 579, respectively. From Table 5 and Figure 8, it can be seen that the pore size increases as the winding rate increases, but when the winding rate is less than 476 (Comparative Example 4), the permeability is too small, the winding rate is greater than 579 In the case (Comparative Example 5), the fibrils were broken.

본 발명에 따른 폴리프로필렌 중공사막은, 기핵제를 적당량 포함함으로써 균일한 크기의 기공을 지니면서 향상된 가공성, 다공도 및 분리능을 가져 분리막으로서 유용하게 사용될 수 있다.The polypropylene hollow fiber membrane according to the present invention can be usefully used as a separation membrane having an improved processability, porosity and resolution while having a uniform size of pores by including an appropriate amount of the nucleating agent.

Claims (5)

폴리프로필렌, 기핵제 및 희석제로서의 대두유를 포함하는 용융혼합물을 방사하고 응고액과 접촉시켜 고화시킨 후, 이 고화된 중공사를 476 내지 579의 권취율을 갖도록 연신하고, 잔존하는 희석제를 추출제거한 다음 100 내지 140℃에서 열처리하여 제조되는, 폴리프로필렌 중공사막.After spinning the melt mixture containing polypropylene, nucleating agent and soybean oil as diluent and solidifying by contact with coagulating liquid, the solidified hollow fiber is drawn to a winding rate of 476 to 579, and the remaining diluent is extracted and then removed. Polypropylene hollow fiber membrane produced by heat treatment at 100 to 140 ℃. 제 1 항에 있어서,The method of claim 1, 기핵제가 아디프산, 1,2,3,4-디벤질리덴 솔비톨, 1,2,3,4-비스(p-메틸벤질리덴)솔비톨, 1,2,3,4-비스(p-에틸렌솔비톨), 비스(4-t-부틸페닐)소디움 포스페이트 또는 활석인 것을 특징으로 하는 폴리프로필렌 중공사막.The nucleating agent is adipic acid, 1,2,3,4-dibenzylidene sorbitol, 1,2,3,4-bis (p-methylbenzylidene) sorbitol, 1,2,3,4-bis (p-ethylene Sorbitol), bis (4-t-butylphenyl) sodium phosphate or talc. 폴리프로필렌, 기핵제 및 희석제로서의 대두유를 포함하는 용융혼합물을 방사하고 응고액과 접촉시켜 고화시킨 후, 이 고화된 중공사를 476 내지 579의 권취율을 갖도록 연신하고, 잔존하는 희석제를 추출제거한 다음 100 내지 140℃에서 열처리하는 것을 포함하는, 폴리프로필렌 중공사막의 제조방법.After spinning the melt mixture containing polypropylene, nucleating agent and soybean oil as diluent and solidifying by contact with coagulating liquid, the solidified hollow fiber is drawn to a winding rate of 476 to 579, and the remaining diluent is extracted and then removed. A method for producing a polypropylene hollow fiber membrane, comprising heat treatment at 100 to 140 ° C. 제 3 항에 있어서,The method of claim 3, wherein 기핵제가 아디프산, 1,2,3,4-디벤질리덴 솔비톨, 1,2,3,4-비스(p-메틸벤질리덴)솔비톨, 1,2,3,4-비스(p-에틸렌솔비톨), 비스(4-t-부틸페닐)소디움 포스페이트 또는 활석인 것을 특징으로 하는 방법.The nucleating agent is adipic acid, 1,2,3,4-dibenzylidene sorbitol, 1,2,3,4-bis (p-methylbenzylidene) sorbitol, 1,2,3,4-bis (p-ethylene Sorbitol), bis (4-t-butylphenyl) sodium phosphate or talc. 삭제delete
KR1019990000331A 1999-01-09 1999-01-09 Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof KR100321133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990000331A KR100321133B1 (en) 1999-01-09 1999-01-09 Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990000331A KR100321133B1 (en) 1999-01-09 1999-01-09 Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof

Publications (2)

Publication Number Publication Date
KR20000050445A KR20000050445A (en) 2000-08-05
KR100321133B1 true KR100321133B1 (en) 2002-03-18

Family

ID=19570893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990000331A KR100321133B1 (en) 1999-01-09 1999-01-09 Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof

Country Status (1)

Country Link
KR (1) KR100321133B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070703A (en) * 2001-03-02 2002-09-11 주식회사 한일아셈 polypropylene hollow fiber membrane for gas separation and method producing the same
CN110144083A (en) * 2019-05-14 2019-08-20 合肥市丽红塑胶材料有限公司 A kind of impact-resistant modified PP material and preparation method thereof
CN115430295B (en) * 2022-09-07 2023-11-14 上海工程技术大学 Preparation method of composite reinforced polypropylene hollow fiber microporous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647908A (en) * 1987-01-20 1989-01-11 Terumo Corp Porous hollow yarn membrane, its production, and artificial lung using said membrane
JPH01228506A (en) * 1988-03-09 1989-09-12 Terumo Corp Porous hollow yarn membrane, production thereof and artificial lung utilizing said hollow yarn membrane
US5231126A (en) * 1985-04-01 1993-07-27 Shi Guan Yi Beta-crystalline form of isotactic polypropylene and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231126A (en) * 1985-04-01 1993-07-27 Shi Guan Yi Beta-crystalline form of isotactic polypropylene and method for forming the same
JPS647908A (en) * 1987-01-20 1989-01-11 Terumo Corp Porous hollow yarn membrane, its production, and artificial lung using said membrane
JPH01228506A (en) * 1988-03-09 1989-09-12 Terumo Corp Porous hollow yarn membrane, production thereof and artificial lung utilizing said hollow yarn membrane

Also Published As

Publication number Publication date
KR20000050445A (en) 2000-08-05

Similar Documents

Publication Publication Date Title
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
US7413804B2 (en) Braid-reinforced hollow fiber membrane
CN106659977A (en) Membrane distillation apparatus and hydrophobic porous membrane
KR101394416B1 (en) Method for Manufacturing Polyvinylidene fluoride Hollow fiber membrane and Hollow fiber membrane
KR100321133B1 (en) Polypropylene hollow fiber membrane comprising a nucleating agent and method of the preparation thereof
KR20110052244A (en) Novel polymer resin of polyvinylidenefluoride type hollow fiber membrane, pvdf hollow fiber membrane with resistant membrane-pollution and preparing method thereof
KR101530432B1 (en) Polymer composition for preparing acetylated alkyl cellulose membrane and preparation method of acetylated alkyl cellulose membrane using the same
JPH11253771A (en) Manufacture of polysulfone hollow fiber membrane and polysulfone hollow fiber membrane
JPS62117812A (en) Hollow fiber and its production
JPH0235918A (en) Polypropylene porous hollow yarn membrane and its manufacture
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
KR101397798B1 (en) Manufacturing method of PVDF asymmetric porous hollow fiber membrane
KR101350866B1 (en) Method for preparing PVDF hollow fiber membranes based on thermally induced phase separation and stretching
KR101310815B1 (en) Method for Manufacturing Hollow fiber membrane
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
US6436319B1 (en) Method of preparing hollow fiber-type separation membrane from high density polyethylene
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
US5277851A (en) Process of making a porous hollow fiber membrane
KR101275015B1 (en) Polyolefin hollow fiber membrane and thermal induced phase separation process therefor
JP2004174408A (en) Method and apparatus for manufacturing hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
KR101474728B1 (en) Manufacturing method of polyvinylidene fluoride hollow fiber membrane with high strength
KR100531118B1 (en) The Submerged Membrane System and preparation thereof
KR910007001B1 (en) Manufacturing process of menbrane made from poly sulphone hollow fiber
KR101397796B1 (en) PVDF asymmetric porous hollow fiber membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100113

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee