KR100308916B1 - β-ketoester or amide Type Precursors for Ferroelectric BST thin films - Google Patents

β-ketoester or amide Type Precursors for Ferroelectric BST thin films Download PDF

Info

Publication number
KR100308916B1
KR100308916B1 KR1019980008164A KR19980008164A KR100308916B1 KR 100308916 B1 KR100308916 B1 KR 100308916B1 KR 1019980008164 A KR1019980008164 A KR 1019980008164A KR 19980008164 A KR19980008164 A KR 19980008164A KR 100308916 B1 KR100308916 B1 KR 100308916B1
Authority
KR
South Korea
Prior art keywords
och
mmol
precursor
beta
nmr
Prior art date
Application number
KR1019980008164A
Other languages
Korean (ko)
Other versions
KR19990074522A (en
Inventor
박준택
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1019980008164A priority Critical patent/KR100308916B1/en
Publication of KR19990074522A publication Critical patent/KR19990074522A/en
Application granted granted Critical
Publication of KR100308916B1 publication Critical patent/KR100308916B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/404Oxides of alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: Precursors for producing a monomer structured beta-diketonated BST(BaxSr1-xTIO3) thin layer using beta-keto ester or amide ligand are provided, which compounds have improved volatilization and stability in atmosphere. CONSTITUTION: A precursor for producing a monomer structured beta-diketonated BST(BaxSr1-xTIO3) thin layer using beta-keto ester is represented by the formula(I): £M(RC(O)CHC(O)OR')2|3, wherein M is Ba or Sr; R is C1-C4 alkyl; and R' is C3-C4 alkyl. A precursor for producing a monomer structured beta-diketonated BST(BaxSr1-xTIO3) thin layer using beta-keto ester and a N, O-electron donor ligand(L) is represented by the formula(V): M(RC(O)CHC(O)OR')2L, wherein M is Ba or Sr; R and R' are C1-C4 alkyl; and L is amine of (CL3)N(CH2CH2N)n(CH3) when n is 1 to 4 and glycol ether of CH3O(CH2CH2O)nCH3 when n is 1 to 4. A precursor for producing a monomer structured beta-diketonated BST(BaxSr1-xTIO3) thin layer prepared by reacting beta-keto ester and Ti(OiPr)4 is represented by the formula(IX): Ti(OiPr)2(RC(O)CHC(O)OR')2, wherein R and R' are C1-C4 alkyl.

Description

β-케토 에스테르 또는 아미드 리간드를 이용한 강유전체 BST 박막제조용 선구물질{β-ketoester or amide Type Precursors for Ferroelectric BST thin films}Precursor for producing ferroelectric BST thin film using β-keto ester or amide ligand {β-ketoester or amide Type Precursors for Ferroelectric BST thin films}

본 발명은 고유전율 특성을 이용한 기가급 DRAM (Dynamic Random Access Memory) 의 커패시터의 제조에 사용되는 강유전체인 BaxSr1-xTiO3(BST) 박막 제조용 선구물질에 관한 것이다. 보다 상세히 설명하면, 본 발명은 β-케토 에스테르(keto ester)와 아미드(amide) 그리고 β-디케토 에스테르(diketo ester)와 아미드(amide)에 다양한 N, O - 전자 주개 리간드를 Ba, Sr 금속과 반응 시켜 Ba 과 Sr 선구물질을 합성하고 또한 β-케토 에스테르 및 아미드 그리고 β-디케토 에스테르와 아미드를 Ti(OiPr)4에 반응시켜 얻은 Ti 선구물질에 관한 것이다.The present invention relates to a precursor for manufacturing Ba x Sr 1-x TiO 3 (BST) thin film, which is a ferroelectric used in the manufacture of a capacitor of a giga-class dynamic random access memory (DRAM) using high dielectric constant characteristics. In more detail, the present invention provides a variety of N, O-electron donor ligands for β-keto esters and amides, and β-diketo esters and amides to Ba, Sr metals. The present invention relates to a Ti precursor obtained by synthesizing Ba and Sr precursors by reacting with and reacting β-keto ester and amide and β-diketo ester and amide with Ti (O i Pr) 4 .

고유전율을 가지는 강유전체로는 PbTiO3(PTO), PbZr1-xTixO3(PZT), Ba1-xSrxTiO3(BST), LiNbO3등이 있는데, 이들은 모두 페로브스카이트 형의 구조를 갖고 있다. 이러한 강유전체를 이용하여 제조된 박막은 유전성·절연성·압전성·초전성·의 특성을 바탕으로 압전소자, 전자 광학 소자, 적외선 검출 소자, 세라믹 콘덴서 등의 폭넓은 분야에서 실용화되고 있다. 특히 고유전율 특성을 이용한 기가급 DRAM(Dynamic Random Access Memory) 의 커패시터의 제조에 사용되는 강유전체로는 실용온도 범위에서 유전율이 높고, 유전 손실이 작으며, 고주파수 (> 100 MHz) 까지 유전율이 분산되지 않는 BST 박막이 가장 적합한 것으로 알려져 있다.Ferroelectrics having high dielectric constants include PbTiO 3 (PTO), PbZr 1-x TixO 3 (PZT), Ba 1-x Sr x TiO 3 (BST), and LiNbO 3 , all of which are perovskite structures. Have Thin films manufactured using such ferroelectrics have been put to practical use in a wide range of fields, such as piezoelectric elements, electro-optical elements, infrared detection elements, and ceramic capacitors, based on the characteristics of dielectric, insulating, piezoelectric, and superconducting properties. In particular, ferroelectrics used in the fabrication of capacitors of giga-class dynamic random access memory (DRAM) using high dielectric constants have high dielectric constants, low dielectric losses, and do not disperse dielectric constants up to high frequencies (> 100 MHz) in the practical temperature range. BST thin films are known to be the most suitable.

BST 박막의 제조는 주로 스퍼터링 법과 졸-겔 법을 중심으로 연구되어져 왔다. 그러나 스퍼터링 법은 증착과정에서 고에너지 이온 충돌로 인한 박막에 손상을 주게 되고 단계 덮임율 (step coverage) 이 나쁘고 조성 조절이 어렵다는 단점을 가지고 있으며, 졸-겔 법은 기존의 반도체 제조 공정과 잘 부합되지 않고 박막이 비교적 치밀하지 못하여 양질의 박막을 제조하는데 어려움이 있다(Q. Linker, O. Meyer, Appl. Phys. Lett. 1989, 54, 2367)고 알려져 있는데 이러한 문제점을 극복할 수 있는 방안으로 유기금속 화합물을 선구물질로 이용한 MOCVD(Metal-Organic Chemical Vapor Deposition) 법이 주목을 받고 있다. 이 방법은 단계 덮임율이 우수하고 조성 조절이 가능하며, 생산성이 좋아 가장 적합한 증착 방법으로 받아 들여지고 있다 (R. Sato, K. Takahashi, M. Yoshino, H. Kato, S. Ohshima, Jpn. J. Appl. Phys. 1993, 32, 1590). 따라서 좋은 박막을 개발하는데 있어 선구물질의 선정 혹은 개발은 필수적이다.The preparation of BST thin films has been studied mainly with the sputtering method and the sol-gel method. However, the sputtering method has the disadvantages of damaging the thin film due to high energy ion collision during deposition, poor step coverage and difficult composition control, and the sol-gel method is well matched with the existing semiconductor manufacturing process. It is known that it is difficult to manufacture high quality thin film due to relatively incomplete thin film (Q. Linker, O. Meyer, Appl. Phys. Lett. 1989, 54, 2367). MOCVD (Metal-Organic Chemical Vapor Deposition) method using an organometallic compound as a precursor has attracted attention. This method has been accepted as the most suitable deposition method because of its excellent step coverage, adjustable composition, and high productivity (R. Sato, K. Takahashi, M. Yoshino, H. Kato, S. Ohshima, Jpn. J.). Appl. Phys. 1993, 32, 1590). Therefore, the selection or development of precursors is essential for developing a good thin film.

MOCVD 법에 의한 박막 제조에 적합한 선구물질은 첫째 낮은 온도에서도 높은 증기압이 유지되어야 하고, 둘째 기화되는 온도와 분해되는 온도 사이의 차이가 커야 하고, 셋째 액체상태이어야 하고, 넷째 선구물질의 유기물이 박막에 잔재하지않아야 하고, 다섯째 공기 중에서의 안정성이 있어야 하고, 여섯째 무독성이어야 하는 등의 특성이 요구된다.Precursors suitable for thin film production by MOCVD method must first maintain high vapor pressure even at low temperatures, secondly, the difference between the vaporization temperature and the decomposition temperature must be large, third liquid state, and fourth organic material of precursor material It should not be left in the air, it should be stable in the fifth air, it should be non-toxic sixth, and so on.

최근에 발표된 강유전체 BST 박막용 선구물질에 있어 β-디케토네디트 리간드를 갖는 M(RC(O)CHC(O)R')2의 형태의 화합물이 가장 적합한 것으로 알려져 있는데 β-Diketonate 리간드를 이용한 예로는 M(tmhd)2(tmhd : R = R'=tBu) 형태의 화합물들이 대표적이며 비교적 높은 증기압을 보여준다 (A. A. Drozdov, S. I. Trojanov, Polyhedron 1992, 11, 2877). Ba(tmhd)2은 사핵체 결정 구조를 갖는 화합물로 공기중에 놓이게 되면 가수분해가 일어나 안정성면에서 문제점을 가지고 있고, Ba(tmhd)2를 선구물질로 사용할 때는 200℃ 이상의 기화 온도가 필요하며, 기기 전체가 전체적으로 250℃ 로 유지되어야 한다. 이때 선구물질 자체가 분해되기 때문에 비휘발성 물질이 생기며 박막의 Ba 농도가 감소하게 된다 (R. E. Sievers, Inorg. Chem. 1991, 30, 1164).In the recently announced precursors for ferroelectric BST thin films, M (RC (O) CHC (O) R ') 2 compounds with β-diketonide ligands are known to be most suitable. Examples are compounds in the form of M (tmhd) 2 (tmhd: R = R ′ = t Bu) and show a relatively high vapor pressure (AA Drozdov, SI Trojanov, Polyhedron 1992, 11, 2877). Ba (tmhd) 2 is a compound having a nucleophilic crystal structure, which is hydrolyzed when placed in air, and has a problem in terms of stability. When Ba (tmhd) 2 is used as a precursor, a vaporization temperature of 200 ° C. or higher is required. The entire apparatus shall be maintained at 250 ° C as a whole. At this time, since the precursor itself is decomposed, non-volatile materials are generated and the Ba concentration of the thin film is reduced (RE Sievers, Inorg. Chem. 1991, 30, 1164).

선구물질이 높은 증기압을 갖기 위해서는 단량체의 구조를 지녀야 하는데, Ba과 Sr 의 β-diketonate 화합물은 일반적으로 배위수가 4 로 불포화되어 있어 보통 배위수가 8~12 를 만족하도록 뭉치 화합물을 형성한다 (Simon. R. Drake, Michael B. Hursthouse, K. M. Abdul Malik, and David J. Otway, J. Chem. Soc. Dalton Trans. 1993, 2883). 단량체로 만들기 위한 방법으로는 전자 주개의 또다른 리간드와 착화합물을 이루게 하면 배위수를 만족시킴으로써 목적을 달성할 수 있으며 증기압도 높일 수 있다 (G. Malandrino, D. S. Richeson, Tobin J. Marks, D. C. Degroot, C. R. Kannewurf, Appl. Phys. Lett. 1991, 58, 182). 다른 방법으로는 보다 큰 리간드, 예를 들면 메틸(Me)기 대신 부틸(tBu)기를 사용하여 중심 금속 이온을 효과적으로 선별함으로써 화합물의 뭉침을 막으며 증기압을 높일 수 있다(G. S. Hammond, D. C. Nonhebel, Inorg. Chem. 1963, 2, 73). 또한 불화 β-디케토네이트 (fluorinated β-diketonate) 리간드는 전기음성도가 큰 불소(fluorine)의 반발력으로 인하여 분자간 인력을 줄여 줌으로써 높은 증기압을 얻을 수 있다 (H. Sato, S. Sugawara, Inorg. Chem. 1993, 32, 1941).In order for the precursor to have a high vapor pressure, the β-diketonate compounds of Ba and Sr are generally unsaturated in the coordination number of 4 to form a bulk compound so that the coordination number satisfies 8 to 12 (Simon. R. Drake, Michael B. Hursthouse, KM Abdul Malik, and David J. Otway, J. Chem. Soc. Dalton Trans. 1993, 2883). In order to make a monomer, it is possible to achieve the objective by satisfying the coordination number by forming a complex with another ligand of the electron donor (G. Malandrino, DS Richeson, Tobin J. Marks, DC Degroot, CR Kannewurf, Appl. Phys. Lett. 1991, 58, 182). Alternatively, larger ligands, such as butyl ( t Bu) groups instead of methyl (Me) groups, can be used to effectively screen central metal ions, preventing the aggregation of compounds and increasing vapor pressure (GS Hammond, DC Nonhebel, Inorg.Chem. 1963, 2, 73). In addition, fluorinated β-diketonate ligands can obtain high vapor pressure by reducing intermolecular attraction due to the repulsive force of fluorine, which has a high electronegativity (H. Sato, S. Sugawara, Inorg. Chem. 1993, 32, 1941).

먼저 전자 주개 리간드들과 착화합물을 이루게 하면 사핵체나 삼핵체 등의 뭉치화합물을 분리하여 단량체로 만들 수 있다. 즉 NH3, NMe3, NEt3, pyridine, NH2CH2CH2NH2, Me2NCH2CH2NMe2, THF, CH3O(CH2CH2O)nCH3(n = 1~4) 등과 같은 N, 0 - 전자 주개 리간드들과 Ba(tmhd)2의 착화합물은 Ba 선구물질로서 열적인 안정성이나 휘발성의 향상에 도움을 주고 낮은 기화 온도에서도 일정하게 높은 증기압을 얻을 수 있다. (D. W. Gardiner, Brown and P. S. Kirlin, Chem. Mater. 1991, 3, 1053).First, when complexed with electron donor ligands, agglomerates such as tetranuclide or trinuclear body can be separated into monomers. NH 3 , NMe 3 , NEt 3 , pyridine, NH 2 CH 2 CH 2 NH 2 , Me 2 NCH 2 CH 2 NMe 2 , THF, CH 3 O (CH 2 CH 2 O) n CH 3 (n = 1 ~ 4) The complexes of N, 0-electron donor ligands and Ba (tmhd) 2 as Ba precursors help to improve thermal stability and volatility and obtain a constant high vapor pressure even at low vaporization temperatures. (DW Gardiner, Brown and PS Kirlin, Chem. Mater. 1991, 3, 1053).

Fluorinated β-diketonate 로는 M(hfac)2(R = R'= CF3) 나 M(hfod)2(R'= C3F7; R" =tBu) 등이 알려져 있고 높은 증기압을 나타낸다 (J. A. Belot, D. A. Neumayer, C. J. Reedy, D. B. Strudebaker, B. J. Hinds, Tobin J. Marks, Chem.Mater. 1997, 9, 1638). 이들 화합물들은 보통 0.1 Torr 에서 200℃ 조건하에 승화가 일어난다. 물론 이들 화합물들도 사핵체 등과 같은 뭉치 화합물 구조를 형성한다고 알려져 있는데, 폴리에테르(polyether)를 이용하여 열적으로 안정한 단량체 화합물을 합성한 예도 보고되어 있다 (J. A. Norman, G. P. Pez, J. Chem. Soc. Chem. Common. 1991). 이들의 형태는 Ba(hfac)2.L, Sr(hfac)2.L (L = triglyme, tetraglyme, hexaglyme, 18-crown-6) 로서 지금까지 알려진 Ba 과 Sr 선구물질 중 가장 높은 휘발성을 보여 준다. 그러나 박막의 불소 오염이 문제가 되며 재 열처리(post annealing) 작업이 필요한 문제점이 있다.Fluorinated β-diketonate is known as M (hfac) 2 (R = R '= CF 3 ) or M (hfod) 2 (R' = C 3 F 7 ; R "= t Bu) and shows high vapor pressure (JA Belot, DA Neumayer, CJ Reedy, DB Strudebaker, BJ Hinds, Tobin J. Marks, Chem. Mater. 1997, 9, 1638. These compounds usually sublimate under conditions of 200 ° C. at 0.1 Torr. It is known to form a bulk compound structure such as a tetranuclear body, and an example of synthesizing a thermally stable monomer compound using a polyether has also been reported (JA Norman, GP Pez, J. Chem. Soc. Chem. Common. 1991). these forms are Ba (hfac) 2 .L, Sr (hfac) 2 .L (L = triglyme, tetraglyme, hexaglyme, 18-crown-6) is known as Ba and Sr highest volatility of the precursor material so far However, fluorine contamination of the thin film becomes a problem and post annealing is required.

Ti 화합물의 경우 Ti alkoxide 가 가장 좋은 선구물질로 알려져 있는데 그 중에서 Ti(OiPr)4는 액체이고 증기압, 안정성 등의 물리적 성질도 매우 좋아 Ti 선구물질로 널리 사용되고 있다 (W. R. Russo, W. H. Nelson, J. Am. Chem. Soc. 1970, 92, 1521). 그러나 Ti(OiPr)4가 Ba 과 Sr 선구물질에 비해 높은 증기압 변화를 보이기 때문에, BST 박막 제조시 정량 조절의 어려움이 문제가 되었다. 따라서 증기압 변화를 Ba 과 Sr 선구물질과 비슷한 정도로 조절한 Ti(OiPr)2(tmhd)2선구물질이 최근에 보고된 바 있다. (R. C. Fay, A. F. Lindmark, J. Am. Chem. Soc. 1983, 10, 5, 2118) 또한 USP 5,248,787호에서는 BST박막 제조용 선구물질로서 현재 가장 많이 연구되고 있는 β-디케토네이트 리간드와 O-전자 주개 리간드를 이용하여 Ba, Sr 선구물질을 합성한 바 있다.In the case of Ti compounds, Ti alkoxide is known as the best precursor. Among them, Ti (O i Pr) 4 is a liquid and has a wide range of physical properties such as vapor pressure and stability, so it is widely used as Ti precursor (WR Russo, WH Nelson, J. Am. Chem. Soc. 1970, 92, 1521). However, since Ti (O i Pr) 4 showed a higher vapor pressure change than Ba and Sr precursors, the difficulty of quantitative control in manufacturing BST thin films became a problem. Therefore, Ti (O i Pr) 2 (tmhd) 2 precursors have been recently reported to control vapor pressure changes to a similar degree to Ba and Sr precursors. (RC Fay, AF Lindmark, J. Am. Chem. Soc. 1983, 10, 5, 2118) Also, US Pat. No. 5,248,787 discloses β-diketonate ligands and O-electrons which are currently the most studied precursors for the preparation of BST thin films. Ba and Sr precursors have been synthesized using donor ligands.

본 발명의 기술적 과제는 불소가 없고 공기중에서 안정하며 낮은 온도에서도 높은 증기압을 갖는 단량체 구조의 β-diketonated BST 선구물질의 화합물 합성에 있다.The technical problem of the present invention is the synthesis of a compound of β-diketonated BST precursor of monomer structure which is free of fluorine, stable in air, and has a high vapor pressure even at low temperature.

이는 알킬(alkyl) 대신 알콕시(alkoxy)가 치환된 β-diketo ester 나 아민(amine)이 치환된 β-diketo amide 형태의 리간드를 다양한 전자 주개 리간드와 함께 사용함으로써 얻을 수 있다.This can be achieved by using β-diketo ester substituted with alkoxy or β-diketo amide substituted with amine with various electron donor ligands instead of alkyl.

본 발명의 목적을 달성하기 위해서 β-keto ester 및 amide 그리 β-diketo ester 및 amide 와 다양한 N, O - 전자 주개 리간드를 Ba, Sr 금속과 반응시켜 BST 선구물질을 합성하었다. Ti 선구물질의 경우 β-keto ester 및 amide 그리고 β-diketo ester 및 amide 리간드와 Ti(OiPr)4(IV) 를 반응시켜 합성하였다.To achieve the object of the present invention, BST precursors were synthesized by reacting β-keto ester and amide and β-diketo ester and amide with various N, O-electron donor ligands with Ba and Sr metals. Ti precursors were synthesized by reacting β-keto ester and amide, β-diketo ester and amide ligand with Ti (O i Pr) 4 (IV).

본 발명에서는 새로운 형태의 BST 박막용 선구물질을 합성하기 위하여 β-keto ester 및 amide 와 N, O - 전자 주개 리간드 (triamine, triglyme, tetramine, tetraglyme) 를 이용하였다. β-Diketo ester 는 기존의 알려진 선구물질 중 가장 우수한 조건을 가지는 리간드인 β-diketonate 의 구조와 유사하다. 즉 β-diketonate 와 같이 β위치에 2 개의 카보닐(carbonyl) 기를 가지고 있고, alkyl 대신 alkoxy 기가 치환되어 있는 구조이고, β-diketo amide 는 alkyl 대신 amine이 치환된 구조로 alkoxy 기와 amine 은 carbonyl 기에 전자를 주어 금속과결합을 하는 산소의 전자 밀도를 증가시켜 화합물을 안정화시킬 수 있다. 그리고 N, O - 전자 주개 리간드는 Ba, Sr 금속 이온의 배위수를 만족시켜주므로 화합물의 뭉침을 줄일 수 있다. 화합물의 합성은 일반적인 ML2(M = Sr, Ba)의 합성 방법 (식 (1))을 이용(A. A. Drozdov, S. I. Trojanov, Polyhedron 1992, 11, 2877)하였고, 모든 화합물은 재결정법을 사용하여 순수한 선구물질을 얻었다.In the present invention, β-keto ester and amide and N, O-electron donor ligands (triamine, triglyme, tetramine, tetraglyme) were used to synthesize a new type of precursor for BST thin film. β-Diketo ester is similar to the structure of β-diketonate, the ligand that has the best condition among known precursors. In other words, β-diketonate has two carbonyl groups at the β-position, alkoxy group is substituted for alkyl, β-diketo amide is amine substituted for alkyl, alkoxy and amine are carbonyl groups By increasing the electron density of the oxygen to bond with the metal can stabilize the compound. In addition, since the N, O-electron donor ligand satisfies the coordination number of Ba and Sr metal ions, the aggregation of compounds can be reduced. Synthesis of compounds was carried out using the general method of synthesis of ML 2 (M = Sr, Ba) (Formula (1)) (AA Drozdov, SI Trojanov, Polyhedron 1992, 11, 2877), and all compounds were purified using recrystallization. A precursor was obtained.

본 발명을 다음의 실시예에서 보다 상세히 설명한다. 단, 이들 실시예에 의하여 본 발명의 범위가 국한 되는 것은 아니다.The invention is explained in more detail in the following examples. However, the scope of the present invention is not limited by these Examples.

[실시예 1]Example 1

실시예에서 사용한 물질들의 약어는 다음과 같다.Abbreviations of the materials used in the examples are as follows.

HEBAc: (CH3)2CHCOCH2COOC2H5, EthylisobutyrylacetateHEBAc: (CH 3 ) 2 CHCOCH 2 COOC 2 H 5 , Ethylisobutyrylacetate

EBAc : (CH3)2CHCOCHCOOC2H5, Ethylisobutylacetate anionEBAc: (CH 3 ) 2 CHCOCHCOOC 2 H 5 , Ethylisobutylacetate anion

HBAAc: CH3COCH2COOC(CH3)3, tert-ButhylacetoacetateHBAAc: CH 3 COCH 2 COOC (CH 3 ) 3 , tert-Buthylacetoacetate

이하 triamine은 (CH3)2NCH2CH2N(CH3)CH2CH2N(CH3)2로 표시되는 1,1,4,7,7-펜타메틸디에틸렌트리아민을,Triamine is 1,1,4,7,7-pentamethyldiethylenetriamine represented by (CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) CH 2 CH 2 N (CH 3 ) 2 ,

tetramine은 (CH3)2NCH2CH2N(CH3)CH2CH2N(CH3)CH2CH2N(CH3)2로 표시되는 1,1,4,7,10,10-헥사메틸 트리에틸렌 테트라민을,tetramine is 1,1,4,7,10,10- represented by (CH 3 ) 2 NCH 2 CH 2 N (CH 3 ) CH 2 CH 2 N (CH 3 ) CH 2 CH 2 N (CH 3 ) 2 Hexamethyl triethylene tetramine,

triglyme은 CH3OCH2CH2OCH2CH2OCH2CH2OCH3로 표시되는 트리에틸렌글리콜디메틸에테르를,triglyme is triethylene glycol dimethyl ether represented by CH 3 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 ,

tetraglyme은 CH30CH2CH20CH2CH20CH2CH20CH2CH20CH3로 표시되는 테트라에틸렌글리콜디메틸에테르를,tetraglyme is tetraethylene glycol dimethyl ether represented by CH 3 0CH 2 CH 2 0CH 2 CH 2 0CH 2 CH 2 0CH 2 CH 2 0CH 3 ,

또한, BAAc는 tert-Buthylacetoacetate anion으로서 상기 HBAAc에서 수소가 하나 제거된 CH3COCHCOOC(CH3)3를 나타내는 의미로 사용하기로 한다.In addition, BAAc is used as a tert-Buthylacetoacetate anion meaning CH 3 COCHCOOC (CH 3 ) 3 from which one hydrogen is removed from the HBAAc.

[Ba(EBAc)2]3의 합성Synthesis of [Ba (EBAc) 2 ] 3

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 24 시간 동안 반응시킨다. 반응이 진행되면 Ba metal 이 점점 녹으면서 H2로 예상되는 기체가 발생한다. 반응이 끝난 후 용액을 거른 다음, 진공으로 용매를 제거하고 toluene/hexane 에서 재결정 하여 (4 ℃) 무색의 결정체인 [Ba(EBAc)2]3를 0.925 g (72 %) 얻었다. 분석 결과를 아래에 나타내었다. 다만 삼합체구조는 X-선 단결정 구조분석을 통하여 확인할 수 있다.HEBAc (1.805 g, 11.40 mmol) was slowly added to a toluene (20.0 mL) solution of Ba (0.783 g, 5.70 mmol) and reacted at room temperature for 24 hours. As the reaction proceeds, Ba metal gradually melts, producing a gas expected to be H 2 . After the reaction was completed, the solution was filtered, and the solvent was removed in vacuo and recrystallized from toluene / hexane (4 ° C.) to obtain 0.925 g (72%) of colorless crystals of [Ba (EBAc) 2 ] 3 . The analysis results are shown below. However, the trimer structure can be confirmed through X-ray single crystal structure analysis.

IR (KBr, cm-1) 2955 s, 2932 w, 2907 w, 2870 w, 1639 w, 1613 s, 1510 vs, 1459 s, 1382 w, 1359 w, 1319 m, 1222 vs, 1171 s, 1095 m, 1042 s, 981 w, 946 s, 836 m, 789 s, 743 w, 500 w ;1H NMR (Acetone-d6, 25 ℃) δ 0.99 (d, 6H, -CH(CH3)2), 1.11 (t, 3H, -CH2CH3), 2.22 (m, 1H, -CH(CH3)2), 3.95 (q, 2H, CH2CH3),4.55 (s, 1H, CH) ;13C NMR (Acetone-d6, 25 ℃) δ 15.1 (-CH2CH3), 21.3 (-CH(CH3)2), 39.6 (-CH(CH3)2), 58.1 (-CH2CH3), 80,8 (CH), 172.4 (CO), 194.6 (COO).IR (KBr, cm -1 ) 2955 s, 2932 w, 2907 w, 2870 w, 1639 w, 1613 s, 1510 vs, 1459 s, 1382 w, 1359 w, 1319 m, 1222 vs, 1171 s, 1095 m, 1042 s, 981 w, 946 s, 836 m, 789 s, 743 w, 500 w; 1 H NMR (Acetone-d 6 , 25 ° C) δ 0.99 (d, 6H, -CH (CH 3 ) 2 ), 1.11 (t, 3H, -CH 2 CH 3 ), 2.22 (m, 1H, -CH ( CH 3 ) 2 ), 3.95 (q, 2H, CH 2 CH 3 ), 4.55 (s, 1H, CH); 13 C NMR (Acetone-d 6 , 25 ° C) δ 15.1 (-CH 2 CH 3 ), 21.3 (-CH (CH 3 ) 2 ), 39.6 (-CH (CH 3 ) 2 ), 58.1 (-CH 2 CH 3 ), 80,8 (CH), 172.4 (CO), 194.6 (COO).

[실시예 2]Example 2

Ba(EBAc)2(triamine) 의 합성Synthesis of Ba (EBAc) 2 (triamine)

Ba (0.980 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 triamine (0.988 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAC (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 48 시간 동안 반응시킨다. 반응이 진행되면 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생되며 반응 후 2 ~ 3 시간이 지나면 흰색 고체가 침전된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여 무색의 결정체인 Ba(EBAc)2(triamine)를 2.46 g (69%) 얻었다.Triamine (0.988 g, 5.70 mmol) was added to a toluene (20.0 mL) solution of Ba (0.980 g, 5.70 mmol) at room temperature, and HEBAC (1.805 g, 11.40 mmol) was added slowly to react at room temperature for 48 hours. As the reaction proceeds, Ba metal is gradually melted to generate a gas that is thought to be H 2 , and a white solid precipitates after 2 to 3 hours after the reaction. After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane to give 2.46 g (69%) of colorless crystals Ba (EBAc) 2 (triamine).

IR (KBr, cm-1) 2962 s, 2864 m, 2826 m, 2782 w, 1635 vs, 1662 s, 1507 vs, 1460 s, 1316 m, 1203 vs, 1156 vs, 1083 s, 1050 s, 940 s, 830 m, 785 s, 748 m, 431 w ;IR (KBr, cm -1 ) 2962 s, 2864 m, 2826 m, 2782 w, 1635 vs, 1662 s, 1507 vs, 1460 s, 1316 m, 1203 vs, 1156 vs, 1083 s, 1050 s, 940 s, 830 m, 785 s, 748 m, 431 w;

1H-NMR (CDCl3, 25 ℃) δ 0.93 (d, 6H, -CH(CH3)2), 1.14 (t, 3H, -CH2CH3), 2.09 (s, 3H, -N(CH3)-), 2.27 (s, 12H, N(CH3)2), 2.40 (br, 8H, -NCH2CH2N-), 3.90(q, 2H, -CH2H3), 4.56(s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.93 (d, 6H, -CH (CH 3 ) 2 ), 1.14 (t, 3H, -CH 2 CH 3 ), 2.09 (s, 3H, -N (CH) 3 )-), 2.27 (s, 12H, N (CH 3 ) 2 ), 2.40 (br, 8H, -NCH 2 CH 2 N-), 3.90 (q, 2H, -CH 2 H 3 ), 4.56 (s , 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ14.8 (-CH2CH3), 20.5 (-CH(CH3)2), 38.7 (-CH(CH3)2), 41.5 (-N(CH3)-), 44.5 (-N(CH3)2), 56.1 (-CH2CH3), 56,7(NCH2CH3N-), 79.1 (CH), 170.9 (CO), 194.9 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.8 (-CH 2 CH 3 ), 20.5 (-CH (CH 3 ) 2 ), 38.7 (-CH (CH 3 ) 2 ), 41.5 (-N (CH 3 )-), 44.5 (-N (CH 3 ) 2 ), 56.1 (-CH 2 CH 3 ), 56,7 (NCH 2 CH 3 N-), 79.1 (CH), 170.9 (CO), 194.9 (COO )

[실시예 3]Example 3

Ba(EBAc)2(tetramine) 의 합성Synthesis of Ba (EBAc) 2 (tetramine)

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tramine (1.314 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 을 천천히 더하여 상온에서 72 시간 동안 반응시킨다. 반응이 진행되면 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여(4 ℃) 무색의 결정체인 Ba(EBAc)2(tetramine)를 2.066 g (53%) 얻었다.After adding tramine (1.314 g, 5.70 mmol) to a toluene (20.0 mL) solution of Ba (0.783 g, 5.70 mmol) at room temperature, HEBAc (1.805 g, 11.40 mmol) was slowly added and reacted at room temperature for 72 hours. As the reaction proceeds, Ba metal is gradually melted to generate a gas thought to be H 2 . After completion of the reaction, the solution was filtered and the solvent was removed in vacuo and recrystallized from pentane (4 ° C.) to obtain 2.066 g (53%) of colorless crystals Ba (EBAc) 2 (tetramine).

IR (KBr, cm-1) 2967 s, 2865 m, 2827 m, 2814 m, 2798 m, 1635 vs, 1498 vs, 1457 vs, 1352 m, 1315 m, 1225 m, 1204 s, 1151 vs, 1096 m, 1083 m, 1047 s, 938 m, 901 w, 829 m, 786 s, 740 w, 720 w, 433 w ;IR (KBr, cm -1 ) 2967 s, 2865 m, 2827 m, 2814 m, 2798 m, 1635 vs, 1498 vs, 1457 vs, 1352 m, 1315 m, 1225 m, 1204 s, 1151 vs, 1096 m, 1083 m, 1047 s, 938 m, 901 w, 829 m, 786 s, 740 w, 720 w, 433 w;

1H-NMR (CDCl3, 25 ℃) δ 0.96 (s, 6H, -CH(CH3)2), 1.17 (t, 3H, -CH2CH3), 2.16 (s, 12H, -N(CH3)2), 2.18 (m, 1H, CH(CH3)2), 2.22 (s, 6H, -N(CH3)-),2.75(br, 12H, -NCH2CH2N-), 3.93(q, 2H, CH2CH3), 4.57(s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.96 (s, 6H, -CH (CH 3 ) 2 ), 1.17 (t, 3H, -CH 2 CH 3 ), 2.16 (s, 12H, -N (CH 3 ) 2 ), 2.18 (m, 1H, CH (CH 3 ) 2 ), 2.22 (s, 6H, -N (CH 3 )-), 2.75 (br, 12H, -NCH 2 CH 2 N-), 3.93 (q, 2H, CH 2 CH 3 ), 4.57 (s, 1H, CH);

13C-NMR (CDCl3, 25℃) δ14.8 (-CH2CH3), 20.5 (-CH(CH3)2), 38.8 (-CH(CH3)2), 40.2 (-N(CH3)-), 45.2 (-N(CH3)2), 56.8 (-CH2CH3), 56.9(NCH2CH2N(CH3)CH2-), 78.3 (CH), 170.1 (CO), 194.1 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.8 (-CH 2 CH 3 ), 20.5 (-CH (CH 3 ) 2 ), 38.8 (-CH (CH 3 ) 2 ), 40.2 (-N (CH 3 )-), 45.2 (-N (CH 3 ) 2 ), 56.8 (-CH 2 CH 3 ), 56.9 (NCH 2 CH 2 N (CH 3 ) CH 2- ), 78.3 (CH), 170.1 (CO) , 194.1 (COO)

[실시예 4]Example 4

Ba(EBAc)2(triglyme)의 합성Synthesis of Ba (EBAc) 2 (triglyme)

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 triglyme (1.016 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 20 시간 동안 반응시킨다. 반응이 진행되연 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여 무색의 결정체인 Ba(EBAc)2(triglyme)을 정량적으로 얻을 수 있었다.Triglyme (1.016 g, 5.70 mmol) was added to a toluene (20.0 mL) solution of Ba (0.783 g, 5.70 mmol) at room temperature, followed by slow addition of HEBAc (1.805 g, 11.40 mmol) for 20 hours at room temperature. As the reaction proceeds, the Ba metal gradually melts, generating a gas that is thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane to give Ba (EBAc) 2 (triglyme) as a colorless crystals quantitatively.

1H-NMR (CDCl3, 25℃) δ0.96 (d, 6H, -CH(CH3)2), 1.15(t, 3H, -CH2CH3), 2.15 (m, 1H, -CH(CH3)-), 3.33 (s, 6H, -OCH3), 3.53 (m, 4H, -CH2CH2O-), 3.65 (m, 4H, -OCH2CH2O-), 3.66(s, -OCH2CH2O-), 3.91 (q, 2H, CH2CH3), 4.57 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.96 (d, 6H, —CH (CH 3 ) 2 ), 1.15 (t, 3H, —CH 2 CH 3 ), 2.15 (m, 1H, —CH ( CH 3 )-), 3.33 (s, 6H, -OCH 3 ), 3.53 (m, 4H, -CH 2 CH 2 O-), 3.65 (m, 4H, -OCH 2 CH 2 O-), 3.66 (s , -OCH 2 CH 2 O-), 3.91 (q, 2H, CH 2 CH 3 ), 4.57 (s, 1H, CH);

13C-NMR (CDCl3, 25℃) δ14.8 (-CH2CH3), 20.8 (-CH(CH3)2), 39.1 (-CH(CH3)2), 57.5 (-CH2CH3), 58.9 (-OCH3), 70.2 (-OCH2CH2O-), 71.5(-OCH2CH2O-), 78.9 (CH), 170.9 (CO), 194.8 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.8 (-CH 2 CH 3 ), 20.8 (-CH (CH 3 ) 2 ), 39.1 (-CH (CH 3 ) 2 ), 57.5 (-CH 2 CH 3 ), 58.9 (-OCH 3 ), 70.2 (-OCH 2 CH 2 O-), 71.5 (-OCH 2 CH 2 O-), 78.9 (CH), 170.9 (CO), 194.8 (COO)

[실시예 5]Example 5

Ba(EBAc)2(tetraglyme) 의 합성Synthesis of Ba (EBAc) 2 (tetraglyme)

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tetraglyme (1.266 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 72 시간 동안 반응시킨다. 반응이 진행되면 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여(-25 ℃) 무색의 결정체인 Ba (EBAc)2(tetraglyme)을 3.740 g(96%) 얻었다.Tetraglyme (1.266 g, 5.70 mmol) was added to a solution of toluene (20.0 mL) of Ba (0.783 g, 5.70 mmol) at room temperature, and HEBAc (1.805 g, 11.40 mmol) was added slowly to react at room temperature for 72 hours. As the reaction proceeds, Ba metal is gradually melted to generate a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane (-25 ℃) to give 3.740 g (96%) of colorless crystals Ba (EBAc) 2 (tetraglyme).

mp 83~84 ℃ ;mp 83-84 ° C .;

IR (KBr, cm-1) 2975 m, 2965 m, 2930 m, 1646 vs, 1500 vs, 1357 w, 1321 m, 1204 s, 1150 s, 1095 s, 1084 s, 1047 m, 945 m, 831 w, 786 m, 742 w;IR (KBr, cm -1 ) 2975 m, 2965 m, 2930 m, 1646 vs, 1500 vs, 1357 w, 1321 m, 1204 s, 1150 s, 1095 s, 1084 s, 1047 m, 945 m, 831 w, 786 m, 742 w;

1H-NMR (CDCl3, 25 ℃) δ0.97 (d, 6H, -CH(CH3)2), 1.16(t, 3H, -CH2CH3), 2.15 (m, 1H, -CH(CH3)2), 3.36 (s, 6H, -OCH3), 3.49 (m, 4H, -OCH2CH2O-), 3.59 (m, 4H, -OCH2CH2O-), 3.67 (m, 4H, -OCH2CH2O-), 3.75 (m, 4H, -OCH2CH2O-), 3.93 (d, 2H, CH2CH3), 4.54 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.97 (d, 6H, —CH (CH 3 ) 2 ), 1.16 (t, 3H, —CH 2 CH 3 ), 2.15 (m, 1H, —CH ( CH 3 ) 2 ), 3.36 (s, 6H, -OCH 3 ), 3.49 (m, 4H, -OCH 2 CH 2 O-), 3.59 (m, 4H, -OCH 2 CH 2 O-), 3.67 (m , 4H, -OCH 2 CH 2 O-), 3.75 (m, 4H, -OCH 2 CH 2 O-), 3.93 (d, 2H, CH 2 CH 3 ), 4.54 (s, 1H, CH);

13C-NMR (CDCl3, 25℃) δ14.9 (-CH2CH3), 20.8 (-CH(CH3)2), 39.1 (-CH(CH3)2), 57.0 (-CH2CH3), 58.9 (-OCH3), 70.0 (-OCH2CH2O-), 70.1 (-OCH2CH2O-), 70.2 (-OCH2CH2O-), 71.1 (-OCH2CH2O-), 78.2 (CH), 170.3 (CO), 194.4 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ 14.9 (-CH 2 CH 3 ), 20.8 (-CH (CH 3 ) 2 ), 39.1 (-CH (CH 3 ) 2 ), 57.0 (-CH 2 CH 3 ), 58.9 (-OCH 3 ), 70.0 (-OCH 2 CH 2 O-), 70.1 (-OCH 2 CH 2 O-), 70.2 (-OCH 2 CH 2 O-), 71.1 (-OCH 2 CH 2 O-), 78.2 (CH), 170.3 (CO), 194.4 (COO)

[실시예 6]Example 6

Ba(BAAc)2(triglyme) 의 합성Synthesis of Ba (BAAc) 2 (triglyme)

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 triglyme (1.016 g, 5.70 mmol) 을 상온에서 가한 뒤 HBAAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 48 시간 동안 반응시킨다. 반응이 진행되면 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으 제거하고 노란색 oil인 Ba(BAAc)2(triglyme)을 정량적으로 얻을 수 있었다.Triglyme (1.016 g, 5.70 mmol) was added to a toluene (20.0 mL) solution of Ba (0.783 g, 5.70 mmol) at room temperature, and HBAAc (1.805 g, 11.40 mmol) was slowly added to react at room temperature for 48 hours. As the reaction proceeds, Ba metal is gradually melted to generate a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and yellow oil Ba (BAAc) 2 (triglyme) was obtained quantitatively.

1H-NMR (COCl3, 25 ℃) δ1.35 (d, 9H, -C(CH3)3), 1.73 (s, 3H, CH3(CO)), 3.30 (s, 6H, -OCH3), 3.50 (m, 4H, -OCH2CH2O-), 3.62 (m, 4H, -OCH2CH2O-), 3.65 (s, -OCH2CH2O-), 4.48(s, 1H, CH) ; 1 H-NMR (COCl 3 , 25 ° C) δ 1.35 (d, 9H, -C (CH 3 ) 3 ), 1.73 (s, 3H, CH 3 (CO)), 3.30 (s, 6H, -OCH 3 ), 3.50 (m, 4H, -OCH 2 CH 2 O-), 3.62 (m, 4H, -OCH 2 CH 2 O-), 3.65 (s, -OCH 2 CH 2 O-), 4.48 (s, 1H , CH);

13C-NMR (CDCl3, 25 ℃) δ27.6 (CH3(CO)), 28.8 (-C(CH3)3), 58.1 (-OCH3), 70.1 (-OCH2CH2O-), 71.2(-OCH2CH2O-), 85.5 (CH), 170.7 (CO), 184.8 (COO) 13 C-NMR (CDCl 3 , 25 ° C) δ 27.6 (CH 3 (CO)), 28.8 (-C (CH 3 ) 3 ), 58.1 (-OCH 3 ), 70.1 (-OCH 2 CH 2 O-) , 71.2 (-OCH 2 CH 2 O-), 85.5 (CH), 170.7 (CO), 184.8 (COO)

[실시예 7]Example 7

Ba(BAAc)2(tetramine) 의 합성Synthesis of Ba (BAAc) 2 (tetramine)

Ba (0.783 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tramine (1.314 g, 5.70 mmol) 을 상온에서 가한 뒤 HBAAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 48 시간 동안 반응시킨다. 반응이 진행되면 Ba 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여 무색의 결정체인 Ba(BAAc)2(tetramine)을 2.944 g (76%) 얻었다.After adding tramine (1.314 g, 5.70 mmol) to a solution of toluene (20.0 mL) of Ba (0.783 g, 5.70 mmol) at room temperature, HBAAc (1.805 g, 11.40 mmol) was slowly added and reacted at room temperature for 48 hours. As the reaction proceeds, Ba metal is gradually melted to generate a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane to give 2.944 g (76%) of colorless crystals Ba (BAAc) 2 (tetramine).

IR (KBr, cm-1) 2977 m, 2923 w, 2830 m, 2777 w, 1643 vs, 1508 s, 1488 m, 1421 m, 1382 w, 1360 w, 1312 w, 1294 w, 1237 s, 1190 w, 1144 vs, 1103 w, 1044 w, 974 s, 787 w, 771 w, 742 w, 727 w, 456 w ;IR (KBr, cm -1 ) 2977 m, 2923 w, 2830 m, 2777 w, 1643 vs, 1508 s, 1488 m, 1421 m, 1382 w, 1360 w, 1312 w, 1294 w, 1237 s, 1190 w, 1144 vs, 1103 w, 1044 w, 974 s, 787 w, 771 w, 742 w, 727 w, 456 w;

1H-NMR (Acetone-d6, 25 ℃) δ1.36 (s, 9H, -C(CH3)3), 1.67 (s, 3H, -CH3), 2.19 (s, 12H, -N(CH3)2), 2.25 (s, 6H, -N(CH3)-), 2.40 (m, 4H, -NCH2CH2N-), 2.53 (m, 4H, -NCH2CH2N-), 2.56 (s, 4H, -NCH2CH2N-), 4.40 (s, 1H, CH) ; 1 H-NMR (Acetone-d 6 , 25 ° C) δ 1.36 (s, 9H, -C (CH 3 ) 3 ), 1.67 (s, 3H, -CH 3 ), 2.19 (s, 12H, -N ( CH 3 ) 2 ), 2.25 (s, 6H, -N (CH 3 )-), 2.40 (m, 4H, -NCH 2 CH 2 N-), 2.53 (m, 4H, -NCH 2 CH 2 N-) , 2.56 (s, 4H, -NCH 2 CH 2 N-), 4.40 (s, 1H, CH);

13C-NMR (Acetone-d6, 25 ℃) δ28.2 (CH3), 29.2 (-C(CH3)3), 41.7 (-N(CH3)2), 57.1 (-NCH2CH2N-), 57.3 (-NCH2CH2N-), 57.8 (-NCH2CH2N-), 75.9 (C(CH3)3), 171.4 (CO), 195.0 (COO) 13 C-NMR (Acetone-d 6 , 25 ° C.) δ28.2 (CH 3 ), 29.2 (-C (CH 3 ) 3 ), 41.7 (-N (CH 3 ) 2 ), 57.1 (-NCH 2 CH 2 N-), 57.3 (-NCH 2 CH 2 N-), 57.8 (-NCH 2 CH 2 N-), 75.9 (C (CH 3 ) 3 ), 171.4 (CO), 195.0 (COO)

[실시예 8]Example 8

[Sr(EBAc)2]3의 합성Synthesis of [Sr (EBAc) 2 ] 3

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 24 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 toluene/hexane 에서 재결정 하여 무색의 결정체인 [Sr(EBAc)2]3을 1.601 g (69%) 얻었다. 다만 삼합체구조는 X-선 단결정 구조분석을 통하여 확인할 수 있다.HEBAc (1.805 g, 11.40 mmol) was slowly added to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) and reacted at room temperature for 24 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After completion of the reaction, the solution was filtered and the solvent was removed in vacuo and recrystallized from toluene / hexane to give 1.601 g (69%) of colorless crystals [Sr (EBAc) 2 ] 3 . However, the trimer structure can be confirmed through X-ray single crystal structure analysis.

IR (KBr, cm-1) 2961 s, 2950 m, 2917 s, 2956 s, 1644 vs, 1614 vs, 1514 br, 1466 s, 1382 m, 1361 w, 1322 m, 1226 vs, 1174 vs, 1098 m, 1039 s, 986 w, 947 s, 837 m, 791 s, 742 m, 504 w ;IR (KBr, cm -1 ) 2961 s, 2950 m, 2917 s, 2956 s, 1644 vs, 1614 vs, 1514 br, 1466 s, 1382 m, 1361 w, 1322 m, 1226 vs, 1174 vs, 1098 m, 1039 s, 986 w, 947 s, 837 m, 791 s, 742 m, 504 w;

IH-NMR (Acetone-d6, 25℃) δ1.00 (d, 6H, -CH(CH3)2), 1.12 (t, 3H, -CH2CH3), 2.26 (m, 1H, -CH(CH3)2), 3.94 (q, 2H, -CH2CH3), 4.55 (s, 1H, CH) ; I H-NMR (Acetone-d 6 , 25 ° C) δ1.00 (d, 6H, -CH (CH 3 ) 2 ), 1.12 (t, 3H, -CH 2 CH 3 ), 2.26 (m, 1H,- CH (CH 3 ) 2 ), 3.94 (q, 2H, -CH 2 CH 3 ), 4.55 (s, 1H, CH);

13C-NMR (Acetone-d6, 25 ℃) δ15.1 (-CH2CH3), 21.5 (-CH(CH3)2), 39.8 (-CH(CH3)2), 58.1 (-CH2CH3), 80.8 (CH), 172.5 (CO), 194.9 (COO) 13 C-NMR (Acetone-d 6 , 25 ° C.) δ15.1 (-CH 2 CH 3 ), 21.5 (-CH (CH 3 ) 2 ), 39.8 (-CH (CH 3 ) 2 ), 58.1 (-CH 2 CH 3 ), 80.8 (CH), 172.5 (CO), 194.9 (COO)

[실시예 9]Example 9

Sr(EBAc)2(triamine) 의 합성Synthesis of Sr (EBAc) 2 (triamine)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 trianine (0.998 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 24 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여 무색의 결정체인 Sr(EBAc)2(triamine) 을 2.160 g(78%) 얻었다.Trianine (0.998 g, 5.70 mmol) was added to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, followed by slow addition of HEBAc (1.805 g, 11.40 mmol) at room temperature for 24 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After completion of the reaction, the solution was filtered and the solvent was removed in vacuo and recrystallized in pentane to give 2.160 g (78%) of colorless crystals, Sr (EBAc) 2 (triamine).

IR (KBr, cm-1) 2975 s, 2867 m, 2831 m, 2804 w, 1633 vs, 1577 w, 1504 w, 1455 vs, 1382 w, 1355 m, 1323 s, 1216 vs, 1151 vs, 1085 s, 1050 vs, 985 m, 945 s, 931 m, 788 vs, 746 m ;IR (KBr, cm -1 ) 2975 s, 2867 m, 2831 m, 2804 w, 1633 vs, 1577 w, 1504 w, 1455 vs, 1382 w, 1355 m, 1323 s, 1216 vs, 1151 vs, 1085 s, 1050 vs, 985 m, 945 s, 931 m, 788 vs, 746 m;

1H-NMR (CDCl3, 25 ℃) δ0.95 (d, 6H, -CH(CH3)2), 1.14 (t, 3H, -CH2CH3), 2.14 (s, 3H, -N(CH3)-), 3.92 (q, 2H, -CH2CH3), 4.59 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.95 (d, 6H, —CH (CH 3 ) 2 ), 1.14 (t, 3H, —CH 2 CH 3 ), 2.14 (s, 3H, —N ( CH 3 )-), 3.92 (q, 2H, -CH 2 CH 3 ), 4.59 (s, 1H, CH);

13C-NMR (CDCl3, 25℃) δ14.0 (-CH2CH3), 19.8 (-CH(CH3)2), 37.8 (-CH(CH3)2), 42.5 (-N(CH3)-), 44.2 (-N(CH3)2) 54.6 (-CH2CH3), 56.2 (-NCH2CH2N-), 78.3(CH), 170.5 (CO), 194.9 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.0 (-CH 2 CH 3 ), 19.8 (-CH (CH 3 ) 2 ), 37.8 (-CH (CH 3 ) 2 ), 42.5 (-N (CH 3 )-), 44.2 (-N (CH 3 ) 2 ) 54.6 (-CH 2 CH 3 ), 56.2 (-NCH 2 CH 2 N-), 78.3 (CH), 170.5 (CO), 194.9 (COO)

[실시예 10]Example 10

Sr(EBAc)2(tetramine) 의 합성Synthesis of Sr (EBAc) 2 (tetramine)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tetramine (1.314 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 72 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여(4℃) 무색의 결정체인 Sr(EBAc)2(tetramine)을 2.523 g (70%) 얻었다.After adding tetramine (1.314 g, 5.70 mmol) to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, HEBAc (1.805 g, 11.40 mmol) was slowly added and reacted at room temperature for 72 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane (4 ℃) to give 2.523 g (70%) of colorless crystals Sr (EBAc) 2 (tetramine).

IR (KBr, cm-1) 2965 s, 2865 m, 2824 m, 2796 m, 1638 vs, 1501 vs, 1455 s, 1356 w, 1312 w, 1228 s, 1290 s, 1163 s, 1153 s, 1097 m, 1084 w, 1036 s, 937 m, 830 w, 738 w, 719 w, 433w ;IR (KBr, cm -1 ) 2965 s, 2865 m, 2824 m, 2796 m, 1638 vs, 1501 vs, 1455 s, 1356 w, 1312 w, 1228 s, 1290 s, 1163 s, 1153 s, 1097 m, 1084 w, 1036 s, 937 m, 830 w, 738 w, 719 w, 433 w;

1H-NMR (CDCl3, 25℃) δ0.95 (d, 6H, -CH(CH3)2), 1.14 (t, 3H, -CH2CH3), 2.09 (s, 12H, -N(CH3)2), 2.16 (m, 1H, -CH(CH3)2), 2.19 (s, 6H, -N(CH3)-), 2.50 (br, 12H, -NCH2CH2N-), 3.93 (q, 2H, -CH2CH3), 4.58 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.95 (d, 6H, —CH (CH 3 ) 2 ), 1.14 (t, 3H, —CH 2 CH 3 ), 2.09 (s, 12H, —N ( CH 3 ) 2 ), 2.16 (m, 1H, -CH (CH 3 ) 2 ), 2.19 (s, 6H, -N (CH 3 )-), 2.50 (br, 12H, -NCH 2 CH 2 N-) , 3.93 (q, 2H, -CH 2 CH 3 ), 4.58 (s, 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ15.0 (-CH2CH3), 20.6 (-CH(CH3)2), 38.8 (-CH(CH3)2), 41.7 (-N(CH3)-), 46.4 (-N(CH3)2) 57.0 (-CH2CH3), 57.4 (-NCH2CH2N-), 78.3(CH), 170.6 (CO), 194.9 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ15.0 (-CH 2 CH 3 ), 20.6 (-CH (CH 3 ) 2 ), 38.8 (-CH (CH 3 ) 2 ), 41.7 (-N (CH 3 )-), 46.4 (-N (CH 3 ) 2 ) 57.0 (-CH 2 CH 3 ), 57.4 (-NCH 2 CH 2 N-), 78.3 (CH), 170.6 (CO), 194.9 (COO)

[실시예 11]Example 11

Sr(EBAc)2(triglyme) 의 합성Synthesis of Sr (EBAc) 2 (triglyme)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 triglyme(1.016 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 10 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane 에서 재결정 하여 흰색 고체 화합물인 Sr(EBAc)2(triglyme) 을 2.07 g (63%) 얻었다.Triglyme (1.016 g, 5.70 mmol) was added to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, followed by slow addition of HEBAc (1.805 g, 11.40 mmol) at room temperature for 10 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized in pentane to give 2.07 g (63%) of Sr (EBAc) 2 (triglyme) as a white solid compound.

IR (KBr, cm-1) 2956 m, 2930 m, 2840 m, 1641 vs, 1500 vs, 1458 s, 1333 w, 1316 m, 1220 s, 1206 s, 1161 s, 1146 s, 1097 s, 1049 s, 947 s, 869 w, 833 m, 786 s, 722 w ;IR (KBr, cm -1 ) 2956 m, 2930 m, 2840 m, 1641 vs, 1500 vs, 1458 s, 1333 w, 1316 m, 1220 s, 1206 s, 1161 s, 1146 s, 1097 s, 1049 s, 947 s, 869 w, 833 m, 786 s, 722 w;

1H-NMR (CDCl3, 25 ℃) δ0.96 (d, 6H, -CH(CH3)2), 1.15 (t, 3H, -CH2CH3), 2.18 (m, 1H, -CH(CH3)2), 3.30 (s, 6H, -OCH3), 3.51 (m, 4H, -OCH2CH2O-), 3.66 (m, 4H, -OCH2CH2O-), 3.74 (s, 4H, -OCH2CH2O-), 3.93 (q, 2H, -CH2CH3), 4.56 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 0.96 (d, 6H, —CH (CH 3 ) 2 ), 1.15 (t, 3H, —CH 2 CH 3 ), 2.18 (m, 1H, —CH ( CH 3 ) 2 ), 3.30 (s, 6H, -OCH 3 ), 3.51 (m, 4H, -OCH 2 CH 2 O-), 3.66 (m, 4H, -OCH 2 CH 2 O-), 3.74 (s , 4H, -OCH 2 CH 2 O-), 3.93 (q, 2H, -CH 2 CH 3 ), 4.56 (s, 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ14.8 (-CH2CH3), 20.7 (-CH(CH3)2), 38.9 (-CH(CH3)2), 57.2 (-CH2CH3), 59.0 (-OCH3) 69.7 (-OCH2CH2O-), 69.9 (-OCH2CH2O-), 71.2 (-OCH2CH2O-), 78.5 (CH), 171.0 (CO), 195.0 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.8 (-CH 2 CH 3 ), 20.7 (-CH (CH 3 ) 2 ), 38.9 (-CH (CH 3 ) 2 ), 57.2 (-CH 2 CH 3 ), 59.0 (-OCH 3 ) 69.7 (-OCH 2 CH 2 O-), 69.9 (-OCH 2 CH 2 O-), 71.2 (-OCH 2 CH 2 O-), 78.5 (CH), 171.0 (CO ), 195.0 (COO)

[실시예 12]Example 12

Sr(EBAc)2(tetraglyme) 의 합성Synthesis of Sr (EBAc) 2 (tetraglyme)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tetraglyme (1.266 g, 5.70 mmol) 을 상온에서 가한 뒤 HEBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 48 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점짐 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 pentane/toluene 에서 재결정 시키면 무색의 결정체인 Sr(EBAc)2(tetraglyme) 을 2.330 g (65%) 얻었다.Tetraglyme (1.266 g, 5.70 mmol) was added to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, and HEBAc (1.805 g, 11.40 mmol) was added slowly to react at room temperature for 48 hours. As the reaction proceeds, a gas that is thought to be H 2 is generated while the Sr metal gradually melts. After completion of the reaction, the solution was filtered and the solvent was removed in vacuo and recrystallized from pentane / toluene to give 2.330 g (65%) of colorless crystals, Sr (EBAc) 2 (tetraglyme).

mp 57~59 ℃;mp 57-59 ° C .;

IR (KBr, cm-1) 2953 m, 2925 m, 2868 s, 2828 w, 1645 vs, 1509 vs, 1491 vs, 1458 s, 1385 w, 1355 w, 1342 w, 1317 m, 1204 s, 1119 s, 1097 s, 1081 s. 1052 s, 979 w, 948 s, 854 w, 829 m, 785 s, 740 w, 721 w ;IR (KBr, cm -1 ) 2953 m, 2925 m, 2868 s, 2828 w, 1645 vs, 1509 vs, 1491 vs, 1458 s, 1385 w, 1355 w, 1342 w, 1317 m, 1204 s, 1119 s, 1097 s, 1081 s. 1052 s, 979 w, 948 s, 854 w, 829 m, 785 s, 740 w, 721 w;

1H-NMR (CDCl3, 25 ℃) δ0.97 (d, 6H, -OCH3), 3.48 (m, 4H, -OCH2CH2O-), 3.60 (m, 4H, -OCH2CH2O-), 3.71 (m, 4H, -OCH2CH2O-), 3.78 (m, 4H, -OCH2CH2O-), 3.96 (q, 2H, -CH2CH3), 4.58 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C) δ 0.97 (d, 6H, -OCH 3 ), 3.48 (m, 4H, -OCH 2 CH 2 O-), 3.60 (m, 4H, -OCH 2 CH 2 O-), 3.71 (m, 4H, -OCH 2 CH 2 O-), 3.78 (m, 4H, -OCH 2 CH 2 O-), 3.96 (q, 2H, -CH 2 CH 3 ), 4.58 (s , 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ14.9 (-CH2CH3), 20.9 (-CH(CH3)2), 39.0 (-CH(CH3)2), 57.2 (-CH2CH3), 59.0 (-OCH3) 70.0 (-OCH2CH2O-), 70.1 (-OCH2CH2O-), 71.5(-OCH2CH2O-), 170.9 (CO), 194.8 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ 14.9 (-CH 2 CH 3 ), 20.9 (-CH (CH 3 ) 2 ), 39.0 (-CH (CH 3 ) 2 ), 57.2 (-CH 2 CH 3 ), 59.0 (-OCH 3 ) 70.0 (-OCH 2 CH 2 O-), 70.1 (-OCH 2 CH 2 O-), 71.5 (-OCH 2 CH 2 O-), 170.9 (CO), 194.8 (COO )

[실시예 13]Example 13

Sr(BAAc)2(triglyme) 의 합성Synthesis of Sr (BAAc) 2 (triglyme)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tetraglyme (1.016 g, 5.70 mmol) 을 상온에서 가한 뒤 HBBAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 30 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거한 후 toluene 에서 재결정 하여 흰색 고체 화합물인 Sr(BBAc)2(triglyme) 을 2.07 g (63%) 얻었다.Tetraglyme (1.016 g, 5.70 mmol) was added to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, and HBBAc (1.805 g, 11.40 mmol) was added slowly to react at room temperature for 30 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After the reaction was completed, the solution was filtered, the solvent was removed in vacuo and recrystallized from toluene to give 2.07 g (63%) of a white solid compound Sr (BBAc) 2 (triglyme).

1H-NMR (CDCl3, 25℃) δ1.36 (d, 9H, -C(CH3)3), 1.71 (s, 3H, CH3(CO)), 3.32 (s, 6H, -OCH3), 3.49 (m, 4H, -OCH2CH2O-), 3.52 (m, 4H, -OCH2CH2O-), 3.66 (s, -OCH2CH2O-), 4.50 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 1.36 (d, 9H, —C (CH 3 ) 3 ), 1.71 (s, 3H, CH 3 (CO)), 3.32 (s, 6H, —OCH 3 ), 3.49 (m, 4H, -OCH 2 CH 2 O-), 3.52 (m, 4H, -OCH 2 CH 2 O-), 3.66 (s, -OCH 2 CH 2 O-), 4.50 (s, 1H , CH);

13C-NMR (CDCl3, 25 ℃) δ27.6 (-CH3(CO)), 28.7 (-C(CH3)3), 58.6 (-OCH3) 70.1 (-OCH2CH2O-), 70.2 (-OCH2CH2O-), 86.2(CH), 170.7 (CO), 183.9 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ27.6 (-CH 3 (CO)), 28.7 (-C (CH 3 ) 3 ), 58.6 (-OCH 3 ) 70.1 (-OCH 2 CH 2 O-) , 70.2 (-OCH 2 CH 2 O-), 86.2 (CH), 170.7 (CO), 183.9 (COO)

[실시예 14]Example 14

Sr(BAAc)2(tetramine) 의 합성Synthesis of Sr (BAAc) 2 (tetramine)

Sr (0.500 g, 5.70 mmol) 의 toluene (20.0 mL) 용액에 tetraglyme (1.314 g, 5.70 mmol) 을 상온에서 가한 뒤 HBAAc (1.805 g, 11.40 mmol) 를 천천히 더하여 상온에서 48 시간 동안 반응시킨다. 반응이 진행되면 Sr 금속이 점점 녹으면서 H2로 생각되는 기체가 발생된다. 반응이 끝난 후 용액을 거른 다음, 용매를 진공으로 제거하고 hexane 에서 재결정 하여 무색의 결정체인 Sr(BAAc)2(tetramine) 을 2.330 g (65%) 얻었다.After adding tetraglyme (1.314 g, 5.70 mmol) to a solution of toluene (20.0 mL) of Sr (0.500 g, 5.70 mmol) at room temperature, HBAAc (1.805 g, 11.40 mmol) was slowly added and reacted at room temperature for 48 hours. As the reaction proceeds, the Sr metal gradually melts, generating a gas thought to be H 2 . After the reaction was completed, the solution was filtered, and the solvent was removed in vacuo and recrystallized from hexane to obtain 2.330 g (65%) of colorless crystals, Sr (BAAc) 2 (tetramine).

IR (KBr, cm-1) 2963 m, 2925 m, 2868 s, 2828 w, 1645 vs, 1509 vs, 1491 vs, 1458 s, 1385 w, 1355 w, 1342 w, 1317 m, 1204 s, 1119 s, 1097 s, 1081 s, 1052 s, 979 w, 948 s, 854 w, 829 m, 785 s, 740 w, 721 w ;IR (KBr, cm -1 ) 2963 m, 2925 m, 2868 s, 2828 w, 1645 vs, 1509 vs, 1491 vs, 1458 s, 1385 w, 1355 w, 1342 w, 1317 m, 1204 s, 1119 s, 1097 s, 1081 s, 1052 s, 979 w, 948 s, 854 w, 829 m, 785 s, 740 w, 721 w;

1H-NMR (Acetone-d6, 25 ℃) δ1.37 (s, 9H, -C(CH3)3), 1.73 (br, 3H, -CH3), 2.15 (s, 12H, -N(CH3)2), 2.21 (s, 4H, -NCH2CH2N-), 2.33 (t, 4H, -NCH2CH2N-), 2.49 m, 4H, -NCH2CH2N-) 2.50 (m, 4H, -NCH2CH2N-), 4.45 (s, 1H, CH) ; 1 H-NMR (Acetone-d 6 , 25 ° C) δ 1.37 (s, 9H, -C (CH 3 ) 3 ), 1.73 (br, 3H, -CH 3 ), 2.15 (s, 12H, -N ( CH 3 ) 2 ), 2.21 (s, 4H, -NCH 2 CH 2 N-), 2.33 (t, 4H, -NCH 2 CH 2 N-), 2.49 m, 4H, -NCH 2 CH 2 N-) 2.50 (m, 4H, -NCH 2 CH 2 N-), 4.45 (s, 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ27.9 (-CH3), 28.9 (-C(CH3)3), 41.8 (-N(CH3)-), 46.3 (-N(CH3)2), 56.0 (-NCH2CH2N-) 57.4 (-NCH2CH2N-) 75.3 (-C(CH3)3), 82.8(CH),171.0 (CO), 185.7 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ27.9 (-CH 3 ), 28.9 (-C (CH 3 ) 3 ), 41.8 (-N (CH 3 )-), 46.3 (-N (CH 3 ) 2 ), 56.0 (-NCH 2 CH 2 N-) 57.4 (-NCH 2 CH 2 N-) 75.3 (-C (CH 3 ) 3 ), 82.8 (CH), 171.0 (CO), 185.7 (COO)

[실시예 15]Example 15

Ti(OiPr)2(EBAc)2의 합성Synthesis of Ti (O i Pr) 2 (EBAc) 2

Ti(OiPr)4(1.000 g 3.51 mmol) 의 pentane (2.0mL) 용액에 HEBAc (1.113 g, 7.03 mmol)를 상온에서 천천히 더한 다음 2시간 동안 반응시킨다. 반응이 끝난 투명한 용액을 진공으로 용매를 제거하면 오렌지색 액체 화합물이 생성된다. 이 액체 화합물을 진공 증류 (70℃, 10-3Torr) 하여 엷은 노란색 액체 화합물인 Ti(OiPr)2(EBAc)2을 0.823 g (49%) 얻었다.HEBAc (1.113 g, 7.03 mmol) was slowly added to a pentane (2.0 mL) solution of Ti (O i Pr) 4 (1.000 g 3.51 mmol) at room temperature, followed by reaction for 2 hours. The solvent is removed in vacuo from the clear solution to form an orange liquid compound. The liquid compound was vacuum distilled (70 占 폚, 10 -3 Torr) to obtain 0.823 g (49%) of Ti (O i Pr) 2 (EBAc) 2 as a pale yellow liquid compound.

1H-NMR (CDCl3, 25℃) δ1.02~l.15 (m, 3H, -CH2CH3; m, 6H, OCCH(CH3)2; m, 6H, OCH(CH3)2), 2.30 (m, 1H, OCCH(CH3)2), 3.95 (m. 2H, CH2CH3), 4.67 (m, 1H, OCH(CH3)2), 4.87 (s, 1H, OCCHCOO) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ1.02 to l.15 (m, 3H, -CH 2 CH 3 ; m, 6H, OCCH (CH 3 ) 2 ; m, 6H, OCH (CH 3 ) 2 ), 2.30 (m, 1H, OCCH (CH 3 ) 2 ), 3.95 (m. 2H, CH 2 CH 3 ), 4.67 (m, 1H, OCH (CH 3 ) 2 ), 4.87 (s, 1H, OCCHCOO) ;

13C-NMR (CDCl3, 25 ℃) δ14.4 (CH2CH3), 20.0 (OCCH(CH3)2), 20.1 (OCCH(CH3)2), 24.9 (OCH(CH3)2), 25.0 (OCH(CH3)2) 60.1 (CH2CH3), 78.4 (OCH(CH3)2), 85.3(COCHCOO), 172.9 (CO), 192.2 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ14.4 (CH 2 CH 3 ), 20.0 (OCCH (CH 3 ) 2 ), 20.1 (OCCH (CH 3 ) 2 ), 24.9 (OCH (CH 3 ) 2 ) , 25.0 (OCH (CH 3 ) 2 ) 60.1 (CH 2 CH 3 ), 78.4 (OCH (CH 3 ) 2 ), 85.3 (COCHCOO), 172.9 (CO), 192.2 (COO)

[실시예 16]Example 16

Ti(OiPr)2(BAAc)2의 합성Synthesis of Ti (O i Pr) 2 (BAAc) 2

Ti(OiPr)4(1.000 g 3.51 mmol) 의 pentane (2.0mL) 용액에 HBAAc (1.113 g, 7.03 mmol)를 상온에서 천천히 더한 다음 2시간 동안 반응시킨다. 반응이 끝난 후 진공으로 용매를 제거하면 흰색 고체 화합물을 얻을 수 있으며, 다시 이 화합물을 승화(70℃, 10-3Torr) 시켜 흰색 고체 화합물인 Ti(OiPr)2(BAAc)2을 1.098 g (65%) 얻었다.HBAAc (1.113 g, 7.03 mmol) was slowly added to a pentane (2.0 mL) solution of Ti (O i Pr) 4 (1.000 g 3.51 mmol) at room temperature, followed by reaction for 2 hours. After the reaction, the solvent was removed in vacuo to obtain a white solid compound. Subsequently, the compound was sublimed (70 ° C., 10 −3 Torr) to obtain Ti (O i Pr) 2 (BAAc) 2 as a white solid compound. g (65%) was obtained.

mp 103~ 106℃ ;mp 103-106 ° C;

IR (KBr, cm-1) 1975 m, 2923 w, 2857 w, 1634 s, 1610 s, 1576 w, 1559 w, 1525 vs, 1458 w, 1367 w, 1292 vs, 1254 m, 1155 vs, 992 vs, 851 m, 788 m, 746 w, 621 w, 583 w, 479 m, 457 w, 436 w ;IR (KBr, cm -1 ) 1975 m, 2923 w, 2857 w, 1634 s, 1610 s, 1576 w, 1559 w, 1525 vs, 1458 w, 1367 w, 1292 vs, 1254 m, 1155 vs, 992 vs, 851 m, 788 m, 746 w, 621 w, 583 w, 479 m, 457 w, 436 w;

1H-NMR (CDCl3, 25℃) δ1.14 (d, 3H, -CH(CH3)2), 1.19 (d, 3H, -CH(CH3)3), 1.36 (s, 9H, -C(CH3)3), 1.86 (s, 3H, CH3), 4.76 (m, 1H, -CH(CH3)2), 4.85 (s, 1H, CH) ; 1 H-NMR (CDCl 3 , 25 ° C.) δ 1.14 (d, 3H, —CH (CH 3 ) 2 ), 1.19 (d, 3H, —CH (CH 3 ) 3 ), 1.36 (s, 9H, − C (CH 3 ) 3 ), 1.86 (s, 3H, CH 3 ), 4.76 (m, 1H, —CH (CH 3 ) 2 ), 4.85 (s, 1H, CH);

13C-NMR (CDCl3, 25 ℃) δ24.9 (-CH3), 25.1 (-CH(CH3)2), 28.5 (-C(CH3)3), 78.3 (CH(CH3)2), 80.4 (-C(CH3)3) 98.8 (CH), 172.4 (CO), 183.6 (COO) 13 C-NMR (CDCl 3 , 25 ° C.) δ24.9 (-CH3), 25.1 (-CH (CH 3 ) 2 ), 28.5 (-C (CH 3 ) 3 ), 78.3 (CH (CH 3 ) 2 ) , 80.4 (-C (CH 3 ) 3 ) 98.8 (CH), 172.4 (CO), 183.6 (COO)

본 발명에서는 β-keto ester 및 amide 그리고 β-diketo ester 및 amide 와 다양한 N, O - 전자 주개 리간드를 Ba, Sr 금속과 반응시켜 Ba, Sr 선구물질을 합성하였다. 또한 β-keto ester 및 amide 그리고 β-diketo ester 및 amide 리간드와 Ti(OiPr)4(IV)를 반응시켜 Ti 선구물질을 합성하였다. 이와 같이 본 발명에서는 근래에 유기금속화학증착법 (MOCVD) 방법에 의한 고유전에 BST 박막의 제조에 사용되는 β-diketone 화합물을 대체 가능한 여러 형태의 BST 박막제조용 선구 물질을 합성할 수 있었다. 이 화합물들은 휘발성이 좋을 뿐만 아니라 기존의 β-diketone 화합물에 비해 공기중에서 안정하고 다루기가 쉬운 장점이 있으므로 이러한 선구물질들을 이용한 박막의 증착이 확립된다면 차세대 Giga 금 DRAM 의 제조에 커다른 기여를 할 것으로 기대된다.In the present invention, Ba, Sr precursors were synthesized by reacting β-keto ester and amide and β-diketo ester and amide with various N, O-electron donor ligands with Ba and Sr metals. In addition, Ti precursor was synthesized by reacting β-keto ester and amide and β-diketo ester and amide ligand with Ti (O i Pr) 4 (IV). As described above, in the present invention, various types of precursors for manufacturing BST thin films capable of replacing the β-diketone compound used in the preparation of BST thin films by high-molecular metal chemical vapor deposition (MOCVD) have been recently synthesized. These compounds are not only highly volatile, but also stable and easy to handle in the air compared to the existing β-diketone compounds, and if the deposition of thin films using these precursors is established, it will make a significant contribution to the fabrication of the next generation Giga Gold DRAM. It is expected.

Claims (3)

β-케토 에스테르 (β-keto ester)를 이용하여 합성한 일반식 [I]로 표시되는 강유전체 BST 박막제조용 선구물질Precursor for ferroelectric BST thin film represented by general formula [I] synthesized using β-keto ester [M(RC(O)CHC(O)OR')2]3……………… [1][M (RC (O) CHC (O) OR ') 2 ] 3 . … … … … … [One] (상기식에서 M은 Ba 또는 Sr 이고, R은 탄소수 1~4의 알킬기이고 R'은 탄소수 3~4의 알킬그룹이다.)(In the formula, M is Ba or Sr, R is an alkyl group having 1 to 4 carbon atoms and R 'is an alkyl group having 3 to 4 carbon atoms.) β-케토 에스테르(β-keto ester)와 N, O - 전자 주개 리간드(L)를 이용하여 합성한 일반식 [V]로 표시되는 강유전체 BST 박막제조용 선구물질A precursor for the production of ferroelectric BST thin films represented by general formula [V] synthesized using β-keto ester and N, O-electron donor ligand (L) M(RC(O)CHC(O)OR')2·L ………………… [V]M (RC (O) CHC (O) OR ') 2 .L. … … … … … … [V] (상기식에서 M은 Ba 또는 Sr 이고, R과 R'은 탄소수 1~4의 알킬그룹이고 L은 (CH3)N(CH2CH2N)n(CH3)2의 구조를 갖는 n이 1~4인 아민(amine)과 CH3O(CH2CH2O)nCH3의 구조를 갖는 n이 1~4의 글리콜에테르(glycol ether)이다.)(Wherein M is Ba or Sr, R and R 'are alkyl groups of 1 to 4 carbon atoms and L is (CH 3 ) N (CH 2 CH 2 N) n (CH 3 ) 2 n is 1 N having a structure of amine of 4 and CH 3 O (CH 2 CH 2 O) nCH 3 is 1-4 glycol ether.) β-케토β-keto 에스테르 (β-keto ester)와 Ti(OiPr)4를 반응시켜 합성한 일반식 [IX]로 표시되는 강유전체 BST 박막제조용 선구물질A precursor for the production of ferroelectric BST thin films represented by the general formula [IX] synthesized by reacting an ester (β-keto ester) with Ti (O i Pr) 4 Ti(0iPr)2(RC(O)CHC(O)OR')2………………… [IX]Ti (0 i Pr) 2 (RC (O) CHC (O) OR ') 2 ... … … … … … … [IX] (상기식에서 R과 R'은 탄소수 1~4의 알킬그룹이다.)(In the formula, R and R 'is an alkyl group having 1 to 4 carbon atoms.)
KR1019980008164A 1998-03-12 1998-03-12 β-ketoester or amide Type Precursors for Ferroelectric BST thin films KR100308916B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980008164A KR100308916B1 (en) 1998-03-12 1998-03-12 β-ketoester or amide Type Precursors for Ferroelectric BST thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980008164A KR100308916B1 (en) 1998-03-12 1998-03-12 β-ketoester or amide Type Precursors for Ferroelectric BST thin films

Publications (2)

Publication Number Publication Date
KR19990074522A KR19990074522A (en) 1999-10-05
KR100308916B1 true KR100308916B1 (en) 2002-11-23

Family

ID=37530675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980008164A KR100308916B1 (en) 1998-03-12 1998-03-12 β-ketoester or amide Type Precursors for Ferroelectric BST thin films

Country Status (1)

Country Link
KR (1) KR100308916B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255224A (en) * 1988-08-19 1990-02-23 Asahi Glass Co Ltd Solution for producing oxide superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255224A (en) * 1988-08-19 1990-02-23 Asahi Glass Co Ltd Solution for producing oxide superconductor

Also Published As

Publication number Publication date
KR19990074522A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
KR101260858B1 (en) Metal-containing compound process for producing the same metal-containing thin film and method of forming the same
TWI390070B (en) Beta-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same
US8580989B2 (en) Process for the preparation of indium chlordialkoxides
US6111124A (en) Lewis base adducts of anhydrous mononuclear tris(β-diketonate) bismuth compositions for deposition of bismuth-containing films, and method of making the same
TW201014925A (en) Titanium pyrrolyl-based organometallic precursors and use thereof for preparing dielectric thin films
US6218518B1 (en) Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
US20080286464A1 (en) Group 2 Metal Precursors For Depositing Multi-Component Metal Oxide Films
KR100807947B1 (en) Method for preparing Asymmetric betaketoiminate ligand compound
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
TWI257393B (en) Novel alkaline earth metal complexes and their use
US7238821B2 (en) Method for large scale production of organometallic compounds
JP3227891B2 (en) Novel organometallic complexes and their ligands
KR100308916B1 (en) β-ketoester or amide Type Precursors for Ferroelectric BST thin films
KR101052360B1 (en) Novel gallium alkoxide compound and preparation method thereof
KR100435816B1 (en) Organotitanium Precursors for Chemical Vapor Deposition and Manufacturing Method Thereof
JP4087065B2 (en) Precursor for heterometallic oxide growth by MOCVD
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
CN101328188A (en) Group II metal precursors for depositing multi-component metal oxide films
KR100367346B1 (en) Novel Group IV Metal Precursor and Chemical Vapor Deposition Method Using Thereof
JP2006013267A (en) Organic lanthanum compound and manufacturing method of lanthanum-containing film using it
Pochekutova et al. Synthesis, X-ray crystal structures and thermal behavior of calcium β-diketonate complexes [Ca (fod) 2 (15-crown-5)] and [Ca (fod)(C3F7COO)(15-crown-5)](Hfod= 1, 1, 1, 2, 2, 3, 3-heptafluoro-7, 7-dimethyl-4, 6-octanedione)
Lim et al. A study of the development of CVD precursors III-synthesis and properties of new lead β-diketonate derivatives
KR100497314B1 (en) Metal alkoxide compounds and preparing method thereof
KR100382533B1 (en) Ligand and organo-metal precursor using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070831

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee