KR100309782B1 - Fabrication method of sintered ore using iron-laden dust generated during ironmaking process - Google Patents

Fabrication method of sintered ore using iron-laden dust generated during ironmaking process Download PDF

Info

Publication number
KR100309782B1
KR100309782B1 KR1019970064792A KR19970064792A KR100309782B1 KR 100309782 B1 KR100309782 B1 KR 100309782B1 KR 1019970064792 A KR1019970064792 A KR 1019970064792A KR 19970064792 A KR19970064792 A KR 19970064792A KR 100309782 B1 KR100309782 B1 KR 100309782B1
Authority
KR
South Korea
Prior art keywords
dust
blast furnace
sintered
iron
sintering
Prior art date
Application number
KR1019970064792A
Other languages
Korean (ko)
Other versions
KR19990043750A (en
Inventor
김성완
천진규
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970064792A priority Critical patent/KR100309782B1/en
Publication of KR19990043750A publication Critical patent/KR19990043750A/en
Application granted granted Critical
Publication of KR100309782B1 publication Critical patent/KR100309782B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Abstract

PURPOSE: A fabrication method of sintered ore is provided to prevent environmental pollution by recycling waste iron-laden dust after removing alkali and zinc from the iron-laden dust generated during ironmaking process. CONSTITUTION: The method is characterized in that after hazardous alkali and zinc are separated from blast furnace sludge and iron dust emitted from Dwight Lloyd sintering machine by wet cyclone, the blast furnace sludge and iron dust are added in raw material for sintering process in an amount of 0.5 to 1.0 wt.%.

Description

제선발생 함철더스트를 사용한 소결광 제조 방법Sintered ore manufacturing method using steelmaking-generated dust

본 발명은 DL(Dwight Lloyd)식 소결기를 사용하여 제철용 고로 장입원료인 소결광을 제조하는 방법에 관한 것으로, 보다 상세하게는 고로공정 및 소결 공정에서 폐자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론 처리에 의하여 더스트중에 함유되어 있는 유해성분인 아연 및 알칼리 성분을 효율적으로 제거하고 탈아연 및 탈알칼리 처리된 더스트를 소결 원료로 사용하여 페자원을 재활용하고 소결생산성 및 품질을 향상시킨 소결광 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a sintered ore as a raw material for steelmaking blast furnace using a DL (Dwight Lloyd) type sintering machine, and more particularly to the blast furnace sludge and sintered dust dust generated as waste resources in the blast furnace process and sintering process Sintered ore that efficiently removes harmful zinc and alkali components in the dust by wet cyclone treatment and recycles waste resources and improves sintering productivity and quality by using de-zinc and alkali-treated dust as sintering raw materials. It relates to a manufacturing method.

일반적으로 DL식 소결 공정에서는 분철광석, 부원료 및 열원인 분코크스 등을 드럼믹서에 넣어 혼합 및 조슴(원료중량비 약 6-7%)을 행하여 소결 배합원료를 의사입자화시켜 소결기 대차상에 일정 높이로 장입하고, 점화로에 의해 표면 점화후 하방으로부터 공기를 강제흡인하면서 소결배합원료의 소성을 진행하여 소결광을 제조한다.Generally, in the DL type sintering process, powdered iron ore, secondary raw materials, and powdered coke, which is a heat source, are put into a drum mixer, mixed and squeezed (raw material weight ratio of about 6-7%) to form a sintered blended raw material, which is made into a sintering machine. It is charged to a height, and the sintered compound raw material is fired by forcibly sucking air from below after surface ignition by an ignition furnace to produce a sintered ore.

소결 배합원료의 조립(Granulation) 공정에서는 수분과 바인더(주로 생석회, 총원료의 약 1.0-1.5%)를 사용하여 1㎜ 이상의 핵입자 주위에 1㎜ 이하의 미분입자들을 부착시켜 의사입자를 제조함으로써 입경을 증가시키고 미분부를 감소시키는 방법을 사용하고 있다.In the granulation process of sintered blended raw materials, pseudo-particles are prepared by attaching fine particles of 1 mm or less around nuclear particles of 1 mm or more using moisture and binder (mainly quicklime, about 1.0-1.5% of total raw material). A method of increasing the particle size and decreasing the fine powder is used.

또한 소결생산성은 소결대차에 장입된 소결배합원료가 착화되기전 소결배합원료의 통기성에 큰 영향을 받으며, 이 통기성은 소결 배합원료의 의사입자화성 개선에 따라 향상되는 특성을 가지고 있다.In addition, the sintering productivity is greatly influenced by the air permeability of the sintered blended raw material before the sintered blended raw material is ignited in the sintered trolley, and the air permeability is improved by improving the pseudo granulation of the sintered blended raw material.

고로공정에서 발생되는 고로 슬러지(발생량 약 5.6톤/년: 96실적)는 고로에서 배출되는 배가스를 청정하는 과정에서 습식으로 포집되며, 유용 성분(철, 탄소성분)을 다량 함유하고 있으며 그 발생량도 많다. 그러나 고로슬러지에 포함되어 있는 유해성분(특히 아연 성분) 때문에 제철공정에서 리싸이클링을 하지 못하고 발생량의 69%를 매립처리하고 있으며, 나며지 31%를 저가의 시멘트 원료로 사외 판매하는 실정이다.The blast furnace sludge (approximately 5.6 tons / year: 96 records) generated in the blast furnace process is collected in a wet manner in the process of cleaning the flue gas discharged from the blast furnace, and contains a large amount of useful components (iron and carbon). many. However, due to the harmful components (especially zinc) contained in the blast furnace sludge, 69% of the generated amount cannot be recycled in the steelmaking process, and 31% of Nagi is sold as low-cost cement raw materials.

고로 장입물중 아연성분은 고로 노벽부착물 형성에 따른 연와손상과 노황부조의 원인이 되므로 고로조업에 있어서 장입원료중 아연 함유량을 0.1kg/T-p 수준으로 제한하고 있다.Zinc content in blast furnace charges causes lead damage and rust relief due to the formation of blast furnace wall attachments, which limits zinc content in the blast furnace industry to 0.1kg / T-p.

고로슬러지에는 제철공정에서 유용한 철분과 탄소분이 약 36%와 31.4%, 유해 성분인 아연이 약 1.05% 함유되어 있으며, 철분과 탄소성분은 철분 60%의 철광석 8.6 만 톤과 고정탄소 88%의 코크스 5.2만 톤에 상당하는 막대한 잠재적인 자원이다.The blast furnace sludge contains about 36% and 31.4% of iron and carbon, and about 1.05% of zinc, a harmful component, and 60% of iron ore and 60% of coke with fixed carbon. It is an enormous potential resource worth 5.2 million tonnes.

또한, 소결공정에서는 분철광석, 융제 및 분코크스들의 혼합물이 소결되는 과정중에 고속으로 유입 배기되는 공기에 의해 분화되거나 고온에서 분해, 증발되어 더스트가 발생되며, 이는 전기집진기에서 건식집진된다.In addition, in the sintering process, during the sintering process of the powdered iron ore, the flux and the powdered coke, dust is differentiated by the air flowing in at high speed or decomposed and evaporated at a high temperature to generate dust, which is dry collected in the electrostatic precipitator.

소결 집진더스트(발생량1.4만 톤/년: 96실적)는0.25㎜ 이하의 극히 미분들로 이루어져 있으며, 더스트중 철 성분은 약 40∼50 중량%이고, 주로 철산화물 및 칼슘페라이트의 형태로 존재한다.Sintered dust dust (generating amount of 140,000 tons / year: 96 records) is composed of extremely fine powder of less than 0.25mm, and the iron component of dust is about 40 to 50% by weight, mainly in the form of iron oxide and calcium ferrite. .

한편 더스트중 알칼리 화합물은 소결기 충전층의 구조에 의하여 소결기 후반부에서 급격히 발생하고, 일부는 산화되어 K2O,Na2O 형태로 존재하는 것도 있으며, 주로 KCl, NaCl, (K,Na)2SO4등의 수용성 염화물과 유산염의 형태로 더스트중 약 10 중량% 정도 존재한다고 알려져 있다. 또한, 소결원료중 알칼리 화합물원은 철광석 맥석중에 존재하는 알카리 장석{(K2O,Na2O)Al2O36SiO2}에 기인하는 것으로 알려져 있다.On the other hand, alkali compounds in dust are rapidly generated in the latter part of the sintering machine due to the structure of the sintering machine packed layer, and some of them are oxidized to exist in the form of K 2 O, Na 2 O, mainly KCl, NaCl, (K, Na) It is known to present about 10% by weight of dust in the form of water-soluble chlorides and lactates such as 2 SO 4 . It is also known that the alkali compound source in the sintered raw material is due to the alkali feldspar {(K 2 O, Na 2 O) Al 2 O 3 6SiO 2 } present in the iron ore gangue.

이와 같이 알칼리 성분의 함량이 높고, 극히 미분인 소결 건식집진더스트를 제선원료로 직접사용시 소결생산성과 환원분화성 악화, 소결전기집진 효율저하, 소결생산성과 품질 저하 및 고로 노벽 부착물 형성에 따른 연와손상과 노황부조의 원인이 되므로 현재는 전량 매립 폐기되고 있는 실정이며, 이에 따른 환경오염 유발의 원인이 되고 있다.As such, when sintered dry dust dust with high alkali content and extremely fine powder is used directly as a steelmaking raw material, sinter productivity and reduction differentiation are deteriorated, sintering electric dust collection efficiency is deteriorated, sinter productivity is deteriorated due to deterioration of sinter productivity and formation of blast furnace wall attachments. Since it is a cause of over-exploitation, the current situation has been completely disposed of landfill, which is a cause of environmental pollution.

본 발명은 상기 설명한 종래 기술의 문제점을 해결하기 위하여 이루어진 것으로, DL(Dwight Lloyd)식 소결기를 사용하여 제철용 고로 장입원료인 소결광 제조시 고로공정 및 소결공정에서 폐자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론 처리에 의하여 더스트중 유해성분인 아연 및 알칼리 성분을 효율적으로 제거하고, 탈아연 및 탈알칼리 처리된 더스트를 소결원료로 사용하여 페자원을 재활용하고 소결생산성과 품질을 향상시키는소결광 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art described above, blast furnace sludge and sintering generated as waste resources in the blast furnace process and sintering process in the production of sintered ore as a raw material for steel blast furnace using DL (Dwight Lloyd) type sintering machine The wet cyclone treatment removes dust and zinc, which are harmful components in dust, and recycles waste resources and improves sintering productivity and quality by using de-zinc and de-alkaline treated dust as sintering raw materials. Its purpose is to provide a sintered ore manufacturing method.

도 1 은 본 발명에서 고로슬러지와 소결집진 더스트를 습식분급하기 위해 사용되는 습식 분급 처리 시스템을 개략적으로 도시한 도면이다.1 is a view schematically showing a wet classification treatment system used for wet classification of blast furnace sludge and sintered dust dust in the present invention.

상기 목적을 달성하기 위한 본 발명의 제선 발생 함철 더스트를 사용한 소결광 제조 방법은, DL(Dwight Lloyd)식 소결기를 사용하여 제철용 고로 장입원료인 소결광을 제조시, 자원 재활용 및 소결 생산성과 품질을 향상시키기 위해 고로공정 및 소결공정에서 폐자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론으로 처리하여 더스트중 유해성분인 아연 및 알칼리 성분을 제거하고, 탈아연 및 탈알칼리처리된 더스트를 소결원료에 0.5-1.0% 수준으로 첨가하는 것을 특징으로 하는 구성이다.The sintered ore manufacturing method using the steel-making iron-containing dust of the present invention for achieving the above object, when manufacturing the sintered ore as a raw material for the blast furnace blast furnace using DL (Dwight Lloyd) type sintering machine, resource recycling and sintering productivity and quality is improved In order to make blast furnace sludge and sinter dust collecting dust generated from waste resources in blast furnace process and sintering process with wet cyclone, it removes harmful components of zinc and alkali from dust, and de-zinc and de-alkaline treated dust is sintered raw material. To 0.5-1.0% level.

이하에서는 양호한 실시예와 관련하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the preferred embodiments.

본 발명에서는 소결광제조에 있어서 고로공정 및 소결공정에서 페자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론 처리에 의하여 더스트증 유해성분인 아연 및 알칼리 성분을 효율적으로 제거하고, 탈아연 및 탈알칼리 처리된 더스트를 소결원료로 사용할 때 소결성에 미치는 영향을 확인하고자 소결포트 시험을 행하였다.In the present invention, the blast furnace sludge and sintered dust dust generated as waste resources in the sintering ore manufacturing in the sintering ore manufacturing process by the wet cyclone treatment to efficiently remove the zinc and alkali components of dust toxic components, de-zinc and de The sintering pot test was conducted to confirm the effect on the sinterability when using alkali treated dust as the sintering raw material.

본 발명에 사용된 고로슬러지 및 소결 집진더스트의 화학조성을 표 1 에 나타내었으며, 고로슬러지중 Zn은 1.62%, 소결집진 더스트중의 Na2O는 0.16%, K2O 는 1.61% 의 시료를 사용하였다. 이들의 입도분포를 표 2에 나타내었다.The chemical composition of the blast furnace sludge and sintered dust dust used in the present invention is shown in Table 1, Zn of blast furnace sludge is 1.62%, Na 2 O in the sintered dust dust, 0.16%, K 2 O is 1.61% It was. Their particle size distribution is shown in Table 2.

구 분division 화 학 조 성 (중량%)Chemical composition (% by weight) T.FeT.Fe FeOFeO CaOCaO SiO2 SiO 2 Al2O3 Al 2 O 3 MgOMgO Na2ONa 2 O K2OK 2 O CC SS ZnZn 고로슬러지Blast furnace sludge 23.0323.03 2.862.86 2.152.15 5.135.13 2.422.42 0.520.52 0.110.11 0.140.14 52.0052.00 1.51.5 1.621.62 소결집진 더스트Sintered Dust 51.5051.50 3.923.92 7.207.20 6.676.67 1.701.70 1.121.12 0.160.16 1.611.61 3.883.88 0.420.42 0.010.01

구 분division 입 도 분 포(중량%)Particle size distribution (% by weight) +0.25㎜+0.25 mm +0.125㎜+0.125 mm +0.10㎜+0.10 mm +0.05㎜+0.05 mm +0.025㎜+0.025 mm -0.025㎜-0.025 mm 고로슬러지Blast furnace sludge 1.71.7 14.214.2 11.911.9 25.525.5 20.120.1 26.626.6 소결집진더스트Sintered Dust Collector 2.42.4 5.65.6 15.315.3 31.231.2 17.517.5 28.028.0

이하 실시예를 통하여 본 발명의 상세한 설명을 한다.Through the following examples will be described in detail the present invention.

실시예 1Example 1

본 발명에서 사용된 고로슬러지 및 소결 집진더스트의 입경별 화학조성을 표 3 에 나타내었다.Table 3 shows the chemical composition of blast furnace sludge and sintered dust dust used in the present invention.

구 분division 화 학 조 성(중량%)Chemical composition (% by weight) T.FeT.Fe Na2ONa 2 O K2OK 2 O CC ZnZn 고 로슬러지High loss sludge +71㎛+71 μm 26.026.0 -- -- 56.856.8 0.840.84 +36㎛+36 ㎛ 27.927.9 34.334.3 1.561.56 +20㎛+ 20㎛ 37.637.6 26.126.1 2.942.94 -20㎛-20㎛ 15.815.8 23.523.5 6.716.71 소결집진 더스트Sintered Dust +71㎛+71 μm 41.741.7 0.040.04 0.180.18 -- -- +36㎛+36 ㎛ 50.850.8 0.030.03 0.170.17 +20㎛+ 20㎛ 50.650.6 0.600.60 2.212.21 -20㎛-20㎛ 44.244.2 1.261.26 4.364.36

고로슬러지의 경우 아연성분은 20㎛ 이하의 미분부에 편재되어 있으며, 반면 탄소성분은 20㎛ 이상의 조립부에 편재되어 있다.In the case of blast furnace sludge, the zinc component is ubiquitous in the finely divided part of 20 μm or less, while the carbon component is ubiquitous in the granulated part of 20 μm or more.

또한 소결집진 더스트의 경우도 Na2O 및 K2O 성분이 20㎛ 이하의 미분부에 편재되어 있다. 이와같이 더스트중의 아연성분 및 알칼리 성분이 입경에 따라 편재되어 있는 것에 착안하여 습식싸이클론을 이용하여 입도분급처리시 효율적으로 상기 유해성분들의 제거가 가능하다.Also in the case of sintered dust dust, Na 2 O and K 2 O components are localized in the finely divided part of 20 µm or less. In view of the fact that the zinc and alkaline components in the dust are unevenly distributed according to the particle size, the harmful components can be efficiently removed during the particle size classification process using a wet cyclone.

따라서 본 발명에서는 고로슬러지 및 소결 집진더스트의 아연 및 알칼리 성분을 효율적으로 제거하고 탈아연 및 탈알칼리처리된 더스트를 회수하기 위하여 습식싸이클론을 사용한 습식분급처리를 행하였으며 습식분급처리공정 개략도를 도 1에 나타내었다.Therefore, in the present invention, a wet classification process using a wet cyclone was performed to efficiently remove zinc and alkali components of blast furnace sludge and sintered dust dust, and to recover dezinc and dealkali treated dust. 1 is shown.

습식분급과정은 도 1에 나타낸 바와 같이 광액(3)이 들어 있는 교반기(1)에서 물과 고로슬러지 및 소결 집진더스트를 광액농도 약 15%로 조정하고, 슬러리펌프(2)에 의해 압력계(4)가 설치된 습식싸이클론(5)으로 공급하여 습식분급처리하였으며, 본 발명에 사용된 습식싸이클론(5)의 기기사양 및 조작조건을 표 4에 나타내였다.In the wet classification process, as shown in FIG. 1, water, blast furnace sludge, and sintered dust dust are adjusted to about 15% of the concentration of mineral liquid in the stirrer 1 containing the mineral liquid 3, and the pressure gauge 4 is applied to the slurry pump 2. ) Was supplied to the installed wet cyclone (5) and the wet classification treatment, the equipment specifications and operating conditions of the wet cyclone (5) used in the present invention are shown in Table 4.

항 목Item 사양 및 조작조건Specification and operating condition 습식싸이클론 용량Wet Cyclone Dose 0.1 ㎥/분0.1 ㎥ / min 외관경Exterior 76㎜76 mm 공급파이프관경Supply pipe diameter 25 A25 A 오버플로우파이프관경Overflow Pipe Diameter 25 A25 A 보텍스파인더직경Vortex Finder Diameter 20㎜20 mm 어펙스 밸브 직경Apex valve diameter 10㎜10 mm

습식싸이클론(5) 크기는 원통경 76㎜크기의 것을 사용하였으며, 어펙스 밸브(Apex valve) 직경은 10㎜, 보텍스 파인더(Vortex finder) 직경은 20㎜, 광액공급압력은 2.0 kg/㎠으로하였다. 습식싸이클론(5)은 상부는 원통형, 하부는 원추형으로 되어있으며, 광액은 급광구를 통해 압송되어 원통 안에서 매우 빠른 속도로 선회하게 되며, 원심력에 의해 조립입자들은 벽을 타고 원추부로 내려와 아펙스 밸브로 배출되고, 반면 미립들은 안쪽의 보텍스 파인더를 통해 위로 배출된다.The size of the wet cyclone (5) is cylindrical diameter 76mm, Apex valve diameter 10mm, Vortex finder diameter 20mm, mineral liquid supply pressure 2.0kg / ㎠ It was. The wet cyclone (5) is cylindrical in the upper part and conical in the lower part, and the mineral liquid is pushed through the sharpening port so that it can be rotated at a very high speed in the cylinder. The centrifugal force causes the granulated particles to descend to the cone by the centrifugal force. The particulates are ejected upward through the inner vortex finder.

상기 방법을 통하여 얻어진 저아연,저알칼리 더스트(6)는 완전 건조(105℃, 4시간)하여 중량측정 및 습식분석에 의해 아연, 알칼리 성분 함량을 조사하였다. 저아연, 저알칼리 더스트의 회수율 및 탈아연, 탈알칼리율을 다음식에 의하여 구하였다.The low zinc, low alkali dust (6) obtained through the above method was completely dried (105 ° C., 4 hours), and the content of zinc and alkali was examined by gravimetric and wet analysis. The recovery rates of low zinc, low alkali dust, dezinc and dealkali ratio were calculated by the following equation.

● 회수율(%) = ( 언더플로우 더스트 중량/분급전 더스트 중량)×100Recovery rate (%) = (underflow dust weight / pre-classified dust weight) × 100

● 탈 Zn,알칼리율(%) = 〔1-(언더플로우 더스트중 아연,알칼리 함량/분급전 더스트중 Zn, 알칼리 함량)] ×100● De-Zn, alkali rate (%) = [1- (Zn in alkali, alkali content / Zn in dust before classification, alkali content)] × 100

습식싸이클론을 사용하여 고로슬러지 및 소결 집진더스트를 습식분급처리후 얻어진 더스트의 화학조성을 표 5에 나타내었으며, 이때 탈아연율, 탈알칼리율 및 회수율을 표 6에 나타내었다.The chemical composition of the dust obtained after the wet classification treatment of blast furnace sludge and sintered dust dust by using a wet cyclone is shown in Table 5, and the de-zinc rate, de-alkali rate and recovery rate are shown in Table 6.

구 분division 화 학 조 성 (중량%)Chemical composition (% by weight) T.FeT.Fe FeOFeO CaOCaO SiO2 SiO 2 Al2O3 Al 2 O 3 MgOMgO Na2ONa 2 O K2OK 2 O CC SS ZnZn 고로슬러지Blast furnace sludge 25.2325.23 2.762.76 2.232.23 5.305.30 2.382.38 0.600.60 0.070.07 0.090.09 52.252.2 0.390.39 0.140.14 소결집진 더스트Sintered Dust 56.156.1 4.314.31 6.336.33 6.606.60 1.551.55 1.121.12 0.070.07 0.100.10 2.072.07 0.060.06 0.010.01

구 분division 탈아연율(%)Dezincation rate (%) 탈알칼리율(%)Dealkali rate (%) 회수율(%)% Recovery 고로 슬러지Blast furnace sludge 88.588.5 -- 72.572.5 소결집진더스트Sintered Dust Collector -- 93.393.3 70.070.0

습식싸이클론 처리후 고로슬러지의 경우는 아연함량이 1.62% → 0.14%로 저하하여 탈아연율 88.5%, 회수율 72.5%를 나타내었고, 소결 집진더스트의 경우는 Na2O 0.16%, K2O 1.61% → Na2O 0.07%, K2O 0.09% 로 저하하여 탈알칼리율 93.3%, 회수율 70.0%를 나타내었다. 본 실시예에서 고로슬러지 및 소결 집진더스트를 습식싸이클론을 사용하여 습식분급처리시 효율적으로 더스트중 아연 및 알칼리 성분의 제거가 가능함을 확인 하였다.After wet cyclone treatment, the blast furnace sludge decreased zinc content from 1.62% to 0.14%, resulting in 88.5% denitrification and 72.5% recovery.In case of sintered dust, Na 2 O 0.16%, K 2 O 1.61 % → Na 2 O 0.07%, K 2 O 0.09% was reduced to a de-alkali rate of 93.3%, recovery was 70.0%. In this embodiment, it was confirmed that blast furnace sludge and sintered dust dust can be efficiently removed from zinc and alkaline components during the wet classification process using a wet cyclone.

실시예 2Example 2

본 발명에서는 고로슬러지 및 소결 집진더스트의 습식싸이클론 처리에 의하여 얻어진 탈아연 및 탈알칼리 더스트를 소결원료로 사용할 때 소결성에 미치는 영향을 확인하고자 소결표트시혐을 행하였다.In the present invention, the sintering test was performed to check the effect on the sinterability when using de-zinc and de-alkali dust obtained by wet cyclone treatment of blast furnace sludge and sintered dust dust.

본 발명에 사용된 소결원료의 화학조성 및 배합조건을 표 7 및 표8에 나타내었다.The chemical composition and blending conditions of the sintered raw materials used in the present invention are shown in Table 7 and Table 8.

소결연료/ 원료Sintered Fuel / Raw Material 화학 조성(중량%)Chemical composition (% by weight) T.FeT.Fe FeOFeO Al2O3 Al 2 O 3 SiO2 SiO 2 CaOCaO MgOMgO 철광석ironstone AA 62.8762.87 0.250.25 2.282.28 3.873.87 0.030.03 0.050.05 BB 67.6067.60 0.320.32 0.860.86 1.311.31 0.030.03 0.040.04 CC 67.2267.22 0.190.19 0.890.89 0.710.71 0.010.01 0.020.02 DD 58.8258.82 0.230.23 1.281.28 4.804.80 0.030.03 0.060.06 EE 66.2866.28 7.147.14 0.170.17 4.344.34 0.260.26 0.200.20 융제flux 생석회quicklime 0.290.29 -- 0.370.37 1.081.08 83.4983.49 3.553.55 석회석Limestone 0.600.60 -- 0.990.99 2.432.43 46.9846.98 3.243.24 사문암Serpentine 7.457.45 -- 2.732.73 39.5539.55 2.442.44 31.6731.67 규사Quartz sand 0.930.93 -- 3.193.19 96.2096.20 0.760.76 0.170.17 반 광Half light 56.2456.24 8.428.42 1.751.75 6.176.17 9.749.74 0.190.19 분코크스Bunk coke 0.880.88 -- 2.742.74 5.785.78 0.610.61 0.110.11

소결연료/원료Sintered Fuel / Raw Materials 종래예Conventional example 발명예Inventive Example 입 도Mouth dildo 고로슬러지Blast furnace sludge 소결집진더스트Sintered Dust Collector 철광석및더스트 (%)Iron ore and dust (%) ABCDE고로슬러지소결집진더스트ABCDE blast furnace sludge sintered dust dust 24.210.010.015.03.0--24.210.010.015.03.0-- 23.7∼23.210.010.015.03.00.5∼1.0-23.7 to 23.210.010.015.03.00.5 to 1.0- 23.7∼23.210.010.015.03.0- 0.5∼1.023.7 to 23.210.010.015.03.0-0.5 to 1.0 -8-8 융제(%)flux(%) 생석회석회석사문암규사Quicklime limestone serpentine 1.511.31.20.81.511.31.20.8 1.511.31.20.81.511.31.20.8 1.511.31.20.71.511.31.20.7 -1-3-1-1-1-3-1-1 반광(%)Half glow (%) 19.219.2 19.219.2 19.219.2 -5-5 분코크스(%)Bunkers (%) 3.83.8 3.83.8 3.83.8 -3-3 합 계Sum 100100 목표 조성 (%)Target composition (%) SiO2 SiO 2 5.465.46 MgOMgO 1.401.40 CaOCaO 9.919.91 Al2O3 Al 2 O 3 1.851.85 슬래그량Slag amount 18.618.6 C/SC / S 1.821.82

소결원료로서 철광석은 적철광계 분광석 3 종(A,B,C), 갈철광계 분광석 1 종(D), 자철광계 분광석 4 종(E)을 사용하였다. 부원료로는 석회석, 석회 슬러지, 생석회, 사문암, 규사, 반광을 사용하였고, 연료로는 분코크스를 사용하였다. 또한, 탈아연 및 탈알칼리 더스트의 배합비는 0.5∼1.0%로 하였다.Iron ore was used as three kinds of hematite spectroscopy (A, B, C), a hematite spectroscopy (D), and magnetite spectroscopy (E). Limestone, lime sludge, quicklime, serpentine, silica sand, and semi-ore were used as side materials, and buncoke was used as fuel. In addition, the compounding ratio of dezinc and dealkali dust was 0.5 to 1.0%.

소결포트 시험은 표 8 의 배합 조건을 갖는 소결배합원료를 균일 혼합한후, 소형 드럼 믹서에 장입하고 혼합, 수분 첨가 및 조립을 행하였으며, 배합원료의 수분함량은 7.0±0.1 중량% 수준으로 일정하게 첨가하였다.In the sintering pot test, the sintered blended raw materials having the mixing conditions shown in Table 8 were uniformly mixed, loaded into a small drum mixer, mixed, added with water, and granulated. Was added.

본 실험시 사용된 소결포트는 직경 200㎜, 높이 600㎜인데, 조립이 완료된 원료는 상부광 3 ㎏(30∼35㎜ 두께)을 우선 장입후 포트 상부까지 장입하였으며, 1050℃로 예열된 점화로를 포트 상부로 이동시켜 점화(2분)하고 점화와 동시에 배풍기를 가동시켜 부압을 1000㎜Aq로 유지시키고 점화후에는 부압을 1500 ㎜Aq로 하여 소결을 진행하였다.The sintering pot used in this experiment was 200mm in diameter and 600mm in height. The assembled raw material was loaded with 3kg (30 ~ 35mm thickness) of top light first and loaded to the top of the pot. Was moved to the top of the pot for ignition (2 minutes), and at the same time as the ignition, the blower was operated to maintain the negative pressure at 1000 mmAq, and after ignition, the sintering was performed at a negative pressure of 1500 mmAq.

소결광의 회전강도(TI:Tumbling Index)는 소결 완료 직후 2m 높이에서 1 회 낙하, 텀블러 테스터에서 24rpm 으로 30 회 회전시켜 파쇄후 10∼50㎜의 성품 소결광 15㎏을 텀블러 테스터에 넣고 200 회전시킨후 + 6.3㎜ 소결광의 중량 백분율로 나타내었다.After sintering, the rotating strength (TI: Tumbling Index) drops once at 2m height and rotates 30 times at 24rpm in the tumbler tester. After crushing, the 15kg of the sintered ore of 10-50mm is put into the tumbler tester and rotated 200 times. It is expressed as a weight percentage of +6.3 mm sintered ore.

소결광의 저온환원분화율(RDI: Reduction Degradation Index)은 15∼20㎜ 소결광 500g 을 사용하여 550℃에서 CO 30%, N270%의 혼합가스 15Nℓ/분을 사용하여 30분간 환원시킨후 텀블러에서 30rpm으로 30분간 회전시켜 파쇄후 -2.83㎜ 소결광의 중량 백분율로 나타내었다.Reduction Degradation Index (RDI) of sintered ore was reduced by using 30g of 30% CO and 15Nl / min of N 2 70% at 550 ℃ using 500g of 15-20mm sintered ore. It was rotated at 30 rpm for 30 minutes and then expressed as a weight percentage of -2.83 mm sintered ore after crushing.

소결광의 피환원율(RI:Reducton Index)은 15∼20㎜ 소결광 500g 을 사용하여 900℃에서 CO 30%, N270%의 혼합가스 15Nℓ/분을 사용하여 120분간 환원시킨후 중량감소량과 시료의 T.Fe 및 FeO 함량에 의해 구하였으며, 소결광의 회전강도, 피환원율, 저온환원분화율, 소결생산성 및 소결 회수율을 구하는 식은 다음과 같다.The reduction index (RI) of the sintered ore was reduced by using 500 g of 15-20 mm sintered ore at a temperature of 900 ° C for 120 minutes using 15 Nℓ / min of mixed gas of 30% CO and N 2 70%. Calculated by T.Fe and FeO content, the formula for calculating the rotational strength, reduction rate, low temperature reduction differentiation rate, sintering productivity and sinter recovery rate of sintered ore is as follows.

Figure kpo00000
Figure kpo00000

Figure kpo00001
Figure kpo00001

본 발명에 의한 소결포트 시험 결과를 표 9 에 나타내었다.Table 9 shows the results of the sintering pot test according to the present invention.

구 분division 종래예Conventional example 발 명 예Foot honor 고로 슬러지Blast furnace sludge 소결집진더스트Sintered Dust Collector 0.5%0.5% 1.0%1.0% 0.5%0.5% 1.0%1.0% 평균입경 (㎜)Average particle diameter (mm) 습윤Wetting 3.693.69 3.733.73 3.833.83 3.753.75 4.114.11 건조dry 2.532.53 2.712.71 2.852.85 2.752.75 2.872.87 평균소성풍속(m/초)Average firing wind speed (m / s) 2.552.55 2.702.70 2.752.75 2.602.60 2.652.65 소결시간(분)Sintering time (minutes) 34.834.8 34.434.4 34.234.2 34.034.0 33.533.5 소결생산성(T/D/㎥)Sintered Productivity (T / D / ㎥) 26.826.8 27.327.3 28.528.5 27.227.2 28.328.3 회수율(%)% Recovery 71.871.8 74.674.6 75.175.1 73.073.0 73.673.6 강도(%)burglar(%) 77.977.9 78.578.5 79.179.1 78.378.3 78.878.8 환원분화율(%)Reduction Differentiation Rate (%) 43.743.7 43.043.0 42.542.5 43.543.5 42.242.2 환원율(%)Reduction rate (%) 75.575.5 76.576.5 75.375.3 75.575.5 75.175.1

탈아연처리된 고로슬러지를 0.5-1.0% 첨가한 결과 기존의 소결광 제조방법에 비하여 소결광 강도가 77.9% → 79.1%, 회수율이 71.8% → 75.1% 로 증가하였으며, 소결시간 단축에 의해 소결생산성이 26.8 → 28.5 (T/d/m2)로 향상되었다. 소결광의 강도 및 회수율의 향상은 탈아연처리된 고로슬러지에 함유되어 있는 다량의 탄소성분(약52.2%)이 공급열원으로 작용하여 소성중 융체 생성량을 증가시키기 때문이며 소결시간의 단축은 배합원료 의사입자의 평균입경(3.69→3.83㎜) 증가로 소성통기성이 개선되었기 때문이다.As a result of adding 0.5-1.0% of de-zinc-treated blast furnace sludge, the sintered ore strength increased from 77.9% to 79.1% and the recovery rate from 71.8% to 75.1% compared to the conventional sintered ore manufacturing method. → improved to 28.5 (T / d / m 2 ). The improvement of the strength and recovery rate of sintered ore is due to the fact that a large amount of carbon components (about 52.2%) contained in the dezinc-treated blast furnace sludge act as a supply heat source to increase the amount of fusion produced during firing. This is because the plastic breathability is improved by increasing the average particle diameter (3.69 → 3.83㎜).

또한 탈알칼리 처리된 소결집진더스트를 0.5-1.0% 첨가시에도 기존의 소결광 제조방법에 비하여 소결광 강도가 77.9% → 78.8%로, 및 회수율이 71.8% → 73.6%로 증가하였으며, 소결생산성이 26.8 → 28.3 (T/d/m2)로 향상되었다.Also, when 0.5-1.0% of de-alkali treated sintered dust was added, the sintered ore strength increased from 77.9% to 78.8%, and the recovery rate was increased from 71.8% to 73.6%, compared to the conventional sintered ore manufacturing method. Improved to 28.3 (T / d / m 2 ).

상술한 바와 같이 본 발명에 따르면 소결광제조에 있어서 고로공정 및 소결공정에서 폐자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론처리에 의하여 더스트중 유해성분인 아연 및 알칼리 성분을 효율적으로 제거하고 탈아연 및 탈알칼리 처리된 더스트를 소결원료로 사용하여 자원재활용 및 소결생산성과 품질을 향상시키는 것이 가능한 등 유용한 효과가 얻어진다.As described above, according to the present invention, the blast furnace sludge and sintered dust dust generated as waste resources in the sintering process and the sintering process in the sintering ore manufacturing process by the wet cyclone treatment to efficiently remove the harmful components zinc and alkali components in the dust Use of de-zinc and de-alkaline treated dust as sintered raw materials can provide useful effects such as resource recycling and sintering productivity and quality.

Claims (1)

DL(Dwight Lloyd)식 소결기를 사용하여 제철용 고로 장입원료인 소결광을 제조시, 자원 재활용 및 소결 생산성과 품질을 향상시키기 위해 고로공정 및 소결공정에서 폐자원으로 발생되는 고로슬러지 및 소결 집진더스트를 습식싸이클론으로 처리하여 더스트중 유해성분인 아연 및 알칼리 성분을 제거하고, 탈아연 및 탈알칼리처리된 더스트를 소결원료에 0.5-1.0% 수준으로 첨가하는 것을 특징으로 하는 제선 발생 함철 더스트를 사용한 소결광 제조방법.When manufacturing sintered ore as raw materials for steelmaking blast furnace using DL (Dwight Lloyd) type sintering machine, blast furnace sludge and sinter dust collecting dust generated from waste resources in blast furnace process and sintering process to improve resource recycling and sintering productivity and quality Sintered ore using iron-containing iron-containing dust, which is characterized in that it is treated with a wet cyclone to remove zinc and alkali components, which are harmful components in the dust, and de-zinc and de-alkaline treated dust is added to the sintered material at a level of 0.5-1.0%. Manufacturing method.
KR1019970064792A 1997-11-29 1997-11-29 Fabrication method of sintered ore using iron-laden dust generated during ironmaking process KR100309782B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970064792A KR100309782B1 (en) 1997-11-29 1997-11-29 Fabrication method of sintered ore using iron-laden dust generated during ironmaking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970064792A KR100309782B1 (en) 1997-11-29 1997-11-29 Fabrication method of sintered ore using iron-laden dust generated during ironmaking process

Publications (2)

Publication Number Publication Date
KR19990043750A KR19990043750A (en) 1999-06-15
KR100309782B1 true KR100309782B1 (en) 2002-04-17

Family

ID=37530849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970064792A KR100309782B1 (en) 1997-11-29 1997-11-29 Fabrication method of sintered ore using iron-laden dust generated during ironmaking process

Country Status (1)

Country Link
KR (1) KR100309782B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415926B1 (en) * 1999-11-20 2004-01-31 주식회사 포스코 STRUCTRE OF MINI-PELLET HAVING GOOD EFFECTS OF DECREASING SOx IN THE SINTERING WITH HIGH MIX RATIO OF IRON BEARING DUSTS AND MANUFACTURING METHOD THEREOF
KR101281764B1 (en) 2011-05-16 2013-07-02 주식회사 포스코 Method and device for treating fine ore for sintering
KR20160082380A (en) 2014-12-26 2016-07-08 주식회사 포스코 Ferruginous by-product recycling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757842A (en) * 1980-09-22 1982-04-07 Toshihiko Fujita Recovering method for useful metal from industrial waste
JPS63111133A (en) * 1986-10-30 1988-05-16 Nisshin Steel Co Ltd Sintering method of iron ore
JPH05263156A (en) * 1992-03-17 1993-10-12 Nisshin Steel Co Ltd Treatment of dust or the like in iron-making
JPH0797638A (en) * 1993-09-29 1995-04-11 Nisshin Steel Co Ltd Treatment of dust kinds produced in iron works
JPH083654A (en) * 1994-06-14 1996-01-09 Tetsugen:Kk Dezincification method for iron making dust

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757842A (en) * 1980-09-22 1982-04-07 Toshihiko Fujita Recovering method for useful metal from industrial waste
JPS63111133A (en) * 1986-10-30 1988-05-16 Nisshin Steel Co Ltd Sintering method of iron ore
JPH05263156A (en) * 1992-03-17 1993-10-12 Nisshin Steel Co Ltd Treatment of dust or the like in iron-making
JPH0797638A (en) * 1993-09-29 1995-04-11 Nisshin Steel Co Ltd Treatment of dust kinds produced in iron works
JPH083654A (en) * 1994-06-14 1996-01-09 Tetsugen:Kk Dezincification method for iron making dust

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415926B1 (en) * 1999-11-20 2004-01-31 주식회사 포스코 STRUCTRE OF MINI-PELLET HAVING GOOD EFFECTS OF DECREASING SOx IN THE SINTERING WITH HIGH MIX RATIO OF IRON BEARING DUSTS AND MANUFACTURING METHOD THEREOF
KR101281764B1 (en) 2011-05-16 2013-07-02 주식회사 포스코 Method and device for treating fine ore for sintering
KR20160082380A (en) 2014-12-26 2016-07-08 주식회사 포스코 Ferruginous by-product recycling method

Also Published As

Publication number Publication date
KR19990043750A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US5885328A (en) Method of agglomerating oil-containing steel mill waste
Das et al. Effective utilization of blast furnace flue dust of integrated steel plants
CN103215441A (en) Method for treating grate furnace garbage incineration flyash by using metallurgical sintering process
Mantovani et al. EAF and secondary dust characterisation
Udo et al. Investigation of balling characteristics of mixture of iron oxide bearing wastes and iron ore concentrates
CN100446866C (en) Method for recovering iron concentrate from blast furnace dust
CN113787085A (en) Method for extracting Fe, Zn and Pb from electric furnace dust removal ash and realizing high-value utilization
KR100309782B1 (en) Fabrication method of sintered ore using iron-laden dust generated during ironmaking process
CN110369119B (en) Comprehensive recovery process for iron, carbon and zinc in steel mill dust waste
CN108034829A (en) A kind of method of the bag-type dust ash production containing scum and high zinc material
BożyM et al. The content of heavy metals in foundry dusts as one of the criteria for assessing their economic reuse
CN107586963B (en) A kind of leaded dedusting ash integrated conduct method
KR100322036B1 (en) Sintered ore manufacturing method using steelmaking sludge
CN115716738A (en) Production process of high-strength steel slag brick
US3403018A (en) Method of treating precipitator dust
CN110643756A (en) Recovery device and recovery method for steel slag under steel making furnace
WO2005017216A3 (en) Recycling process for sludges and dusts from blast furnace and steel works
US6514312B2 (en) Steelmaking slag conditioner and method
Anawar et al. Recovery of value-added materials from iron ore waste and steel processing slags with zero-waste approach and life cycle assessment
KR910001010B1 (en) Method for recovering zinc from substances containing a zinc conpound
Ma Cr (VI)-Containing electri furnace dust and filter cake: characteristics, formation, leachability and stabilisation
Więcek et al. CHARAKTERISTICS OF FINE-GRID IRON-BEARING MATERIALS (DUSTS, SLUDGES, MILL-SCALE SLUDGES)
Koomson et al. Beneficiation of iron oxides from cupola furnace slags for arsenic removal from mine tailings decant water
Singh et al. Dezincification from Blast Furnace Sludge/Dust
Jha Studies on Utilization and Recycling of Steel Plant Fines by Agglomeration

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee