KR100311793B1 - METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET - Google Patents
METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET Download PDFInfo
- Publication number
- KR100311793B1 KR100311793B1 KR1019970068573A KR19970068573A KR100311793B1 KR 100311793 B1 KR100311793 B1 KR 100311793B1 KR 1019970068573 A KR1019970068573 A KR 1019970068573A KR 19970068573 A KR19970068573 A KR 19970068573A KR 100311793 B1 KR100311793 B1 KR 100311793B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- steel sheet
- fluidized bed
- zinc
- plating
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 59
- 239000010959 steel Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 13
- 239000000956 alloy Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 229910007570 Zn-Al Inorganic materials 0.000 title abstract 4
- 239000000843 powder Substances 0.000 claims abstract description 92
- 238000007747 plating Methods 0.000 claims abstract description 76
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 7
- 238000003303 reheating Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 27
- 229910052725 zinc Inorganic materials 0.000 claims description 25
- 239000011701 zinc Substances 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 229910000611 Zinc aluminium Inorganic materials 0.000 claims description 13
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000007600 charging Methods 0.000 claims description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 abstract description 12
- 239000008397 galvanized steel Substances 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/285—Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/007—Processes for applying liquids or other fluent materials using an electrostatic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/22—Processes for applying liquids or other fluent materials performed by dipping using fluidised-bed technique
- B05D1/24—Applying particulate materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/007—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
본 발명은 아연-알루미늄계 합금도금강판의 제조방법에 관한 것으로, 보다 상세하게는 알루니늄분말을 사용하여 아연-알루미늄계 합금도금강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a zinc-aluminum alloy plated steel sheet, and more particularly, to a method for producing a zinc-aluminum alloy plated steel sheet using aluminum powder.
종래 부터 아연-알루미늄계 합금도금강판은 내식성이 우수하여 가전 기기의 내판용 및 건축 자재용 강판으로 주로 사용되고 있다. 그 도금층의 구조는 일반적으로 알루미늄이 5-55%함유되어 있으며 알루미늄이 5%함유된 것은 갈판(Galfan)이라 불리며, 55% 함유된 것은 갈바륨(Galvalume)이라 불리운다.Conventionally, zinc-aluminum-based alloy plated steel sheet has excellent corrosion resistance and is mainly used as an inner plate of home appliances and a steel sheet for building materials. The structure of the plating layer is generally 5-55% aluminum, 5% aluminum is called galfan, and 55% is called galvalume.
아연-알루미늄 합금도금강판은 전기도금 방법으로는 제조가 불가능하다.Zinc-aluminum alloy plated steel sheet cannot be manufactured by the electroplating method.
아연-알루미늄 합금도금강판을 제조하는 방법으로는 일본국 특허 공개 51-77536호등이 있다. 이 공지기술은 아연분말과 알루미늄분말을 혼합하여 강판표면에 부착시킨 다음에 강판을 아연의 용융점 이상 알루미늄의 용융점 이하로 가열시키므로써 도금층을 형성시키는 방법에 대한 것이다. 이 방법에서는 금속분말을 강판에 균일하게 부착시키는 것이 용이하지 않아 균일한 도금층을 형성시키는 것이 곤란하다.As a method of manufacturing a zinc-aluminum alloy plated steel sheet, there is Japanese Patent Laid-Open No. 51-77536. This known technique relates to a method of forming a plating layer by mixing a zinc powder and an aluminum powder and attaching it to a steel sheet surface, and then heating the steel sheet to a melting point of zinc or more and to a melting point of aluminum or less. In this method, it is difficult to uniformly attach the metal powder to the steel sheet, and it is difficult to form a uniform plating layer.
따라서, 현재는 목표로 하는 도금층 조성을 갖는 용융금속욕조에 강판을 침적시키는 용융도금방법 만에 의해 제조되고 있다. 이때, 알루미늄은 산화가 되기 쉬운 성질이 있으므로 이 산화를 방지하기 위하여 도금욕조를 불활성가스에 의해 분위기 조성을 해야 하므로 제조비용이 많이 소요되는 문제점이 있다. 또한, 아연도금강판을 동일 라인에서 제조하기 위해서는 별도의 용융조가 필요하며, 이 경우 도금욕조를 교체하는데 시간이 많이 소요되어 생산성이 떨어지는 문제점이 있다. 특히, 갈바륨강판의 경우는 용융욕조의 온도가 600℃정도로 아연도금욕조의 450℃ 보다 높으므로 갈바륨 강판의 제조는 더욱 용이하지 않다.Therefore, it is currently manufactured only by the hot-dip plating method in which a steel sheet is deposited in a molten metal bath having a target plating layer composition. At this time, aluminum has a property that is easy to be oxidized, so in order to prevent the oxidation, the plating bath should be made of an inert gas, which causes a lot of manufacturing cost. In addition, in order to manufacture the galvanized steel sheet in the same line, a separate molten bath is required, in which case it takes a long time to replace the plating bath, there is a problem that the productivity is lowered. In particular, in the case of galvalume steel sheet, the temperature of the molten bath is about 600 ° C., which is higher than 450 ° C. of the galvanizing bath, making the galvalume steel sheet more difficult.
본 발명은 이러한 종래문제점을 해결하기 위하여 제안된 것으로, 아연도금강판 제조라인에서 손쉽게 아연-알루미늄계 합금도금강판을 제조할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention has been proposed to solve such a conventional problem, to provide a method for easily manufacturing a zinc-aluminum-based alloy plated steel sheet in the galvanized steel sheet production line, an object thereof.
도 1은 본 발명에 이용되는 아연도금장치의 일례구성도이다.1 is an exemplary configuration diagram of a zinc plating apparatus used in the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
220 ... 상층도금조 240 ... 유동상형성조 246 ... 분말공급장치220 ...
상기 목적을 달성하기 위한 본 발명은, 분말을 공급하는 분말공급장치, 상기 분말공급장치로 부터 공급된 분말을 유동화시키는 유동상형성조 및 유동상형조로 부터 취입된 유동화분말을 강판에 도금하는 도금조를 포함하는 도금방법에 있어서,The present invention for achieving the above object, a powder supply device for supplying powder, a fluidized bed forming tank for fluidizing the powder supplied from the powder supply device and a plating tank for plating the fluidized powder blown from the fluidized bed tank on the steel sheet In the plating method comprising,
상기 분말공급장치로 부터 평균입도가 45㎛이하이고, 알루미늄이 중량비로 1%이상이며 나머지가 아연인 아연-알루미늄 분말 혹은 순수 알루미늄 분말을 공급받아 하부로 부터 취입되는 가스에 의해 유동상형성조에서 분말을 유동화시키는 단계; 상기와 같이 유동상형성조에서 유동화된 분말을 상층도금조에 취입하여 상층도금조내 의 분말의 유동상대를 형성하는 단계; 상기 유동상대의 분말을 "+" 또는 "-"로 대전시켜 분말이 정전기를 띄도록 하는 단계; 420-730℃로 가열되고 어스된 용융아연강판을 상기와 같이 분말이 정전기를 띄는 유동상대를 통과시켜 상기 강판표면에 분말을 융착시키는 단계; 상기 분말이 융착된 강판을 420-730℃에서 1-5초 동안 재가열한 후 냉각하는 단계를 포함하여 구성된다.The powder is supplied from the powder supply apparatus by means of a gas blown from the lower side by receiving zinc-aluminum powder or pure aluminum powder having an average particle size of 45 μm or less, aluminum being 1% or more by weight, and zinc remaining. Fluidizing; Injecting the powder fluidized in the fluidized bed forming tank into the upper plating bath to form a fluidized bed of the powder in the upper plating bath; Charging the powder of the fluidized bed with "+" or "-" to make the powder electrostatic; Fusing the powder on the surface of the steel sheet by passing the molten zinc steel sheet heated to 420-730 ° C. and passed through a fluidized bed in which the powder is electrostatically charged as described above; Re-heating the powder-fused steel sheet for 1-5 seconds at 420-730 ℃ comprises a step of cooling.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 본 발명자가 제안한 한국특허 출원번호 97-54877호에 제시된 정전기 인력을 이용한 분말도금장치를 사용하여 용융아연도금강판에 철을 도금하는 것으로서, 상기 분말도금장치는 도 1에 도시된 바와같다.The present invention is to plate the iron on the hot-dip galvanized steel sheet using a powder plating apparatus using the electrostatic attraction proposed by the present inventors Korean Patent Application No. 97-54877, the powder plating apparatus is as shown in FIG. .
도 1에 나타난 바와같이, 본 발명에 이용되는 정전기인력을 이용한 분말도금장치는, 가열수단에 의해 가열된 강판(스트립)(201)에 분말이 융착되어 도금층을 형성하는 상층도금조(220);As shown in FIG. 1, the powder plating apparatus using the electrostatic force used in the present invention includes: an
하부에서 취입되는 가스에 의해 분말을 부유시켜 유동상태로 만드는 유동상형성조(240);A fluidized
상기 유동상형성조(240)내로 분말을 공급하는 분말공급장치(246); 를 포함하여 구성된다.A
그리고, 상기 상층도금조(220)에는 분말을 대전시키기 위한 적어도 하나 이상의 전극이 구비되어야 한다. 즉, 한쌍의 침상전극을 상기 상층도금조(220)의 측벽에 구비시키거나 또는, 이와 동시에 상층도금조(220)내를 지나는 강판을 기준으로 서로 마주보는 한상의 망상형태의 전극(229)을 상층도금조(220)와는 절연된 상태로 상층도금조(220)내에 구비시키는 것이다. 상기 전극은 고전압발생기(280)에 연결되어 있으며, 상기 전극은 분말을 "+" 또는 "-"로 대전시켜 분말이 정전기를 띄도록하는 것이다.In addition, the
또한, 강판을 전기적으로 어스시키는 것은 장력롤(232)에 의해 행해진다.In addition, electrically grounding the steel sheet is performed by the tension roll 232.
상층도금조(220)의 상부에는 도금강판표면에 잔류하는 분말을 도금층으로 변환시키기 위해 도금강판을 가열하기 위한 재가열로(230)가 설치되어 있다.The
도 1에서 미설명부호 210은 가열수단, 211은 씽크롤, 212는 에어나이프, 213은 용융도금폿트, 214는 안정화롤 244는 가스분사판, 245는 가스공급부, 247은 분말공급관, 250은 싸이클론, 251은 백필터, 252는 집진기, 253은 흡입펌프, 254는 가스배관, 270은 가스가열장치이다.In Fig. 1,
본 발명에 따라 용융아연강판에 아연-알루미늄 또는 알루미늄을 도금하기 위해서는 분말공급장치(246)로 부터 알루미늄이 중량비로 1%이상이며 나머지가 아연인 아연-알루미늄 분말 혹은 순수 알루미늄 분말을 공급받아 하부로 부터 취입되는 가스에 의해 유동상형성조(240)에서 이분말을 유동화시켜야 한다. 이때, 분말의 크기는 45㎛이하가 바람직한데, 그 이유는 분말의 크기가 45㎛이상의 경우는 도금층의 두께에 비해 지나치게 크므로 표면이 불균일해져 도금균일성이 손상될 위험이 있기 때문이다. 그리고, 분말중 알루미늄의 함량이 1%미만이면 알루미늄의 양이 적어 아연도금강판에 가까운 특성을 나타내게 되어 이연-알루미늄강판의 특성을 얻기가 어려우므로 1%이상의 알루미늄을 함유한 분말을 사용하는 것이 바람직하다. 분말중 알루미늄의 함량은 목표로 하는 도금층중의 알루미늄 함량에 의해 결정된다.According to the present invention, in order to plate zinc-aluminum or aluminum on a molten zinc steel sheet, the powder is supplied from the
본 발명에 있어 분말을 유동상형성조(240)에서 유동화시키는데, 그 이유는 다음과 같다. 미분형태의 금속분말은 저절로 응집되는 특성을 갖고 있으므로 저장된 상태 그대로 분사할 경우에는 여러개의 분말들이 응집되어 1개의 큰 입자와 같이 거동하게 되어 조대한 2차 입자 상태로 분사되기 쉽다. 조대한 입자가 분사될 경우에는 상기한 정전기인력의 효과가 불만족스럽게 되고 또한, 강판 부위별 부착량 편차도 필연적으로 발생하게 되므로 균일한 도금층을 얻는 것이 곤란하기 때문이다.In the present invention, the powder is fluidized in the fluidized
따라서, 본 발명에서는 상층도금조(220)와는 별도로 마련된 유동상형성조(240)에서 분말의 유동상을 형성하고 이 분말의 유동상을 상층도금조(220)로 수송한다.Therefore, in the present invention, a fluidized bed of the powder is formed in the fluidized
상기 유동상형성조(240)에서 부유되는 입자의 크기는 하부에서 취입되는 가스의 압력과 밀접한 관계가 있어 취입가스의 압력이 증가할수록 부유되는 입자의 크기가 증가한다. 따라서, 취입되는 가스의 압력을 조정하면 조대한 입자 혹은 2차입자의 경우는 부유되지 않고 바닥에 있게 되고, 원하는 크기의 분말만을 부유시켜 상층도금조로 혼입할 수 있다. 이와 같이 하여 미세한 1차입자의 상태로 강판표면에 부착되면 도금층의 미시적인 균일성이 향상될 뿐만 아니라 알루미늄과 아연도금층과의 반응속도도 더욱 빠르게 되어 균일성 측면에서 더욱 유리하다. 거시적인 표면외관측면에서도 가스중 분말의 분포가 더욱 균일화되어 얻어지는 효과 외에도 동일한 전극에 가해진 전압하에서 각 입자가 받는 정전인력의 효과가 커짐에 따라 분사궤적의 영향이 더욱 감소되므로써 보다 균일한 도금층을 얻을 수 있다.The size of the particles suspended in the fluidized
상기와 같이 유동상 형성조(240)에서 유동화된 분말을 상층도금조(220)에 취입하여 상층도금조내에 분말의 유동상대를 형성하고, 이 유동상대내의 분말이 정전기를 띄도록 하여 어스된 용융아연강판에 분말이 균일하게 부착되도록 한다.The powder fluidized in the fluidized
본 발명에서는 이를 위한 기본수단으로서 강판의 온도를 420-730℃로 제한하면서 강판에 분말이 부착되는 힘으로 분말을 수송하는 캐리어 가스의 힘과 정전기 인력을 이용한다.The present invention uses the force of the carrier gas and electrostatic attraction to transport the powder by the force of the powder attached to the steel sheet while limiting the temperature of the steel sheet to 420-730 ℃ as a basic means for this.
강판표면에는 분말과 강판과의 온도 차이에 의해 대류경계층이 형성되고, 이것이 분말의 접근을 방해하기 때문에 분말을 단순하게 분사하는 방법에서는 캐리어 가스의 압력을 증가시켜야만 분말이 이 경계층을 극복하고 강판표면에 부착될 수 있다. 그러나, 이때는 강판 부위별 분사궤적의 차이가 발생하여 도금층이 불균일해질 위험이 있다. 반면, 정전인력은 정전 대전된 두 물체 사이의 거리의 제곱에 반비례하므로(F ∝ 1/r2), 대류경계층이 형성된 강판표면 근방에서는 정전인력의 영향력이 커지게 되어 캐리어 가스에 의해 이 경계층가지 수송된 분말은 손쉽게 강판 표면에 부착될 수 있다. 이와같은 정전인력을 이용하면 캐리어 가스압력을 강판표면에 영향력을 미치지 않을 정도로 낮추어도 분말이 부착될 수 있어 강판 표면에는 분사궤적이 나타나지 않는다. 표면에 순차적으로 부착되는 분말은 표면 전하가 강판을 통해 소실되어 표면에 탈락되기 전에 아연도금층중의 아연과 합금화 반응에 의해 도금층으로 변화되어 알루미늄-아연 도금강판의 제조가 가능하다.The convective boundary layer is formed on the surface of the steel sheet due to the temperature difference between the powder and the steel sheet, and this hinders the access of the powder. Therefore, in the simple spraying method, the pressure of the carrier gas must be increased in order for the powder to overcome this boundary layer and the surface of the steel sheet. It can be attached to. However, at this time, there is a risk that the plating layer is non-uniform due to the difference in the injection trajectories for each steel sheet. On the other hand, since electrostatic attraction is inversely proportional to the square of the distance between two electrostatically charged objects (F ∝ 1 / r 2 ), the influence of electrostatic attraction increases near the surface of the steel plate on which the convective boundary layer is formed. The transported powder can be easily attached to the steel sheet surface. By using such electrostatic attraction, even if the carrier gas pressure is lowered to the extent that it does not affect the surface of the steel sheet, the powder may adhere, so that no injection traces appear on the surface of the steel sheet. The powder that is sequentially attached to the surface is changed into a plating layer by an alloying reaction with zinc in the zinc plating layer before the surface charge is lost through the steel sheet and dropped to the surface, thereby producing an aluminum-zinc plated steel sheet.
본 발명에 있어서는 상기와 같이 분말을 유동화시키고, 분말에 정전기를 형성시키므로서 종래기술에 비하여 간편하게 도금강판을 제조할 수 있게 된다.In the present invention, it is possible to manufacture a plated steel sheet as compared with the prior art by fluidizing the powder as described above, and forming static electricity in the powder.
본 발명에 따라 분말이 정전기를 띄도록 대전하는 것은 위에서 언급한 바와같이, 상층도금조내에 측벽에 마련된 침상전극 또는 망상형태의 전극(229)에 전압을 가하여 행하는데, 이때의 전압은 -1 ∼ -100K 또는 1∼100kV로 가하는 것이 바람직하다. 그 이유는 대전전압이 +1kV 혹은 -1kV이하의 경우 정전효과가 없으며, +100kV 혹은 -100kV이상의 전압에서는 분말의 부착에는 문제가 없지만 전압증가에 의한 효과가 크지 않으므로 제한범위 이상의 정전대전은 불필요하다.According to the present invention, the charging of the powder to exhibit static electricity is performed by applying a voltage to the needle electrode or the reticulated
다음에, 용융아연도금강판을 가열수단(210)에서 가열한 후 장력롤(232)에서 어스스킨다음 용융아연도금 강판을 상기와 같이 분말이 정전기를 띠는 유동상대를 통과시켜 상기 강판표면에 분말을 융착시켜 도금층을 형성시킨다.Next, the hot-dip galvanized steel sheet is heated in the heating means 210, and then ground on a tension roll 232, and then the hot-dip galvanized steel sheet is passed through a fluidized object in which the powder is electrostatic as described above. Is fused to form a plating layer.
상기 용융아연도금강판의 가열온도는 420-730℃가 바람직한데, 그 이유는 가열온도가 420℃미만의 경우 아연이 녹지 않아 합금화반응이 일어나지 않으며, 730℃이상의 경우 아연, 철합금화가 진행되어 아연도금층의 밀착성이 떨어지기 때문이다.The heating temperature of the hot-dip galvanized steel sheet is preferably 420-730 ℃, the reason is that when the heating temperature is less than 420 ℃ zinc does not melt and the alloying reaction does not occur, in the case of more than 730 ℃ zinc, iron alloying proceeds zinc This is because the adhesion of the plating layer is inferior.
이때, 용융아연도금강판은 특별한 가열수단으로 가열할 필요없이 가열수단(210)대신 용융도금공정을 분말도금장치에 연결하여 강판에 용융아연을 부착한 후 부착된 용융아연이 응고되기 직전에 어스시킨다음 유동상대를 통과시키는 것이 에너지 효율 측면에서 보다 유익하다. 즉, 강판표면에 부착된 용융아연이 응고되기 직전에 분말을 부착하면 용융아연과의 확산반응에 의해 완전히 도금층이 부착하게 되어 상층도금층이 형성되는 것이다.In this case, the hot-dip galvanized steel sheet is connected to the hot-dip galvanizing process instead of the heating means 210 by a powder plating apparatus without heating by a special heating means, and then the hot-dip galvanized steel sheet is attached to the hot-dip galvanized steel sheet. Passing the next flow partner is more beneficial in terms of energy efficiency. That is, when the powder is attached immediately before the molten zinc adhered to the steel sheet surface solidifies, the plating layer is completely attached by the diffusion reaction with the molten zinc, and the upper plating layer is formed.
상기와 같이 알루미늄 또는 아연이 융착된 강판표면에 반응하지 않고 잔존한 분말이 존재할 경우는 도금설비의 각종 롤에 분말이 부착되어 덴트의 결함을 유발할 가능성이 있으므로 이를 방지할 필요가 있다. 이를 위해 분말 부착후 재가열처리를 행함으로써 완전히 아연도금층과 아연분말이 합금화 반응이 일어나도록 한다. 이를 위해 도금후에 강판을 420℃이상 730℃이하의 온도에서 1초 이상 5초 이하 동안 재가열처리를 실시하는 것이 이다. 420℃의 온도에서 처리하거나 처리시간이 1초 이하일때는 아연도금층의 재용융 및 합금화 반응이 충분하지 않아 재가열처리의 효과가 없다. 온도가 730℃이상이고 처리시간이 5초 이상일 때는 부착된 알루미늄이 아연도금층과 합금을 이룸과 동시에 강판과 반응하여 도금층과 강판표면에서 철-알루미늄 금속간화합물을 형성하는 양이 증가하여 도금층 표면에 알루미늄양이 감소하여 내식성이 떨어질 위험이 있으며 또한, 이 금속간 화합물을 뚫고 아연-철 합금도금층이 생성될 위험이 있다. 또한, 강판의 기계적성질이 바뀔 위험이 있다.If the remaining powder does not react to the surface of the aluminum or zinc fused steel plate as described above, the powder is attached to the various rolls of the plating equipment, it may be necessary to prevent the dent defect. To this end, the powder is reheated after adhesion and the zinc plating layer and the zinc powder are completely alloyed. To this end, after plating, the steel sheet is reheated at a temperature of 420 ° C. to 730 ° C. for 1 second to 5 seconds. When the treatment time is at 420 ° C. or when the treatment time is less than 1 second, the remelting and alloying reaction of the galvanized layer is not sufficient, so there is no effect of reheating. When the temperature is over 730 ℃ and the processing time is over 5 seconds, the deposited aluminum forms an alloy with the zinc plated layer and simultaneously reacts with the steel plate to increase the amount of iron-aluminum intermetallic compound formed on the plated layer and the surface of the plated layer. There is a risk that the amount of aluminum is reduced and corrosion resistance is reduced, and there is also a risk that a zinc-iron alloy plating layer is formed through this intermetallic compound. In addition, there is a risk of changing the mechanical properties of the steel sheet.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예]EXAMPLE
냉간압연된 강판스트립을 용융아연도금공정에서 용융아연을 부착한 후 용융아연이 응고되기 전에 아연-알루미늄의 혼합분말 또는 순수 알루미늄분말의 유동상을 통과시켜 도금한 다음 재가열처리하여 도금시편을 제조한 후 도금특성을 측정하고 그 결과를 하기표 1에 나타내었다.After the cold rolled steel strip was attached to the molten zinc in the hot dip galvanizing process, before the molten zinc solidified, it was plated through a mixed powder of zinc-aluminum or a fluidized aluminum powder and then reheated to prepare a plated specimen. After the plating properties were measured and the results are shown in Table 1 below.
본 발명에 있어 도금특성은 도금층의 밀착성, 도금균일성 및 도장성을 측정하고, 그 결과를 나타내었는데 그 측정방법은 다음과 같다.In the present invention, the plating characteristics measured the adhesion, plating uniformity and coating property of the plating layer, and the results were shown, but the measuring method is as follows.
먼저, 1)도금층의 밀착성은 도금된 강판을 45도 밴딩 테스트시 박리된 정도로 평가하였으며, 도금층이 전혀 박리되지 않는 수준을 "◎", 박리된 흔적이 나타나는 수준을 "○", 박리된 흔적이 비교적 뚜렷이 나타는 수준을 "△", 그리고 도금층의 거의 다 박리된 수준을 "X"로 표시하였다.First, 1) the adhesion of the plated layer was evaluated to the extent that the plated steel sheet was peeled off during the 45 degree bending test, "◎" the level at which the plated layer was not peeled at all, "○" the level at which the peeled trace appeared, and the peeled trace was Relatively clear levels are indicated by "Δ", and the level of peeled almost all of the plating layers is indicated by "X".
2)도금 균일성은 육안관찰하여 외관이 균일하고 주사현미경으로 상층도금조직을 2000배로 확대 관찰하여 핀 홀(pin hole)등이 없이 균일한 조직을 갖고 있으면 "◎", 외관은 균일하나 조직이 균일하지 못하면 "○", 외관이 불균일하고, 조직이 균일하지 못하면 "△", 그리고 도금층이 형성되지 않은 상태를 "X"로 표시하였다.2) Plating uniformity is visually observed and uniform in appearance. Scanning microscope magnifies upper plated tissue 2000 times and has uniform structure without pin hole. "◎", uniform appearance but uniform structure If not, " ○ ", the appearance is uneven, and if the structure is not uniform, " △ " and the state in which the plating layer is not formed is indicated by " X ".
3)도장성은 도금강판을 인산염처리하여 인산염결정이 균일하고 도장외관이 균일하면 ○, 인산염결정 혹은 외관이 균일하지 못하면 X로 표시하였다.3) The paintability is marked by X when phosphate crystal is uniform and coating appearance is uniform due to phosphate treatment of plated steel sheet, and when phosphate crystal or appearance is not uniform.
상기 표 1에 기재한 바와같이, 비교예(No. 1-4)의 도금밀착성, 도금층 균일성 및 내식성의 특성중 1개 이상의 특성이 불량하게 나타났는데, 이는 도금인자들 중 1개 이상의 본 발명에서 제한한 범위을 벗어났기 때문이다. 반면에 본 발명에 따른 조건범위에서 제조된 도금층(No. 6-10)은 도금밀착성, 도금층 균일성 및도장성이 모두 만족되었다.As shown in Table 1, at least one of the properties of the plating adhesion, the plating layer uniformity and the corrosion resistance of Comparative Example (No. 1-4) appeared poor, which is one or more of the plating factors of the present invention This is because it is outside the limit of. On the other hand, the plated layer (No. 6-10) prepared in the condition range according to the present invention was satisfied with all the plating adhesion, plating layer uniformity and coating.
상술한 바와같이, 본 발명에 의하면 종래의 용융도금방법에 의한 합금도금방법 보다 불활성가스의 사용량이 적으며, 도금욕조의 교체에 따른 생산성 저하문제를 해결할 수 있는 아연-알루미늄계 합금도금강판을 제공할 수 있는 효과가 있다.As described above, the present invention provides a zinc-aluminum-based alloy plated steel sheet which uses less inert gas than the conventional alloy plating method by the conventional hot dip plating method and solves the problem of lowering productivity due to replacement of the plating bath. It can work.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970068573A KR100311793B1 (en) | 1997-12-13 | 1997-12-13 | METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970068573A KR100311793B1 (en) | 1997-12-13 | 1997-12-13 | METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990049602A KR19990049602A (en) | 1999-07-05 |
KR100311793B1 true KR100311793B1 (en) | 2001-11-22 |
Family
ID=37531086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970068573A KR100311793B1 (en) | 1997-12-13 | 1997-12-13 | METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100311793B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100830115B1 (en) * | 2001-12-21 | 2008-05-20 | 주식회사 포스코 | Space Vector Control Method For The Uniform Coating Powder Zinc Galvanizing Process |
KR100711446B1 (en) * | 2005-12-21 | 2007-04-24 | 주식회사 포스코 | A method for manufacturing hot dip alluminum coated steel having excellent phosphatability |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177536A (en) * | 1974-12-28 | 1976-07-05 | Nippon Steel Corp | RYOKAKOSEINOHYOMENHIFUKUKOHANNO SEIZOHOHO |
JPS5212629A (en) * | 1975-07-19 | 1977-01-31 | Kawasaki Steel Co | Process for producing steel plate coated with aluminum or alloy thereof by powder method |
JPS583956A (en) * | 1981-06-29 | 1983-01-10 | Nippon Kokan Kk <Nkk> | Production of al-zn alloy plated steel plate |
JPS5858263A (en) * | 1981-09-30 | 1983-04-06 | Sumitomo Metal Ind Ltd | Production of alloyed zinc hot dipped steel plate |
KR19980033160A (en) * | 1996-10-25 | 1998-07-25 | 김종진 | Galvanizing apparatus of steel plate and galvanizing method using the same |
-
1997
- 1997-12-13 KR KR1019970068573A patent/KR100311793B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177536A (en) * | 1974-12-28 | 1976-07-05 | Nippon Steel Corp | RYOKAKOSEINOHYOMENHIFUKUKOHANNO SEIZOHOHO |
JPS5212629A (en) * | 1975-07-19 | 1977-01-31 | Kawasaki Steel Co | Process for producing steel plate coated with aluminum or alloy thereof by powder method |
JPS583956A (en) * | 1981-06-29 | 1983-01-10 | Nippon Kokan Kk <Nkk> | Production of al-zn alloy plated steel plate |
JPS5858263A (en) * | 1981-09-30 | 1983-04-06 | Sumitomo Metal Ind Ltd | Production of alloyed zinc hot dipped steel plate |
KR19980033160A (en) * | 1996-10-25 | 1998-07-25 | 김종진 | Galvanizing apparatus of steel plate and galvanizing method using the same |
Also Published As
Publication number | Publication date |
---|---|
KR19990049602A (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100311788B1 (en) | Galvanizing apparatus of steel sheet and galvanizing method using the same | |
US20130183541A1 (en) | High Corrosion Resistant Hot Dip Zn Alloy Plated Steel Sheet and Method of Manufacturing the Same | |
US4657787A (en) | Flow coating of metals | |
US20060159858A1 (en) | Coating process | |
KR100311793B1 (en) | METHOD FOR MANUFACTURING Zn-Al ALLOY PLATED STEEL SHEET | |
US3503775A (en) | Method of preparing metal coated metallic substrates | |
CN107523780A (en) | The Organic-inorganic Hybrid Protection Coating and preparation method of sinking roller used for hot dip galvanizing | |
KR19990049601A (en) | Manufacturing method of zinc-iron double layered steel sheet | |
KR100415677B1 (en) | A Method for Producing Spangle Free Hot Dip Galvanizing Steel Sheet | |
KR960009191B1 (en) | Method for manufacturing a hot-dipped zinc coating steel sheets with an excellent corrosion resistance and plating adhesion | |
KR100513773B1 (en) | Method for continuous coating steel sheet and apparatus used therein | |
JP4725023B2 (en) | Method for manufacturing hot-dip alloyed steel sheet | |
JPH04160142A (en) | Hot dip galvanizing steel sheet and its manufacture | |
WO2011030443A1 (en) | Corrosion-resistant coating layer on steel material and method of forming same | |
JPH08218160A (en) | Production of high corrosion resistant zinc-aluminum alloy plated steel sheet by double layer spray plating | |
KR20010018653A (en) | A method for manufacturing hot-dip galvanized steel sheets having good coating quality properties | |
KR20000043793A (en) | Method and device for producing one-sided zinc-plated steel plate | |
KR100372729B1 (en) | Manufacturing method of composite hot-dip galvanized steel sheet | |
JP2619771B2 (en) | High quality, high coating weight galvanizing method | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JPH07150330A (en) | Production of galvannealed steel sheet by spray plating | |
JP2754590B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH06336664A (en) | Production of zinc-aluminum plated steel sheet excellent in spot weldability | |
JPS6055592B2 (en) | Manufacturing method of zero-spangle hot-dip galvanized steel sheet with excellent surface quality | |
JPS61103561A (en) | Method and apparatus for preparing thermal sprayed plate excellent in corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |