KR100497314B1 - Metal alkoxide compounds and preparing method thereof - Google Patents

Metal alkoxide compounds and preparing method thereof Download PDF

Info

Publication number
KR100497314B1
KR100497314B1 KR10-2002-0043453A KR20020043453A KR100497314B1 KR 100497314 B1 KR100497314 B1 KR 100497314B1 KR 20020043453 A KR20020043453 A KR 20020043453A KR 100497314 B1 KR100497314 B1 KR 100497314B1
Authority
KR
South Korea
Prior art keywords
titanium
barium
strontium
metal alkoxide
thin film
Prior art date
Application number
KR10-2002-0043453A
Other languages
Korean (ko)
Other versions
KR20040009488A (en
Inventor
김윤수
김창균
정택모
오영우
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0043453A priority Critical patent/KR100497314B1/en
Publication of KR20040009488A publication Critical patent/KR20040009488A/en
Application granted granted Critical
Publication of KR100497314B1 publication Critical patent/KR100497314B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/404Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 신규한 금속 알콕사이드 화합물과 그 제조 방법에 관한 것이다.The present invention relates to a novel metal alkoxide compound represented by the following formula (1) and a method for producing the same.

상기 식중, M은 바륨, 스트론튬 또는 티타늄이고 X1 및 X2는 각각 RO(CH2) nO-, (RO(CH2)n)2N-, RO(CH2)nNH-, R2N- 또는 RO- 이며, R은 C1-C4 알킬, Y는 수소 또는 C1-C4 알킬이며, l은 2 또는 4, m은 1 내지 3의 정수, n은 2 또는 3이다.Wherein M is barium, strontium or titanium and X 1 and X 2 are RO (CH 2 ) n O-, (RO (CH 2 ) n ) 2 N-, RO (CH 2 ) n NH-, R 2 N- or RO-, R is C 1 -C 4 alkyl, Y is hydrogen or C 1 -C 4 alkyl, l is 2 or 4, m is an integer of 1 to 3, n is 2 or 3.

Description

금속 알콕사이드 화합물과 그 제조 방법{METAL ALKOXIDE COMPOUNDS AND PREPARING METHOD THEREOF} Metal alkoxide compound and its manufacturing method {METAL ALKOXIDE COMPOUNDS AND PREPARING METHOD THEREOF}

본 발명은 신규한 금속 알콕사이드 화합물에 관한 것으로서, 보다 상세하게는 바륨, 스트론튬 또는 티타늄을 포함하는 산화물 박막을 제조하는 데 바륨, 스트론튬 및 티타늄 선구 물질로서 유용한 바륨, 스트론튬 또는 티타늄 알콕사이드 화합물과 그 제조 방법에 관한 것이다.The present invention relates to novel metal alkoxide compounds, and more particularly barium, strontium or titanium alkoxide compounds useful as barium, strontium and titanium precursors for the production of oxide thin films comprising barium, strontium or titanium and methods for their preparation It is about.

최근 수십 년간의 전자 산업 발전은 인류의 생활 수준을 향상시키는 데 큰 역할을 했다. 이러한 전자 산업의 발전 방향은 소형화, 고집적화 및 처리 속도의 증진 등으로 변화되고 있으며, 회로의 고집적화를 위해서 새로운 전자 재료의 개발과 박막 제작 기술의 개발이 필수적이며, 특히 큰 축전 용량을 가지는 고유전율 물질이 요구된다.The development of the electronics industry in recent decades has played a major role in raising the standard of living for humanity. The development direction of the electronics industry is changing due to miniaturization, high integration, and improvement of processing speed, and development of new electronic materials and development of thin film fabrication technology are essential for high integration of circuits, and especially high dielectric constant materials having large storage capacity. Is required.

이러한 물질로 페로브스카이트 구조의 고유전체가 대두되었는데, BaxSr1-xTiO3 (BST)와 PbZryTi1-yO3 (PZT)는 300에서 1000의 높은 유전율을 갖는 물질로, 차세대 고유전 박막의 재료로서 유망하고, 광전자 소자, 압전 소자 및 초전 소자로의 응용 가능성이 기대된다. 이들 중 특히 BST는 화학적, 열적 특성이 우수하고 유전 상수의 변화가 적고 DRAM의 동작에 알맞은 상자기성을 갖는 재료로 알려져 있다.The high dielectric constant of the perovskite structure has emerged with these materials. Ba x Sr 1-x TiO 3 (BST) and PbZr y Ti 1-y O 3 (PZT) are materials having a high dielectric constant of 300 to 1000. It is promising as a material for the next-generation high-k dielectric thin film, and is expected to be applied to optoelectronic devices, piezoelectric devices, and pyroelectric devices. Among these, BST is known as a material having excellent chemical and thermal characteristics, a small change in dielectric constant, and a paramagnetic property suitable for DRAM operation.

박막 제작 기술 중 금속 유기물 화학 증착법 (metal organic chemical vapor deposition: MOCVD)은 이산화티타늄 (TiO2) 박막, 티탄산바륨스트론튬 (barium strontium titanate: BST) 박막 또는 티타늄을 포함하는 기타 복합 산화물 박막을 제조하는 데 사용되고 있다. 이 기술은 1960년대 마나세빗 (Manasevit)의 선구적 연구로 시작된 이래, 1980년대 반도체 공정의 선택 과정에서 분자살 적층 성장법 (molecular beam epitaxy: MBE)과의 경합에서 주공정으로 채택될 정도로 유용한 방법이다. 이 공정을 다른 공정과 비교하면 장치가 간단하고 층 덮임성이 타 기법에 비해 월등하며 성분 조절이 쉽고 대량 생산으로의 전환에 무리가 없다는 장점이 있다.Metal organic chemical vapor deposition (MOCVD) in thin film fabrication technology is used to fabricate titanium dioxide (TiO 2 ) thin films, barium strontium titanate (BST) thin films or other composite oxide thin films including titanium. It is used. This technique began as a pioneering work by Manasevit in the 1960s, and was so useful that it was adopted as the main process in competition with molecular beam epitaxy (MBE) in the selection of semiconductor processes in the 1980s. to be. Compared with other processes, the process is simpler, the layer coverage is superior to other techniques, easy to control ingredients, and easy to switch to mass production.

MOCVD를 이용한 박막 제작을 위해서는 이 공정에 사용되는 선구 물질의 개발과 특성의 이해가 필수적이다. MOCVD용 선구 물질은 200 ℃ 이하에서 충분한 증기압을 가져야 하고, 기화시키기 위해 가열하는 동안 열적으로 충분히 안정해야 하며, 350-500 ℃의 기질 온도에서 유기 물질 등의 분해 없이 신속히 분해되어야 하며, 저장하는 동안에 공기 및 습기에 충분히 안정해야 한다. 그리고 그 자체에 또는 분해 생성 물질에 독성이 없거나 적어야 하며 합성법이 간단하며 원재료의 단가가 낮아야 함을 부수적인 요건으로 한다.In order to produce thin films using MOCVD, it is essential to develop and understand the precursors used in this process. The precursors for MOCVD must have sufficient vapor pressure below 200 ° C, be thermally stable enough during heating to vaporize, decompose rapidly at substrate temperature of 350-500 ° C without decomposition of organic matters, and during storage. It must be stable enough to air and moisture. As an additional requirement, it must be non-toxic or less toxic to itself or to decomposition products, to simplify the synthesis and to lower the cost of the raw materials.

MOCVD용 바륨과 스트론튬 산화물의 선구 물질로는 베타디케톤과 알코올 리간드를 가진 화합물이 주로 보고되고 있다. 높은 휘발성을 가지며 열, 수분 및 산소에 안정한 선구 물질을 만들기 위해서는 분자 간의 정전기적 결합력을 상쇄시키는 것이 중요하다. 한편 바륨과 스트론튬 금속의 특성을 살펴보면 금속의 원자 반경이 크기 때문에 리간드와 착물을 형성하는 데 있어서 작은 크기의 금속에 비해 배위적으로 불포화되어 소중합체 또는 고중합체의 화합물이 형성되며 이들은 유기 용매에 잘 녹지 않으며 비휘발성을 띤다. 금속 크기에 대한 전하의 비율이 작아 더욱더 이온화되어 루이스 염기에 대한 약한 첨가 생성물을 형성하고 따라서 반응 속도에서 치환이 쉽거나 해리될 가능성이 크다.As precursors of barium and strontium oxide for MOCVD, compounds having betadiketone and alcohol ligand have been mainly reported. It is important to offset the electrostatic bonding between molecules to make precursors that have high volatility and are stable to heat, moisture and oxygen. On the other hand, the properties of barium and strontium metals indicate that due to the large atomic radius of the metals, they are coordinatively unsaturated in the formation of ligands and complexes of small-size metals to form complexes of oligomers or high-polymers, which are well known in organic solvents. It does not melt and is nonvolatile. The ratio of charge to metal size is so small that it is even more ionized to form a weak addition product to the Lewis base, and therefore the substitution is likely to be easy or dissociated at the reaction rate.

기존에 분자간 상호 작용을 줄이기 위해 단위체를 만들기 위해 시도된 예로 문헌상에 다음과 같은 분자 설계가 제안되었다. 첫째로 분자 내에 루이스 염기를 첨가하는 방법이다. 영국의 임페리얼 대학의 드레이크(Drake)와 웨일즈 대학의 허스트하우스(Hursthouse)는 전자 주개 원자를 갖는 중성의 리간드로, 폴리글라임 형태로 바륨의 베타디케톤산염인 [M(thd)2·L] (M = 바륨 또는 스트론튬; L = 트리글라임; thd = tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate)과 같은 단위체의 원료 물질을 합성하였고 [S. R. Drake, S. A. S. Miller, M. B. Hursthouse, and K. M. A. Malik, Polyhedron 12, 1621 (1993)], 뉴멕시코 대학의 햄프덴-스미쓰(Hampden-Smith)는 베타케톤산염에 크라운에테르를 가하여 형성된 단위체의 첨가 생성물 즉, [Ba(thd)2·L] (L = 트리글라임 또는 크라운에테르)을 합성하였다 [W. A. Wojtczak, M. J. Hampden-Smith, and E. N. Duesler, Inorg. Chem. 37, 1781 (1998)]. 그러나 낮은 온도에서 루이스 염기가 휘발하거나 증기상으로 운반하는 도중에 회합하여 소핵 중합체를 형성하는 단점이 있다. 또한, 플루오르로 치환된 베타디케톤을 이용한 [Ba(hfac)2·N] (N = 트리글라임 또는 테트라글라임)이 티머(Timmer)에 의해 보고되었으며 [K. Timmer, K. I. A. Spee, A. Mackor, and H. A. Meinema, Inorg. Chim. Acta 190, 109 (1991)], [Ba(hfac)2·RO(CH2CH2O)nR'] (R = 수소 또는 알킬; R' = 수소 또는 알킬)이 노쓰웨스턴 대학의 막스(Marks)에 의해 보고되었다 [J. A. Belot, D. A. Neumayer, C. J. Reedy, D. B. Studebaker, B. J. Hinds, C. L. Stern, and T. J. Marks, Chem. Mater. 9, 1638 (1997)]. 그러나 이들은 높은 휘발성을 나타내는 반면에 박막 표면에 플루오르를 침착시키는 문제를 가진다.The following molecular design has been proposed in the literature as an example of attempting to make monomers to reduce intermolecular interactions. First is the method of adding Lewis base in the molecule. Drake at Imperial University in England and Hursthouse at University of Wales are neutral ligands with electron donor atoms, which are betadiketonates of barium in the form of polyglyme [M (thd) 2 · L] Raw materials of monomers such as (M = barium or strontium; L = triglyme; thd = tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate) were synthesized [SR Drake, SAS Miller, MB] Hursthouse, and KMA Malik, Polyhedron 12 , 1621 (1993)], Hampden-Smith of the University of New Mexico is an addition product of monomers formed by the addition of crown ethers to beta ketone salts, namely [Ba (thd) 2. L] (L = triglyme or crownether) was synthesized [WA Wojtczak, MJ Hampden-Smith, and EN Duesler, Inorg. Chem. 37 , 1781 (1998). However, there is a disadvantage in that the Lewis base is associated during volatilization or transport in vapor phase at low temperature to form a micronucleus polymer. In addition, [Ba (hfac) 2 .N] (N = triglyme or tetraglyme) using betadiketone substituted with fluorine has been reported by Timmer [K. Timmer, KIA Spee, A. Mackor, and HA Meinema, Inorg. Chim. Acta 190 , 109 (1991)], [Ba (hfac) 2 .RO (CH 2 CH 2 O) n R '] (R = hydrogen or alkyl; R' = hydrogen or alkyl) are Marks of Northwestern University. (J Belot, DA Neumayer, CJ Reedy, DB Studebaker, BJ Hinds, CL Stern, and TJ Marks, Chem.). Mater . 9, 1638 (1997). However, they exhibit high volatility while having the problem of depositing fluorine on the surface of the thin film.

둘째로, 분자 내의 리간드에 금속과 부가적으로 결합할 수 있는 산소와 질소와 같은 중성 주개 원자가 연결된 리간드의 착물을 합성하는 방법이다. 미국 조지아공대(Georgia Tech.)의 리스(Rees, Jr.)는 폴리에테르의 형태를 베타디케톤의 알킬 대신에 치환한 리간드를 갖는 바륨의 베타디케톤산염인 [Ba{tBuC(O)CHC(O)(CH2)3OMe}2]를 합성했는데 이는 최초의 단위체의 액체 선구 물질로 보고되었다 [W. S. Rees, Jr., C. R. Caballero, and W. Hesse, Angew. Chem. Int. Ed. Engl. 31, 735 (1992)]. 그러나 이 화합물은 낮은 휘발성을 보이고 박막이 형성되지 않는 문제점이 있다. 한편, 막스(Marks)는 베타케토엔아민의 질소 원자에 폴리에테르가 연결된 화합물인 [{Ba{CF3C(O)CHNH(R)CF3}2] {R = ((CH 2)2O}nR': n = 2 또는 3, R' = 메틸 또는 에틸)}를 개발했다 [D. L. Schulz, B. J. Hinds, C. L. Stern, and T. J. Marks, Inorg. Chem. 32, 249 (1993)]. 그러나 이 화합물도 8 배위수를 초과하지 않기 때문에 좋은 열적 안정성을 갖지 못했으며 또한 충분한 휘발성을 나타내지도 않았다.Second, a method of synthesizing a complex of ligands in which neutral donor atoms such as oxygen and nitrogen are additionally bound to a ligand in a molecule. Rees, Jr. of Georgia Tech, USA, is a beta diketonate of barium with a ligand in which polyether forms are substituted for betadiketone alkyl [Ba { t BuC (O) CHC (O) (CH 2 ) 3 OMe} 2 ] was reported as the liquid precursor of the first monomers [WS Rees, Jr., CR Caballero, and W. Hesse, Angew. Chem . Int. Ed. Engl. 31 , 735 (1992). However, this compound has a problem of showing low volatility and not forming a thin film. On the other hand, Marks is [{Ba {CF 3 C (O) CHNH (R) CF 3 } 2 ] {R = ((CH 2 ) 2 O) which is a compound in which a polyether is linked to the nitrogen atom of betaketoenamine. } n R ': n = 2 or 3, R' = methyl or ethyl)} [DL Schulz, BJ Hinds, CL Stern, and TJ Marks, Inorg. Chem . 32 , 249 (1993). However, this compound also did not have good thermal stability and did not show sufficient volatility since it did not exceed 8 coordination number.

한편, 아사히덴카(ADEKA), ATMI 및 Schumacher사에서 바륨과 스트론튬의 선구 물질을 판매하고 있는데 특히 일본의 아사히 덴카사에서는 베타디케톤의 알킬기 대신에 메톡시에톡시기가 연결된 바륨의 액체 선구 물질인 [Ba(methd)2](methd = tBuC(O)CHC(O)C(CH3)2O(CH2)2OCH3)를 합성하여 판매하고 있다. 바륨이나 스트론튬 선구 물질의 경우 비휘발성의 문제가 대두되고 있는데 이를 공정에서 해결하기 위한 방안으로 액체 운반 장치를 이용하여 선구 물질을 이송하려는 연구가 진행되고 있다. ATMI와 Schumacher 등의 회사에서는 간단한 공정을 위해서 삼성분계 (산소 제외)인 세 가지 원료 물질들을 함께 섞어 주입하는 혼합 원료가 사용되고 있다. 미국의 ATMI사의 바움(Baum) 등은 MRS 심포지움에서 액체 이송 장치에 M(thd)2·L (M = 바륨 또는 스트론튬; L = 테트라글라임 및 펜타메틸에틸렌디아민)과 Ti(thd)2(OR)2의 칵테일 원료를 만들어 판매하나 실제 박막 제작 과정에서 리간드에 따른 원료 물질들의 열특성이 달라 BST로 박막화되는 데 필요한 원료들의 연합 효율이 다름이 보고되고 있다 [G. Ghandari, T. E. Glassman, D. B. Studebaker, G. Stauf, and T. H. Baum, MRS Symp. Proc. 446, 327 (1997)].Meanwhile, Asahi Denka, ATMI and Schumacher sell barium and strontium precursors. Especially, Asahi Denka Corporation in Japan is a liquid precursor of barium, which is a methoxyethoxy group instead of an alkyl group of betadiketone. [Ba (methd) 2 ] (methd = t BuC (O) CHC (O) C (CH 3 ) 2 O (CH 2 ) 2 OCH 3 ) is synthesized and sold. In the case of barium or strontium precursors, a problem of non-volatility has emerged. As a way to solve this problem, researches are being conducted to transfer precursors using a liquid transport device. Companies such as ATMI and Schumacher are using a blended material that mixes and injects three raw materials-the ternary system (except oxygen)-for a simple process. In Baum (Baum) Corporation of America ATMI, such as a liquid transfer device in MRS Symposium M (thd) 2 · L ( M = barium or strontium; L = tetra-glyme, and pentamethyl-ethylenediamine) and Ti (thd) 2 (OR 2 ) Cocktail raw materials are made and sold, but due to the different thermal properties of raw materials according to ligands in the process of thin film manufacturing, it is reported that the combined efficiency of raw materials required for thinning to BST is different [G. Ghandari, TE Glassman, DB Studebaker, G. Stauf, and TH Baum, MRS Symp. Proc. 446 , 327 (1997).

티타늄 선구 물질로는 알킬산티타늄 (titanium alkoxide)이 가장 좋은 물질로 알려져 지금까지 많이 사용되고 있다. 그 중에서도 이소프로필산티타늄 [titanium isopropoxide, Ti(OiPr)4]과 같은 알콕사이드 화합물은 액체이고 높은 증기압을 가지며 박막 증착 온도에 덜 민감하고 증착되는 박막의 표면에 도드라지는 부분(hump)이나 흐릿한 부분(haziness)을 발생시키지 않아 낮은 증착 온도(400℃ 미만)에서 티타늄의 선구 물질로 사용되었다. 그러나 이 선구 물질은 공기와 수분에 대하여 매우 반응성이 높은 불포화된 Ti(IV) 중심을 가지고 있다. 또한 Ti-O 결합이 높은 온도에서 쉽게 분해되어 MOCVD 공정의 장점인 층 덮임성(step coverage)이 나빠지게 된다.Titanium precursor (titanium alkoxide) is known as the best material is used in many until now. Among them, alkoxide compounds such as titanium isopropoxide (Ti (O i Pr) 4 ) are liquid, have a high vapor pressure, are less sensitive to thin film deposition temperature, and have a bump or haze on the surface of the thin film to be deposited. It was used as a precursor of titanium at low deposition temperatures (less than 400 ° C.) without generating haziness. However, this precursor has an unsaturated Ti (IV) center that is very reactive to air and moisture. In addition, Ti-O bonds readily decompose at high temperatures, resulting in poor step coverage, which is an advantage of the MOCVD process.

이와 같은 문제를 해결하기 위해서 Ti(OiPr)2(thd)2와 같이 포화된 배위 상태를 갖는 변성된 알콕사이드(modified alkoxide)에 관한 연구가 이루어졌다. Ti(OiPr)2(thd)2는 높은 증기압과 함께 공기 중에서 안정하며 열적 안정성도 우수한 것으로 알려져 있다 [J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc. 146, 3783 (1999); J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett. 2, 507 (1999)].In order to solve this problem, a study has been conducted on modified alkoxides having a saturated coordination state such as Ti (O i Pr) 2 (thd) 2 . Ti (O i Pr) 2 (thd) 2 is known to be stable in air with high vapor pressure and excellent thermal stability [J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc. 146 , 3783 (1999); J.-H. Lee and S.-W. Rhee, Electrochem. Solid-State Lett. 2 , 507 (1999).

또한 최근에는 두 개 또는 그 이상의 주개(donor)를 갖는 기능성 주개 군 (donor group) (dimethylaminoethoxide, dmae; dimethylaminopropoxide, dmap 등)을 알콕사이드와 치환하는 방법도 시도되고 있다 [K. Szczegot, M. Nowakowska, Polimery (Warsaw) 22, 399 (1977)].Recently, a method of substituting an alkoxide for a functional donor group having two or more donors (dimethylaminoethoxide, dmae; dimethylaminopropoxide, dmap, etc.) has been attempted [K. Szczegot, M. Nowakowska, Polimery ( Warsaw ) 22 , 399 (1977).

4 배위의 Ti(OiPr)4에서 하나 또는 두개의 OiPr을 dmae로 대체한 Ti(OiPr)3(dmae)와 Ti(O1Pr)2(dmae)2가 합성되었으며, 이들은 알콕사이드보다 수분에 덜 민감하여 보관에 유리하며 이들로부터 좋은 막질의 TiO2 막이 액체 주입 화학 증착법 (liquid injection CVD)을 통해 얻어졌다고 보고되었다 [A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O'Brien and M. E. Pemble, J. Mater. Chem. 8, 1773 (1998)].Ti (O i Pr) 3 (dmae) and Ti (O 1 Pr) 2 (dmae) 2 were synthesized by replacing one or two O i Pr with dmae in 4 coordination Ti (O i Pr) 4 . It is reported to be less susceptible to moisture than alkoxides, which is favorable for storage and from which a good quality TiO 2 film was obtained by liquid injection CVD [AC Jones, TJ Leedham, PJ Wright, MJ Crosbie, KA Fleeting, DJ Otway, P. O'Brien and ME Pemble, J. Mater. Chem. 8 , 1773 (1998).

리간드 4 개가 모두 dmae로 이루어진 Ti(dmae)4는 Ti(OiPr)2(thd)2 에 비하여 증착 온도에 덜 민감하고 도드라지거나 흐릿한 부분도 생기지 않는 결과를 얻었다고 보고되어 있다 [J.-H. Lee, J. Y. Kim, J.-Y. Shim and S.-W. Rhee, J. Vac. Sci. Technol. A 17, 3033 (1999)].It is reported that Ti (dmae) 4, which is composed of all four ligands and is dmae, is less sensitive to deposition temperature and does not produce rugged or blurry parts than Ti (O i Pr) 2 (thd) 2 [J.- H. Lee, JY Kim, J.-Y. Shim and S.-W. Rhee, J. Vac. Sci. Technol. A 17 , 3033 (1999).

본 발명은 이상과 같은 연구의 일환으로, 수분에 덜 민감하고 보관상 유리하며 보다 양질의 산화막을 얻을 수 있는 바륨, 스트론튬 또는 티타늄 알콕사이드 화합물과 그 제조 방법을 제공하는 것을 목적으로 한다. As a part of the above research, it is an object of the present invention to provide a barium, strontium or titanium alkoxide compound which is less sensitive to moisture, is advantageous in storage, and obtains a higher quality oxide film and a method for producing the same.

본 발명은 상기 목적을 달성하기 위하여, 하기 화학식 1로 표시되는 금속 알콕사이드 화합물을 제공한다:The present invention provides a metal alkoxide compound represented by the following formula (1) in order to achieve the above object:

화학식 1Formula 1

상기 식 중, M은 바륨, 스트론튬 또는 티타늄이고, X1 및 X2는 각각 RO(CH2)nO-, (RO(CH2)n)2N-, RO(CH2) nNH-, R2N- 또는 RO- 이며, R은 C1-C4 알킬, Y는 수소 또는 C1-C4 알킬이며, l은 2 또는 4, m은 1 내지 3의 정수, n은 2 또는 3이다.Wherein M is barium, strontium or titanium, and X 1 and X 2 are RO (CH 2 ) n O—, (RO (CH 2 ) n ) 2 N—, RO (CH 2 ) n NH—, R 2 N- or RO-, R is C 1 -C 4 alkyl, Y is hydrogen or C 1 -C 4 alkyl, l is 2 or 4, m is an integer from 1 to 3, n is 2 or 3 .

또한, 본 발명은 바륨, 스트론튬 또는 티타늄 금속의 선구 물질과 하기 화학식 2의 알코올 리간드 화합물을 반응시키는 것을 포함하는 제1항의 금속 알콕사이드 화합물 제조 방법을 제공한다:The present invention also provides a method for preparing the metal alkoxide compound of claim 1, comprising reacting a precursor material of barium, strontium or titanium metal with an alcohol ligand compound of formula (2):

X1-(CH2)mCH(OH)(CH2)m-X2 X 1- (CH 2 ) m CH (OH) (CH 2 ) m -X 2

상기 식 중, X1 및 X2는 각각 RO(CH2)nO-, (RO(CH2) n)2N-, RO(CH2)nNH-, R2N- 또는 RO- 이며, R은 C1-C4 알킬, m은 1 내지 3의 정수, n은 2 또는 3이다.Wherein X 1 and X 2 are RO (CH 2 ) n O—, (RO (CH 2 ) n ) 2 N—, RO (CH 2 ) n NH—, R 2 N— or RO—, respectively. R is C 1 -C 4 alkyl, m is an integer from 1 to 3, n is 2 or 3.

본 발명의 바람직한 실시예에 의하면, 상기 화학식 1에 있어서 X1 및 X2가 각각 RO(CH2)nO-, (RO(CH2)n)2N- 또는 RO(CH2 )nNH-인 경우 R은 메틸 또는 에틸인 것이 바람직하다.According to a preferred embodiment of the present invention, in Formula 1, X 1 and X 2 are each RO (CH 2 ) n O—, (RO (CH 2 ) n ) 2 N- or RO (CH 2 ) n NH— When R is methyl or ethyl.

본 발명의 바람직한 실시예에 의하면, 상기 화학식 1에서 X1 및 X2가 R2N- 또는 RO- 인 경우 R은 메틸, 에틸, 프로필, 이소프로필 또는 부틸인 것이 바람직하다.According to a preferred embodiment of the present invention, when X 1 and X 2 in the formula (1) is R 2 N- or RO- It is preferable that R is methyl, ethyl, propyl, isopropyl or butyl.

본 발명에 의한 금속 알콕사이드 화합물 제조에 사용되는 알코올 리간드는 상기 화학식 2로 표시되는 바와 같이, 디(알콕시알킬)알코올, 디(알콕시알킬아미노)알코올, (알콕시알킬아미노)알코올, (알콕시알킬)알코올, (알콕시)알코올, 디(알콕시)알코올을 포함한다. 이들 알코올 리간드는 에테르의 산소 원자 또는 아민의 질소 원자 위의 비공유 전자쌍을 갖고 있어서, 바륨, 스트론튬 또는 티타늄 금속이 알코올 리간드와 각각 2개, 4개의 이온 결합 외에도, 이들 비공유 전자쌍에 의해 결합될 수 있기 때문에 수분에 덜 민감하고 보관상 유리하다.Alcohol ligands used in the preparation of metal alkoxide compounds according to the present invention may be represented by the above formula (2): di (alkoxyalkyl) alcohol, di (alkoxyalkylamino) alcohol, (alkoxyalkylamino) alcohol, (alkoxyalkyl) alcohol , (Alkoxy) alcohol and di (alkoxy) alcohol. These alcohol ligands have unpaired electron pairs on the oxygen atom of the ether or on the nitrogen atom of the amine, so that barium, strontium or titanium metal can be bound by these non-covalent electron pairs, in addition to two or four ionic bonds, respectively, with the alcohol ligand. It is less sensitive to moisture and is advantageous for storage.

따라서, 본 발명에 의한 금속 알콕사이드 화합물은 BST 박막을 비롯한 티타늄 산화물을 포함하는 산화물 박막 제조용 선구 물질로서 유용하게 사용될 수 있으며, 특히 반도체 제조 공정에 널리 사용되고 있는 MOCVD 공정에도 바람직하게 적용될 수 있다. Therefore, the metal alkoxide compound according to the present invention can be usefully used as a precursor for producing an oxide thin film including titanium oxide including BST thin film, and can be preferably applied to MOCVD process which is widely used in semiconductor manufacturing process.

본 발명에서 특히 중요한 점은 세 가지 금속에 대하여 공통된 동일한 리간드를 사용할 수 있기 때문에 이들의 착화합물들을 한 용매에 한꺼번에 녹일 수 있고 화합물들이 서로 잘 섞여 이들을 DLI (direct liquid injection) MOCVD의 칵테일(cocktail) 원료로 유용하게 쓸 수 있다는 것이다.Particularly important in the present invention is that since the same ligands common to the three metals can be used, these complex compounds can be dissolved in one solvent and the compounds are mixed well with each other to produce them as a cocktail raw material of direct liquid injection (DLI) MOCVD. It can be useful as.

티타늄 선구 물질은 비스테트라하이드로퓨란테트라클로로티타늄(IV)을 함유하는 테트라하이드로퓨란 용액에 트리에틸아민과 알코올 리간드를 함유한 테트라하이드로퓨란 용액을 천천히 첨가하면 용액에 흰색 침전물이 생기면서 하기 반응식 1에 의해 반응이 진행된다. 12 시간 동안 실온에서 반응을 진행시킨 뒤에 감압 하에서 여과하고 여과액으로부터 용매를 감압 제거하면 갈색의 점성 있는 액체를 얻을 수 있다. Titanium precursors were added to the tetrahydrofuran solution containing bistetrahydrofurantetrachlorotitanium (IV) and slowly added to the tetrahydrofuran solution containing triethylamine and alcohol ligand to form a white precipitate in the solution. Reaction proceeds. The reaction was carried out at room temperature for 12 hours, then filtered under reduced pressure, and the solvent was removed under reduced pressure from a filtrate to obtain a brown viscous liquid.

TiCl4·2THF + 4HOR' + 4Et3N →Ti(OR')4 + 4Et3N·HClTiCl 4 2THF + 4HOR '+ 4Et 3 N → Ti (OR') 4 + 4Et 3 NHCl

상기 식에서, HOR'은 화학식 2의 알코올 리간드이다. Wherein HOR 'is an alcohol ligand of formula (2).

한편, 바륨과 스트론튬 선구 물질을 합성하기 위해서는 바륨 또는 스트론튬 금속 조각을 포함하는 테트라하이드로퓨란 용매가 담겨 있는 플라스크를 -40 ℃로 냉각시킨 후 암모니아 기체를 농축시키고 온도를 서서히 올리면 회색의 금속이 용액 표면에 형성된다. 이 플라스크에 알코올 리간드를 첨가하면 금속이 사라지면서 갈색의 용액이 형성되며 하기 반응식 2에 의해 반응이 진행된다. 6 시간 동안 반응을 진행시킨 뒤에 감압 하에서 여과하고 여과액으로부터 용매를 감압 제거하면 갈색의 점성 있는 액체를 얻을 수 있다.Meanwhile, in order to synthesize barium and strontium precursors, the flask containing tetrahydrofuran solvent containing barium or strontium metal fragments was cooled to -40 ° C, concentrated with ammonia gas, and gradually raised in temperature. Is formed. When the alcohol ligand is added to the flask, the metal disappears to form a brown solution, and the reaction proceeds according to Scheme 2 below. After the reaction proceeds for 6 hours, the mixture is filtered under reduced pressure and the solvent is removed under reduced pressure from the filtrate to obtain a brown viscous liquid.

상기 식에서, HOR'은 화학식 2의 알코올 리간드이다. Wherein HOR 'is an alcohol ligand of formula (2).

이하에서는 본 발명의 실시예를 참조하여 보다 구체적으로 설명하고자 하나 이는 예시에 불과한 것으로서 본 발명이 이들로 한정되는 것은 아니다.Hereinafter, one example will be described in more detail with reference to the embodiments of the present invention, which is merely an example, and the present invention is not limited thereto.

모든 실험은 장갑 상자 또는 슐렝크 관 (Schlenk line)을 이용하여 비활성 질소 분위기에서 다음과 같이 수행되었다. 반응 생성물은 수소 원자 핵자기 공명법 (1H nuclear magnetic resonance, NMR), 탄소 원자 핵자기 공명법 (13C NMR), 푸리에 변환 적외선 분광법 (Fourier transform infrared spectroscopy, FTIR), 원소 분석법 (elemental analysis, EA), 질량 분석법 (mass spectrometry, MS: chemical ionization, CI), 열무게 분석법/시차 열분석법 (thermogravimetric analysis/differential thermal analysis, TGA/DTA)을 이용하여 확인하였다.All experiments were performed in an inert nitrogen atmosphere using a glove box or Schlenk line as follows. Reaction products include 1 H nuclear magnetic resonance (NMR), carbon atom nuclear magnetic resonance ( 13 C NMR), Fourier transform infrared spectroscopy (FTIR), elemental analysis, EA), mass spectrometry (MS), chemical ionization (CI), thermogravimetric analysis / differential thermal analysis (TGA / DTA).

실시예 1: 테트라키스{1,3-디(2-메톡시에톡시)-2-프로폭시}티타늄(IV)의 합성Example 1 Synthesis of Tetrakis {1,3-di (2-methoxyethoxy) -2-propoxy} titanium (IV)

불꽃 건조된 125 mL 슐렝크 플라스크에 1.97 g (5.90 mmol, 1.00 eq)의 비스테트라하이드로퓨란테트라클로로티타늄(IV)을 넣고 약 70 mL의 테트라하이드로퓨란을 가하였다. 이 용액에 4.92 g (23.61 mmol, 4.00 eq)의 1,3-디(2-메톡시에톡시)-2-프로판올과 2.99 g (29.51 mmol, 5.00 eq)의 트리에틸아민을 10 mL의 테트라하이드로퓨란에 녹인 용액을 천천히 첨가하였더니 용액이 뿌옇게 되었다. 이를 12 시간 동안 실온에서 교반한 후 감압 하에서 여과함으로써 용매를 모두 제거하여 갈색의 점성 있는 액체 화합물을 얻었다 [수율: 4.96 g (96.0%)].1.97 g (5.90 mmol, 1.00 eq) of bistetrahydrofurantetrachlorotitanium (IV) was added to a flame-dried 125 mL Schlenk flask, and about 70 mL of tetrahydrofuran was added thereto. To this solution was added 4.92 g (23.61 mmol, 4.00 eq) of 1,3-di (2-methoxyethoxy) -2-propanol and 2.99 g (29.51 mmol, 5.00 eq) of triethylamine in 10 mL of tetrahydro The solution dissolved in furan was slowly added and the solution became cloudy. After stirring for 12 hours at room temperature, the solvent was removed by filtration under reduced pressure to give a brown viscous liquid compound [yield: 4.96 g (96.0%)].

1H NMR (benzene-d6, 300.13 MHz): δ 4.97 (m, 2H, -CH-), 3.80 (m, 8H, -CH 2-), 3.72 (m, 8H, -CH 2-), 3.41 (t, 8H, -CH 2-), 3.13 (s, 12H, -CH 3) 1 H NMR (benzene-d 6 , 300.13 MHz): δ 4.97 (m, 2H, -C H- ), 3.80 (m, 8H, -C H 2- ), 3.72 (m, 8H, -C H 2- ), 3.41 (t, 8H, -C H 2- ), 3.13 (s, 12H, -C H 3 )

13C NMR (benzene-d6, 300.13 MHz): δ 80.4 (s, -CH-), 74.4 (s, - CH2-), 72.3 (s, -CH2-), 71.3 (s, -CH2-), 58.6 (s, -CH3) 13 C NMR (benzene-d 6 , 300.13 MHz): δ 80.4 (s, - C H -), 74.4 (s, - C H 2 -), 72.3 (s, - C H 2 -), 71.3 (s, -C H 2- ), 58.6 (s, -C H 3 )

원소 분석 C36H76O20Ti {Calcd. (found)}: C, 49.3 (48.9); H, 8.7 (8.5)Elemental Analysis C 36 H 76 O 20 Ti {Calcd. (found)}: C, 49.3 (48.9); H, 8.7 (8.5)

질량 분석 [CI, m/e+; (fragment); M = Ti(OR)4, L= OR]: 875 (M), 669 (M-L)Mass spectrometry [CI, m / e +; fragment; M = Ti (OR) 4 , L = OR]: 875 (M), 669 (ML)

FTIR 스펙트럼 (KBr window): 리간드 자체에서 나타나는 3437 cm-1의 OH 봉우리가 사라졌으며 653 cm-1에서 Ti-O의 진동에 의한 봉우리가 관찰되었다 (도 1 참조).FTIR spectrum (KBr window): 3437 cm −1 OH peaks disappeared from the ligand itself, and peaks due to oscillation of Ti-O were observed at 653 cm −1 (see FIG. 1).

TGA/DTA (5 oC/min to 800 oC, 30 cc/min Ar purge): 200 ℃에서부터 급격한 질량 감소가 일어나며 300 ℃에서는 90% 이상의 질량 감소가 관찰되었다. 도중에 별다른 분해 반응이 없으며 하나의 단계만이 보였다. 1% 이하의 잔류 물질이 남았으며, 325 ℃에서 물질이 분해되는 발열 봉우리가 나타났다 (도 2 참조).TGA / DTA (5 o C / min to 800 o C, 30 cc / min Ar purge): A rapid mass loss occurs at 200 ° C and a mass loss of more than 90% at 300 ° C. There was no decomposition reaction in the way and only one step was seen. Less than 1% of residual material remained, with exothermic peaks at which the material degraded at 325 ° C. (see FIG. 2).

실시예 2: 비스{1,3-디(2-메톡시에톡시)-2-프로폭시}바륨(II)의 합성Example 2: Synthesis of Bis {1,3-di (2-methoxyethoxy) -2-propoxy} barium (II)

불꽃 건조된 250 mL 슐렝크 플라스크에 4.00 g (29.1 mmol, 1.00 eq)의 바륨 금속과 12.1 g (58.2 mmol, 2.00 eq)의 1,3-디(2-메톡시에톡시)-2-프로판올을 넣고 약 100 mL의 테트라하이드로퓨란을 가하였다. 이 플라스크를 -40 ℃ (액체 질소/메탄올)로 냉각시키고 암모니아 가스를 캐뉼라(cannula)를 통해 넣어 녹여 전체 용액의 부피가 1.2배가 되도록 하였다. 온도를 서서히 실온으로 올리면 금속 표면에 갈색의 고체가 형성되며 동시에 용액 속으로 녹아 들어가며 반응이 진행되었다. 다시 -40 ℃에서 암모니아 가스를 넣어 녹여 전체 용액의 부피가 1.2배가 되도록 하고 실온으로 온도를 올리는 조작을 2번 반복하여 반응을 완결시켰다. 감압 하에서 여과하고 약 15 mL 테트로하이드로퓨란으로 3 번 추출하였다. 여과액의 용매를 모두 제거하여 갈색의 점성 있는 액체 화합물을 얻었다 [수율: 15.56 g (97.0%)].In a flame-dried 250 mL Schlenk flask, 4.00 g (29.1 mmol, 1.00 eq) of barium metal and 12.1 g (58.2 mmol, 2.00 eq) of 1,3-di (2-methoxyethoxy) -2-propanol About 100 mL of tetrahydrofuran was added. The flask was cooled to −40 ° C. (liquid nitrogen / methanol) and ammonia gas was dissolved through a cannula to bring the volume of the total solution to 1.2 times. When the temperature was gradually raised to room temperature, a brown solid formed on the metal surface, and the reaction proceeded while melting into the solution. Again, the reaction was completed by adding ammonia gas at -40 ° C. to dissolve it so that the total solution volume was 1.2 times and raising the temperature to room temperature twice. Filter under reduced pressure and extract three times with about 15 mL tetrahydrofuran. The solvent in the filtrate was removed to give a brown viscous liquid compound [yield: 15.56 g (97.0%)].

1H NMR (benzene-d6, 300.13 MHz): δ 4.35 (br s, 2H, -CH-), 3.73 (br s, 8H, -CH(O)CH 2 -), 3.66 (br s, 8H, -OCH 2 CH2O-), 3.43 (br s, 8H, -OCH2CH 2 O-), 3.23(br s, 12H, -OCH 3 ) 1 H NMR (benzene-d 6 , 300.13 MHz): δ 4.35 (br s, 2H, -C H- ), 3.73 (br s, 8H, -CH (O) C H 2- ), 3.66 (br s, 8H, -OC H 2 CH 2 O-), 3.43 (br s, 8H, -OCH 2 C H 2 O-), 3.23 (br s, 12H, -OC H 3 )

실시예 3: 비스{1,3-디(2-메톡시에톡시)-2-프로폭시}스트론튬(II)의 합성Example 3: Synthesis of Bis {1,3-di (2-methoxyethoxy) -2-propoxy} strontium (II)

불꽃 건조된 250 mL 슐렝크 플라스크에 1.97 g (22.5 mmol, 1.00 eq)의 스트론튬 금속과 9.36 g (44.9 mmol, 2.00 eq)의 1,3-디(2-메톡시에톡시)-2-프로판올을 넣고 약 100 mL의 테트라하이드로퓨란을 가하였다. 이 플라스크를 -40 ℃ (액체 질소/메탄올)로 냉각시키고 암모니아 가스를 캐뉼라(cannula)를 통해 넣어 녹여 전체 용액의 부피가 1.2배가 되도록 하였다. 온도를 서서히 실온으로 올리면 금속 표면에 갈색의 고체가 형성되며 동시에 용액 속으로 녹아 들어가며 반응이 진행되었다. 다시 -40 ℃에서 암모니아 가스를 넣어 녹여 전체 용액의 부피가 1.2배가 되도록 하고 실온으로 온도를 올리는 조작을 2 번 반복하여 반응을 완결시킨다. 감압 하에서 여과하고 약 15 mL 테트로하이드로퓨란으로 3번 추출하였다. 여과액의 용매를 모두 제거하여 갈색의 점성 있는 액체 화합물을 얻었다 [수율: 10.46 g (92.7%)].In a flame-dried 250 mL Schlenk flask, 1.97 g (22.5 mmol, 1.00 eq) of strontium metal and 9.36 g (44.9 mmol, 2.00 eq) of 1,3-di (2-methoxyethoxy) -2-propanol About 100 mL of tetrahydrofuran was added. The flask was cooled to −40 ° C. (liquid nitrogen / methanol) and ammonia gas was dissolved through a cannula to bring the volume of the total solution to 1.2 times. When the temperature was gradually raised to room temperature, a brown solid formed on the metal surface, and the reaction proceeded while melting into the solution. Again, add ammonia gas at -40 ° C to dissolve the solution so that the volume of the total solution is 1.2 times and raise the temperature to room temperature twice. Filter under reduced pressure and extract three times with about 15 mL tetrahydrofuran. The solvent in the filtrate was removed to give a brown viscous liquid compound [yield: 10.46 g (92.7%)].

1H NMR (benzene-d6, 300.13 MHz): δ 4.34 (br s, 2H, -CH-), 3.73 (br s, 8H, -CH(O)CH 2 )-), 3.68 (br s, 8H, -OCH 2 CH2O-), 3.43 (br s, 8H, -OCH2CH 2 O-),3.24 (br s, 12H, -OCH 3 ) 1 H NMR (benzene-d 6 , 300.13 MHz): δ 4.34 (br s, 2H, -C H- ), 3.73 (br s, 8H, -CH (O) C H 2 )-), 3.68 (br s , 8H, -OC H 2 CH 2 O-), 3.43 (br s, 8H, -OCH 2 C H 2 O-), 3.24 (br s, 12H, -OC H 3 )

실시예 4: 테트라키스{1,3-디(3-메톡시프로필)아미노)-2-프로폭시)}티타늄(IV)의 합성Example 4 Synthesis of Tetrakis {1,3-di (3-methoxypropyl) amino) -2-propoxy)} titanium (IV)

불꽃 건조된 125 mL 슐렝크 플라스크에 2.00 g (5.99 mmol, 1.00 eq)의 비스테트라하이드로퓨란테트라클로로티타늄(IV)을 넣고 약 80 mL 테트라하이드로퓨란을 가하였다. 이 용액에 5.60 g (23.96 mmol, 2.00 eq)의 1,3-디(3-메톡시프로필아미노)-2-프로판올과 3.03 g (29.95 mmol, 5.00 eq)의 트리에틸아민을 10 mL의 테트라하이드로퓨란에 녹인 용액을 천천히 첨가하였더니 용액이 뿌옇게 되었다. 이를 12 시간 동안 실온에서 교반한 후 감압 하에서 여과함으로써 용매를 모두 제거하여 갈색의 점성 있는 액체 화합물을 얻었다. [수율: 5.57 g (95.0%)].2.00 g (5.99 mmol, 1.00 eq) of bistetrahydrofurantetrachlorotitanium (IV) was added to a flame dried 125 mL Schlenk flask, and about 80 mL tetrahydrofuran was added thereto. To this solution was added 5.60 g (23.96 mmol, 2.00 eq) of 1,3-di (3-methoxypropylamino) -2-propanol and 3.03 g (29.95 mmol, 5.00 eq) of triethylamine in 10 mL of tetrahydro The solution dissolved in furan was slowly added and the solution became cloudy. After stirring for 12 hours at room temperature, the solvent was removed by filtration under reduced pressure to give a brown viscous liquid compound. [Yield 5.57 g (95.0%)].

1H NMR (benzenez-d6, 300.13 MHz): δ 3.96 (br s, 4H, -CH-), 3.33 (br s, 16H, CH3OCH 2 -), 3.16 (br s, 24H, -OCH 3 ), 2.71 (br s, 32H, -CH 2 NCH 2 -), 1.79 (br s, 16H, -CH2CH 2 CH2-) 1 H NMR (benzenez-d 6 , 300.13 MHz): δ 3.96 (br s, 4H, -C H- ), 3.33 (br s, 16H, CH 3 OC H 2- ), 3.16 (br s, 24H,- OC H 3 ), 2.71 (br s, 32H, -C H 2 NC H 2- ), 1.79 (br s, 16H, -CH 2 C H 2 CH 2- )

원소 분석 C44H100N8O12Ti {Calcd.(found)}: C, 53.9 (53.2); H, 10.2 (9.9); N, 11.4 (11.0)Elemental Analysis C 44 H 100 N 8 O 12 Ti {Calcd. (Found)}: C, 53.9 (53.2); H, 10.2 (9.9); N, 11.4 (11.0)

이상에서 살펴본 바와 같이, 본 발명에 의한 금속 알콕사이드 화합물은 수분에 덜 민감하고 보관상 유리하며 보다 양질의 산화막을 얻을 수 있어야 하는 MOCVD용 선구 물질로서 손색이 없다. 또한 동일한 알콕사이드 리간드를 써서 티타늄, 바륨 및 스트론튬의 선구 물질이 합성되기 때문에 이 화합물들은 BST 박막을 비롯한 티타늄 산화물을 포함하는 산화물 박막 제조용 선구 물질로서 유용하게 사용될 수 있다. 특히 이 선구 물질들은 THF 등 일반 용매에 대해 큰 용해도를 가지므로 용액상에서 박막을 제조하는 방법인 금속 유기물 침착법 (metal organic deposition: MOD)의 원료로 아주 유용할 것으로 기대된다.As described above, the metal alkoxide compound according to the present invention is less susceptible to moisture, is advantageous in storage, and is a precursor material for MOCVD which should be able to obtain a better oxide film. In addition, since the precursors of titanium, barium and strontium are synthesized using the same alkoxide ligand, these compounds may be usefully used as precursors for producing oxide thin films including titanium oxide including BST thin films. In particular, since these precursors have great solubility in general solvents such as THF, they are expected to be very useful as raw materials for metal organic deposition (MOD), a method of manufacturing thin films in solution.

도 1은 실시예 1에서 제조한 티타늄 알콕사이드 화합물의 푸리에 변환 적외선 분광 (FTIR) 분석 결과이다.1 is a result of Fourier transform infrared spectroscopy (FTIR) analysis of the titanium alkoxide compound prepared in Example 1. FIG.

도 2는 실시예 1에서 제조한 티타늄 알콕사이드 화합물에 대한 열중량 분석 (TGA) 및 시차 열분석 (DTA) 결과를 나타내는 그래프이다.Figure 2 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) for the titanium alkoxide compound prepared in Example 1.

Claims (9)

하기 화학식 1로 표시되는 금속 알콕사이드 화합물: A metal alkoxide compound represented by Formula 1 below: 화학식 1Formula 1 상기 식 중, M은 바륨, 스트론튬 또는 티타늄이며 X1 및 X2는 각각 RO(CH2) nO-, (RO(CH2)n)2N-, RO(CH2)nNH-, R2N- 또는 RO- 이며, R은 C1-C4 알킬, Y는 수소 또는 C1-C4 알킬이며, l은 2 또는 4, m은 1 내지 3의 정수, n은 2 또는 3이다.Wherein M is barium, strontium or titanium and X 1 and X 2 are RO (CH 2 ) n O-, (RO (CH 2 ) n ) 2 N-, RO (CH 2 ) n NH-, R 2 N- or RO-, R is C 1 -C 4 alkyl, Y is hydrogen or C 1 -C 4 alkyl, l is 2 or 4, m is an integer of 1 to 3, n is 2 or 3. 제1항에 있어서, The method of claim 1, X1 및 X2가 각각 RO(CH2)nO-, (RO(CH2)n) 2N- 또는 RO(CH2)nNH-인 경우 R은 메틸 또는 에틸인 것을 특징으로 하는 금속 알콕사이드 화합물.When X 1 and X 2 are each RO (CH 2 ) n O—, (RO (CH 2 ) n ) 2 N— or RO (CH 2 ) n NH—, the metal alkoxide characterized in that R is methyl or ethyl compound. 제1항에 있어서, The method of claim 1, X1 및 X2가 R2N- 또는 RO- 인 경우 R은 메틸, 에틸, 프로필, 이소프로필 또는 부틸 인 것을 특징으로 하는 금속 알콕사이드 화합물.R is methyl, ethyl, propyl, isopropyl or butyl when X 1 and X 2 are R 2 N- or RO-. 제1항에 있어서, The method of claim 1, 바륨, 스트론튬 또는 티타늄 금속이 알코올 리간드와 각각 2개 또는 4개의 이온 결합 외에도, 에테르의 산소 원자 또는 아민의 질소 원자 위의 비공유 전자쌍에 의한 부속 배위 자리와 중심 금속의 결합을 포함하는 것을 특징으로 하는 금속 알콕사이드 화합물.Barium, strontium or titanium metals, in addition to two or four ionic bonds, respectively, with the alcohol ligand, comprise a bond of the central metal with an accessory coordination site by a lone pair of electrons on the oxygen atom of the ether or on the nitrogen atom of the amine. Metal alkoxide compounds. 바륨, 스트론튬 또는 티타늄 금속 선구 물질과 하기 화학식 2의 알코올 리간드 화합물을 반응시키는 것을 포함하는 제1항의 금속 알콕사이드 화합물 제조 방법:A method of preparing the metal alkoxide compound of claim 1 comprising reacting a barium, strontium or titanium metal precursor with an alcohol ligand compound of formula: 화학식 2Formula 2 X1-(CH2)mCH(OH)(CH2)m-X2 X 1- (CH 2 ) m CH (OH) (CH 2 ) m -X 2 상기 식 중, X1 및 X2는 각각 RO(CH2)nO-, (RO(CH2) n)2N-, RO(CH2)nNH-, R2N- 또는 RO- 이며, R은 C1-C4 알킬, m은 1 내지 3의 정수, n은 2 또는 3이다.Wherein X 1 and X 2 are RO (CH 2 ) n O—, (RO (CH 2 ) n ) 2 N—, RO (CH 2 ) n NH—, R 2 N— or RO—, respectively. R is C 1 -C 4 alkyl, m is an integer from 1 to 3, n is 2 or 3. 제5항에 있어서, The method of claim 5, 티타늄 금속 선구 물질이 테트라클로로티타늄(IV)인 것을 특징으로 하는 제조 방법.And wherein the titanium metal precursor is tetrachlorotitanium (IV). 제1항 내지 제4항 중 어느 한 항의 금속 알콕사이드 화합물을 선구 물질로 사용하여 산화물 박막을 성장시키는 방법.The method of growing an oxide thin film using the metal alkoxide compound of any one of Claims 1-4 as a precursor. 제7항에 있어서,  The method of claim 7, wherein 상기 산화물 박막은 금속 유기물 화학 증착 (MOCVD)에 의해 형성되는 것을 특징으로 하는 방법.And wherein said oxide thin film is formed by metal organic chemical vapor deposition (MOCVD). 제7항에 있어서, The method of claim 7, wherein 상기 산화물 박막이 티탄산바륨스트론튬 (BST) 박막 또는 티타늄 산화물 박막을 포함하는 것을 특징으로 하는 방법.Wherein said oxide thin film comprises a barium strontium titanate (BST) thin film or a titanium oxide thin film.
KR10-2002-0043453A 2002-07-24 2002-07-24 Metal alkoxide compounds and preparing method thereof KR100497314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0043453A KR100497314B1 (en) 2002-07-24 2002-07-24 Metal alkoxide compounds and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0043453A KR100497314B1 (en) 2002-07-24 2002-07-24 Metal alkoxide compounds and preparing method thereof

Publications (2)

Publication Number Publication Date
KR20040009488A KR20040009488A (en) 2004-01-31
KR100497314B1 true KR100497314B1 (en) 2005-06-23

Family

ID=37318401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0043453A KR100497314B1 (en) 2002-07-24 2002-07-24 Metal alkoxide compounds and preparing method thereof

Country Status (1)

Country Link
KR (1) KR100497314B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039442B1 (en) 2008-10-30 2011-06-08 한국화학연구원 Novel strontium amino-alkoxide complexes and process for preparing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321824A (en) * 1993-03-11 1994-11-22 Hoechst Ag Volatile metal alkoxide of bifunctional beta-ether alcohols, preparation thereof and use thereof
US5654456A (en) * 1991-12-13 1997-08-05 Symetrix Corporation Precursors and processes for making metal oxides
US6054600A (en) * 1999-05-07 2000-04-25 Raytheon Company Non-toxic solvent soluble group IV and V metal acid salt complexes using polyether acid anhydrides
KR20010080559A (en) * 1998-11-26 2001-08-22 추후제출 Complex compound of an element of sub-group iv
US6316651B1 (en) * 1999-05-07 2001-11-13 Raytheon Company Environmentally benign Group II and Group IV or V spin-on precursor materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654456A (en) * 1991-12-13 1997-08-05 Symetrix Corporation Precursors and processes for making metal oxides
JPH06321824A (en) * 1993-03-11 1994-11-22 Hoechst Ag Volatile metal alkoxide of bifunctional beta-ether alcohols, preparation thereof and use thereof
KR20010080559A (en) * 1998-11-26 2001-08-22 추후제출 Complex compound of an element of sub-group iv
US6054600A (en) * 1999-05-07 2000-04-25 Raytheon Company Non-toxic solvent soluble group IV and V metal acid salt complexes using polyether acid anhydrides
US6316651B1 (en) * 1999-05-07 2001-11-13 Raytheon Company Environmentally benign Group II and Group IV or V spin-on precursor materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039442B1 (en) 2008-10-30 2011-06-08 한국화학연구원 Novel strontium amino-alkoxide complexes and process for preparing thereof

Also Published As

Publication number Publication date
KR20040009488A (en) 2004-01-31

Similar Documents

Publication Publication Date Title
EP1698614B1 (en) Metal compound, material for forming thin film and method for preparing thin film
TWI481617B (en) Volatile group 2 metal precursors
KR101720371B1 (en) Method for producing indium chloride alkoxides
WO1996040690A1 (en) Metal complex source reagents for chemical vapor deposition
KR20090054922A (en) Metal complexes of tridentate beta-ketoiminates
TW201014925A (en) Titanium pyrrolyl-based organometallic precursors and use thereof for preparing dielectric thin films
JP2014224153A (en) Metal complexes for metal-containing film deposition
WO2000073314A1 (en) TETRAHYROFURAN-ADDUCTED GROUP II β-DIKETONATE COMPLEXES AS SOURCE REAGENTS FOR CHEMICAL VAPOR DEPOSITION
KR100807947B1 (en) Method for preparing Asymmetric betaketoiminate ligand compound
TWI801355B (en) Compound, raw material for forming thin film, raw material for forming thin film for use in atomic layer deposition method, and method for manufacturing thin film
KR20150116430A (en) Group 2 imidazolate formulations for direct liquid injection
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
JP2009542687A (en) Organometallic compounds containing sterically hindered amides
KR100497314B1 (en) Metal alkoxide compounds and preparing method thereof
JPH05132776A (en) Organometallic complex for chemical vapor deposition and solution of the complex
Vaartstra et al. Advances in Precursor Development for CVD of Bariumcontaining Materials
KR100464810B1 (en) Organic alkaline earth metal complex
KR20010078759A (en) Precursors for growth of heterometal-oxide films by MOCVD
Lee CHARACTERISTICS AND APPLICATIONS OF METAL COMPLEXES WITH ẞ-KETOIMINATE LIGANDS
KR100372844B1 (en) Barium or strontium-based complex
KR100514780B1 (en) Compound for semiconductor film and method of depositing film using the same
KR100508110B1 (en) Organometallic complex and the preparation thereof
Lim et al. A study of the development of CVD precursors III-synthesis and properties of new lead β-diketonate derivatives
Wilken et al. Targeting Manganese Amidinates and ß‐Ketoiminates Complexes as Precursors for Mn‐Based Thin Film Vapor Deposition
KR20240038627A (en) Precursor comprising for lanthanide containg thin film, deposition method of film and semiconductor device of the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee