KR100306155B1 - Method for coating substrate with superior magnetic shielding property - Google Patents

Method for coating substrate with superior magnetic shielding property Download PDF

Info

Publication number
KR100306155B1
KR100306155B1 KR1019960059241A KR19960059241A KR100306155B1 KR 100306155 B1 KR100306155 B1 KR 100306155B1 KR 1019960059241 A KR1019960059241 A KR 1019960059241A KR 19960059241 A KR19960059241 A KR 19960059241A KR 100306155 B1 KR100306155 B1 KR 100306155B1
Authority
KR
South Korea
Prior art keywords
substrate
spray coating
coating
spray gun
thermal
Prior art date
Application number
KR1019960059241A
Other languages
Korean (ko)
Other versions
KR19980040103A (en
Inventor
김찬욱
양충진
변갑식
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019960059241A priority Critical patent/KR100306155B1/en
Publication of KR19980040103A publication Critical patent/KR19980040103A/en
Application granted granted Critical
Publication of KR100306155B1 publication Critical patent/KR100306155B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: A method is provided to coat a substrate with superior magnetic shielding property using a high magnetic permeability Fe-6.5%Si material as a coating material as a method for giving magnetic shielding property to a material for shielding electromagnetic wave. CONSTITUTION: In a method for coating the surface of a substrate using a spray coating system in which the substrate(2) is perpendicularly mounted onto a holder(1) that is constructed so that it is rotated as being traversed, a spray coating gun(3) is oppositely installed with spaced apart from the substrate(2) in a certain distance, and a spray coating material is supplied between the substrate(2) and the spray coating gun(3), the method for coating a substrate with superior magnetic shielding property comprises the processes of: pretreating the surface of the substrate(2) by shot blasting; and spray coating Fe-6.5%Si powder having a size of 60 to 120 microns as a spray coating material(4) on the surface pretreated substrate, wherein the shot blasting is performed by projecting alumina powder under a pressure of 50 to 60 psi, and the spray coating is performed when a traverse rate and a rotation speed of the holder(1) are 3.0 to 3.5 cm/sec and 110 to 120 rpm respectively in the state that a distance between the spray coating gun(3) and a substrate(2) is 110 to 120 mm, and a pressure of a gas flowing inside the spray coating gun(3) is in the pressure range of 120 to 150 psi in the state that an output of the spray coating gun(3) is impressed in the range of 30 to 35 kw.

Description

자기 차폐성이 우수한 기판의 코팅방법Coating method of substrate with excellent magnetic shielding

본 발명은 전자기파를 차폐하기 위하여 재료에 자기 차폐성을 부여하는 방법에 관한 것으로서, 보다 상세하게는 고투자율 Fe-6.5%Si재료를 코팅재로 한 자기 차폐성이 우수한 기판의 코팅방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of imparting magnetic shielding to a material in order to shield electromagnetic waves, and more particularly to a method of coating a substrate having excellent magnetic shielding property using a high permeability Fe-6.5% Si material as a coating material.

최근, 공장자동화(FA) 및 사무자동화(OA)기기가 급속히 추진·보급됨에 따라 시스템의 핵심인 고정밀 전자기기의 신호체계에 트라블 혹은 오동작 등의 현상이 빈번히 발생하고 있으며, 이로 인하여 생산현장에서는 대형 안전사고를 유발하는 사례가 증가하고 있다. 이러한 사례는 제어기기 자체의 결함에 의한 경우 보다는 콘트롤 기기가 설치·유용되는 주변환경에 기인한 현상으로 밝혀지는 경우가 많다. 즉, 콘트롤기기 주변에 대전력을 사용하는 조업설비 등이 설치되는 경우 조업 설비로 부터 발생되는 강자장이 콘트롤 기기의 신호체계를 교란시키고, 이러한 현상이 콘트롤기기의 오동작을 유발하는 주원인이 되고 있다.In recent years, as FA and OA equipments are rapidly promoted and distributed, problems such as troubles or malfunctions occur frequently in the signal system of high-precision electronic devices, which are the core of the system. There are a growing number of cases that cause safety accidents. Such cases are often found to be due to the environment in which the control device is installed and used, rather than the defect of the controller itself. In other words, when an operation facility using a large power is installed around the control device, a strong magnetic field generated from the operation device disturbs the signal system of the control device, and this phenomenon is a main cause of malfunction of the control device.

또한, 이와 더불어 최근에는 자기장이 인체에 미치는 유해한 영향에 대한 연구사례가 의공학계에서도 빈번히 발표되고 있다. 이에 대한 대책으로서 자기장 차폐재료 및 자기장 발생저감/차폐기술 등에 대한 연구(자기장 차폐물질개발, 산업과학기술연구소 연구보고서, 1995; 최신 자기해석·차폐설계와 자성응용기술, (주)종합기술센타, 1986)가 활발히 진행되고 있는 상황이다.In addition, recent studies on the harmful effects of magnetic fields on the human body have been frequently published in the medical engineering community. As a countermeasure, research on magnetic shielding materials and magnetic field reduction / shielding technologies (magnetic shielding materials development, research report of the Institute of Industrial Science and Technology, 1995; latest magnetic analysis and shielding design and magnetic application technology, Comprehensive Technology Center) 1986) is actively progressing.

종래, 차폐재료로 주로 이용되던 Fe-6.5%Si 재료는 차폐성능의 척도인 투자율이 3%Si강판 보다 약 7배의 고투자율특성을 나타내는 대표적인 차폐재료이다. 그러나, Si함량이 많아지면 가공성이 열화하므로 압연, 절단 등 기계가공이 불가능한 단점이 있어 차폐재로서의 사용이 용이하지 않은 단점이 있었다.Conventionally, Fe-6.5% Si, which is mainly used as a shielding material, is a representative shielding material having a magnetic permeability of about 7 times higher than that of a 3% Si steel sheet, which is a measure of shielding performance. However, when the Si content increases, the workability deteriorates, so there is a disadvantage in that machining is impossible, such as rolling and cutting, and thus it is not easy to use as a shielding material.

이러한 문제를 개선하기 위하여 NKK에서 최근 Fe-6.5%Si판재인 차폐재료를 개발하여 제안하였는데, 상기 재료는 어느 정도 기계가공이 가능하여 사용이 가능하나, 유가금속에 비견될 정도로 고가(0.1mmt, 9000원/Kg)이고 가공성면에 있어서도 여전히 일반강판에 비해 열악한 단점을 갖고 있다. 따라서, 생산단가가 저렴하여 경제적이고, 차폐성이 우수한 차폐재료 개발이 요망되고 있다.In order to improve this problem, NKK has recently developed and proposed a shielding material of Fe-6.5% Si plate, which can be used because it can be machined to a certain extent, but it is expensive (0.1mmt, 9000 won / Kg) and still has a disadvantage in terms of workability compared to the general steel sheet. Therefore, the development of a shielding material that is economical with excellent production cost and excellent shielding is desired.

이에, 본 발명은 상기 요구에 부응하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 제안된 것으로서, 본 발명은 가격이 저렴하고 가공성이 우수한 소재에 고투자율인 Fe-6.5%Si재료를 코팅함으로써 복잡한 형상으로 용이하게 제조할 수 있고 경제적인 전자기파 차폐성이 우수한 재료를 제공하고자 하는데, 그 목적이 있다.Accordingly, the present invention has been conducted based on the results of research and experiments to meet the above requirements, and the present invention provides a low permeability and excellent workability by coating a high permeability Fe-6.5% Si material. It is an object of the present invention to provide a material that can be easily manufactured in a complicated shape and has excellent electromagnetic shielding properties.

제1도는 본 발명의 자기장 차폐재료 코팅장치를 나타내는 개략도.1 is a schematic view showing a magnetic field shielding material coating apparatus of the present invention.

제2도는 본 발명에 의해 코팅된 차폐판재를 대면적화하기 위해 연결시키는 체결방법을 나타내는 일례도.2 is an exemplary view showing a fastening method for connecting the shielding plate coated by the present invention to a large area.

제3도는 기판표면상에 Fe-6.5%Si 분말을 용사코팅한 경우에 있어서 주파수에 따른 투자율의 변화를 나타내는 그래프.3 is a graph showing the change of permeability with frequency in the case of spray coating Fe-6.5% Si powder on the substrate surface.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 홀더 2 : 기판1 holder 2 substrate

3 : 용사기 건 4 : 용사재3: warrior spray gun 4: thermal spray

5 : 요부 6 : 철부5: main part 6: iron

상기 목적을 달성하기 위한 본 발명은, 좌우로 왕복운동을 하면서 회전하도록 구성된 홀더(1)에 기판(2)이 수직으로 장착되고, 상기 기판(2)과 일정한 간격을 두고 대향되어 용사기건(3)이 마련되고, 그리고 상기 기판(2)과 용사기건(3)사이에 용사재(4)가 공급되는 용사시스템을 이용하여 기판의 표면을 코팅하는 방법에 있어서, 먼저 상기 기판(2)을 숏블라스트에 의해 표면전처리한 다음, 용사재(4)로 120-160μm의 크기인 Fe-6.5%Si 분말을 공급하여 상기 표면전처리된 기판에 용사하는 자기차폐성이 우수한 기판의 코팅방법에 관한 것이다.The present invention for achieving the above object, the substrate 2 is vertically mounted to the holder (1) configured to rotate while reciprocating left and right, facing the substrate 2 at regular intervals and the thermal spray gun (3) In the method for coating the surface of the substrate using a thermal spraying system in which a thermal spray material 4 is supplied between the substrate 2 and the thermal spray gun 3, first, the substrate 2 is shot. Surface pretreatment by blasting, and then to the thermal spraying material (4) to supply a Fe-6.5% Si powder of 120-160μm size to a method of coating a substrate having excellent self-shielding properties to the surface pretreated substrate.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 용사코팅 방법중 프라즈마 용사방법을 이용하여 Fe-6.5%Si 분말을 기판표면에 용사하여 전자기파 차폐성을 부여함에 특징이 있는데, 이를 구현하기 위한 플라즈마 증착 장치의 일례가 제1도에 나타나 있다.The present invention is characterized by spraying the Fe-6.5% Si powder on the surface of the substrate by using a plasma spray method of the thermal spray coating method to give electromagnetic shielding, an example of a plasma deposition apparatus for implementing this is shown in FIG. .

제1도에 나타난 바와 같이, 플라즈마 용사장치는 좌우로 왕복운동을 하면서 회전하도록 구성된 홀더(1)에 기판(2)이 수직으로 장착되고, 상기 기판(2)과 일정 간격을 두고 대향되어 용사기건(3)이 마련되고, 그리고 상기 기판(2)과 용사기건(3)사이에 용사재(4)가 공급되어 기판(2)표면을 코팅하도록 구성된다.As shown in FIG. 1, the plasma thermal spraying device is vertically mounted on a holder 1 configured to rotate while reciprocating from side to side, and is opposed to the substrate 2 at a predetermined interval. (3) is provided, and a thermal spray material 4 is supplied between the substrate 2 and the thermal spray gun 3 to coat the surface of the substrate 2.

본 발명은 상기와 같은 장치를 이용하여 용사코팅하기 전에 먼저, 기판 표면에 요철을 형성하여 용사재와 기판의 밀착성을 향상시키기 위한 전처링공정인 숏블라스트(shot blasting)처리를 한다. 이때, 50∼60psi의 압력하에 240메쉬(mesh)의 알루미나 분말을 투사하는데, 압력조건이 50psi 이하의 경우에는 코팅층과 기판면간의 접착강도가 열악하여 코팅층이 박리되며 60psi 이상의 경우에는 기판표면의 거칠기가 심하여 이 또한 코팅층과 기판과의 접착강도를 열화시켜 코팅하기가 어려우므로 50-60psi의 압력으로 투사하는 것이 바람직하다. 즉, 숏블라스트시 분말의 투사압력이 어느 정도 되어야 기판표면의 거칠기를 확보할 수 있어 용사입자와 기판과의 기계적결합을 할 수 있다. 그런데, 투사압력이 너무 높아지면 표면거칠기가 너무 심해져서 기판표면과 코팅층간에 기공이 존재하게 되고, 또한, 밀착정도가 약해져서 산화막형성에 의한 부착력이 떨어져 박리현상도 생길 수 있다. 본원발명의 용사재인 Fe-Si분말은 기판과의 밀착시 산화에 의한 영향이 다른 용사재료에 비해 크므로 산화막형성에 의한 코팅층의 접착강도의 열화가능성도 고려하는 것이 바람직하다.In the present invention, before the thermal spray coating using the apparatus as described above, first, the shot blasting treatment, which is a pretreatment process for improving the adhesion between the thermal spray material and the substrate by forming irregularities on the substrate surface. At this time, 240 mesh of alumina powder is projected under a pressure of 50 to 60 psi. If the pressure condition is 50 psi or less, the adhesive layer between the coating layer and the substrate surface is poor and the coating layer is peeled off. It is preferable to project at a pressure of 50-60 psi since it is so severe that it is difficult to coat by deteriorating the adhesive strength between the coating layer and the substrate. In other words, the roughness of the surface of the substrate can be ensured only when the projection pressure of the powder is short during shot blasting, thereby enabling mechanical coupling between the thermal sprayed particles and the substrate. However, if the projection pressure is too high, the surface roughness is so severe that pores exist between the surface of the substrate and the coating layer, the adhesion is weakened, the adhesion by the oxide film is formed, the peeling phenomenon may occur. Since the Fe-Si powder, which is a thermal spraying material of the present invention, has a greater effect of oxidation on adhesion to a substrate than other thermal spraying materials, it is preferable to consider the possibility of deterioration of the adhesive strength of the coating layer due to oxide film formation.

이와 같이 전처리된 기판에 입자크기가 60-120㎛인 Fe-6.5%Si-용사재 분말을 공급하여 용사하는데, 이때, Fe-6.5%Si분말은 상업적으로 판매되고 있지 않기 때문에 다음과 같은 과정으로 분말을 제작한다. 우선, 모합금인 Fe-6.5%Si 잉곳트(ingot)를 제작한후 급속냉각법으로 비정질리본을 제작하여 애트리터(attritor)로 분쇄한 다음, 용사코팅시 분말의 유동성을 좋게하기 위하여 입도가 균일하도록 채질(sieving)하여 분말을 회수한다. 이 방법으로 회수한 분말은 용사장치의 출력과 투사조건을 고려하여 입도가 60-120μm의 분말을 선택하여 사용하는 것이 바람직하다.The Fe-6.5% Si-spray powder having a particle size of 60-120 μm was sprayed onto the pretreated substrate, and the Fe-6.5% Si powder was not commercially sold. Produce powder. First, Fe-6.5% Si ingot, which is a master alloy, is manufactured, and then an amorphous ribbon is prepared by rapid cooling, and then pulverized by an attritor. The powder is recovered by sieving to uniformity. The powder recovered by this method is preferably used to select a powder having a particle size of 60-120 μm in consideration of the output of the thermal spraying device and the projection conditions.

한편, 플라즈마 증착시 기판에 형성되는 코팅층의 성능은 일반적으로 플라즈마 건의 출력, 용사거리, 용사각도, 아크가스의 압력 등 여러 가지 용사조건 변수에 의해 영향을 받으므로 용사조건을 적정하게 설정하는 것이 무엇보다 중요하다. 그러나, Fe-Si분말을 플라즈마 용사에 응용한 예가 현재까지는 없어 최적조건에 대한 충분한 데이터 축적이 이루어져 있지 않다. 특히 통상의 용사코팅방법은 사용분말이 철합금분말, 세라믹분말 등 내마모용 코팅재가 주류를 이루고 있는데 반해 본 발명에서 사용한 분말은 고투자율 특성을 발현시키는 고기능성 재료인 Fe-6.5%Si 분말이여서 그 적용을 위한 용사조건을 설정하기가 난해하였다. 따라서, 본 발명은 Fe-6.5%Si 분말을 코팅하기 위하여 시행착오 방법에 의한 예비실험을 행한후 최적용사조건을 다음과 같이 안출하였다.On the other hand, the performance of the coating layer formed on the substrate during plasma deposition is generally affected by various spray condition variables such as the output of the plasma gun, the spray distance, the spray angle, and the arc gas pressure. More important. However, there have been no examples of applying Fe-Si powders to plasma spraying, and there is no sufficient data accumulation for optimal conditions. In particular, the conventional thermal spray coating method is mainly used for the wear-resistant coating material such as iron alloy powder, ceramic powder, whereas the powder used in the present invention is Fe-6.5% Si powder, which is a high functional material expressing high permeability characteristics. It was difficult to establish the spraying conditions for the application. Therefore, the present invention after the preliminary experiment by the trial and error method for coating the Fe-6.5% Si powder was devised as follows.

용사기 건(3)과 기판(2)과의 거리는 용사 작업상 코팅효율과 분말재료의 손실(loss)을 고려하여 110∼120mm로 하는 것이 바람직하다.The distance between the spray gun gun 3 and the substrate 2 is preferably 110 to 120 mm in consideration of coating efficiency and loss of powder material in the thermal spraying operation.

또한, 기판홀더(1)의 회전속도 및 좌우왕복속도(Traverse rate)는 각각 110∼120 R.P.M과 3∼3.5cm/sec로 하는 것이 바람직하다. 이 조건을 만족하지 않는 경우 즉 속도가 느린 경우는 용사시 기판홀더(1)가 충분한 냉각되지 않아 기판온도를 과열시켜 코팅층의 자기특성을 열화시키는 원인이 되며, 속도가 너무 빠른 경우는 코팅효율이 너무 낮아 코팅이 이루어지지 않는다.The rotational speed and the traverse rate of the substrate holder 1 are preferably 110 to 120 R.P.M and 3 to 3.5 cm / sec, respectively. If the condition is not satisfied, that is, the speed is low, the substrate holder 1 is not sufficiently cooled during thermal spraying, which causes overheating of the substrate temperature and deteriorates the magnetic properties of the coating layer. Too low a coating.

또한, 용사기 건(3)의 출력은 접착강도, 융착효율 등에 영향을 미치는 주요한 인자(parameter)로서, 용사기 건(3)의 출력이 30kW이하의 경우 플라즈마 발생이 용이하지 않으며, 35kW이상의 경우 기판과 코팅층사이에 기공을 발생시키고 용사기 건의 부품을 마모시키는 경향이 있어 코팅에 적합하지 않으므로, 용사기 건(3)의 출력은 30-35kW의 범위로 하는 것이 바람직하다.In addition, the output of the spray gun 3 is a major parameter affecting the adhesion strength, fusion efficiency, etc., the plasma generation is not easy when the output of the spray gun 3 is 30kW or less, 35kW or more It is preferable that the output of the spray gun 3 be in the range of 30-35 kW, because there is a tendency to generate pores between the substrate and the coating layer and wear out the components of the spray gun, which is not suitable for coating.

또한, 플라즈마 가스압력은 화염의 길이를 용이하게 조정하여 용사층의 코팅 속도를 제어 하기 위해서 120∼150psi로 하는데, 가스압력이 120psi이하의 경우는 코팅속도가 너무 느려 기판과 용사건간의 거리를 상당히 짧게 해야 하나 이는 코팅 효율면에서 부적합하며, 150psi 이상의 경우는 용사층의 코팅속도를 제어할 수 없고 분말재료의 손실(loss)이 커 비경제적이므로 120-150psi의 압력범위로 하는 것이 바람직하다.In addition, the plasma gas pressure is set to 120 to 150 psi in order to easily adjust the length of the flame to control the coating speed of the sprayed layer. When the gas pressure is 120 psi or less, the coating speed is so slow that the distance between the substrate and the spraying event is considerably increased. Although it should be short, it is not suitable in terms of coating efficiency, and in case of 150 psi or more, it is preferable to set the pressure range of 120-150 psi because the coating speed of the sprayed layer cannot be controlled and the loss of powder material is uneconomical.

상기 용사조건으로서 두께가 t0(mm)인 기판에 용사되어진 코팅층은, 기판의 두께 t0를 아래에 대입하여 얻어지는 범위로 하는 것이 바람직하다.Been coated layer thickness is sprayed on the t 0 (mm) substrate is used as the thermal spraying condition is preferably in a range obtained by substituting the thickness t 0 of the substrate below.

코팅층두께(㎛)=t0× 200 - t0× 600(여기서 t0의 단위는 mm임)Coating layer thickness (㎛) = t 0 × 200-t 0 × 600 (where t 0 is in mm)

코팅층의 두께가 t0× 200μm이하의 경우 투자율이 열악하며, t0× 600μm이상의 경우 투자율이 포화되어 코팅층의 두께를 크게하는 의미가 없어진다.If the thickness of the coating layer is less than t 0 × 200μm, the permeability is poor, and if the thickness of the coating layer is more than t 0 × 600μm, the permeability is saturated, so there is no meaning of increasing the thickness of the coating layer.

또한, 상기 기판은 전처리인 숏블라스트 처리시 요철을 용이하게 형성하여 용사재와의 밀착강도를 높이기 위해서 표면경도가 비커스(Vickers) 경도수로 100이상 이어야 하고, 용사재를 플라즈마 상태로 기판 표면에 용사할 때 기판의 변형을 막기 위해 기판의 용융온도가 500℃이상인 금속, 비금속 또는 이들의 화합물이 바람직하다.In addition, the substrate has a surface hardness of 100 or more in Vickers hardness number in order to easily form unevenness during the shot blasting process, which is a pretreatment, and to increase the adhesive strength with the thermal spraying material. In order to prevent the deformation of the substrate when spraying, a metal, a nonmetal or a compound thereof having a melting temperature of 500 ° C. or higher is preferable.

한편, 본 발명은 기판을 소형 크기로 미리 가공한 후 상기의 조건으로 코팅한 다음, 조립하여 대면적 혹은 일정한 곡률이 형성된 자기차폐원으로 할 수 있는 특징이 있다.On the other hand, the present invention is characterized in that the substrate is processed in a small size in advance and then coated under the above conditions, and then assembled to form a magnetic shield source having a large area or a constant curvature.

즉, 제2도를 일례로 구체적으로 설명하면, 차폐재료는 코팅한 후 가공을 행하면 그 성능이 열화되므로 이를 방지하기 위하여 제2(a)도와 같이 연결되는 양측에 판재가 결합되도록 접하는 각 측면에 요부(5) 내지 철부(6)를 형성하여 상호 결합 되도록 기판을 가공한다. 이후 상기 판재표면에 고투자율 재료를 본 발명에서 제시한 조건으로 코팅한후 열처리 및 가공과 같은 공정을 거치지 않고도 코팅한 그 상태 그대로 상기판재를 제2(b)도와 같이 단순히 2차원적으로 연결함으로써 가공상의 공수를 절감하고 생산성 향상을 도모할 수 있을 뿐 아니라 대면적 혹은 굴곡이 있는 자장발생원을 차폐할 수 있다.In other words, FIG. 2 is specifically described as an example, and the shielding material is coated and then deteriorated in performance so that the sheet material is bonded to both sides of the side connected to each other as shown in FIG. Substrates 5 to 6 are formed to process the substrate to be bonded to each other. Thereafter, by coating a high permeability material on the surface of the plate under the conditions set forth in the present invention, the plate is simply two-dimensionally connected as shown in FIG. In addition to reducing processing overhead and improving productivity, it is also possible to shield large-scale or curved magnetic field sources.

이하 실시예를 통하여 본 발명을 설명한다.The present invention will be described through the following examples.

[실시예 1]Example 1

두께가 0.7mm인 일반 압연강판(포항제철(POSCO)에서 생산·판매중인 압연강판)을 기판으로 하고 코팅후의 자기특성 실험을 행하기 위하여 상기 기판을 코팅 전에 내경 ø33mm, 외경 ø45mm인 링형태로 가공하였다. 상기 링 형태의 기판의 용사조건으로 용사기건(3)과 기판(2)과의 거리를 115mm 하고 상기 홀더(7)의 좌우 왕복속도를 3.3cm/초, 그리고 그 회전속도를 115rpm로 하였다. 또한 용사기건(3)의 출력을 33kw로 인가한 상태에서 그 내부에 흐르는 가스의 압력을 135psi 조건으로 하여 코팅층 두께가 300μm이 되도록 Fe-6.5%Si분말(입도 100μm이하)을 코팅하였으며 코팅효율을 높이기 위해 용사각도는 기판과 수직으로 하여 용사코팅하였다. 코팅시의 플라즈마 형성가스는 1차 가스로서 Ar을 사용하였고 2차가스에는 H2을 침가하였다. 실험에 사용한 용사시스템(METCO사 MBN type gun, 최대출력 40kW)은 용사도중에 링형태의 기판이 떨어지지 않도록 기판홀더상에 견고히 고정하도록 고안·제작된 치구를 사용하였다.In order to conduct the magnetic property test after coating, a general rolled steel sheet (rolled steel sheet produced and sold by POSCO) with a thickness of 0.7 mm is processed into a ring shape having an inner diameter of ø33 mm and an outer diameter of ø45 mm before coating. It was. The distance between the thermal spray gun 3 and the substrate 2 was 115 mm, and the left and right reciprocating speed of the holder 7 was 3.3 cm / sec, and the rotation speed was 115 rpm. In addition, Fe-6.5% Si powder (particle size of 100μm or less) was coated so that the coating layer thickness was 300μm under the pressure of the gas flowing therein at 135psi under the output of the spray gun 3 at 33kw. In order to increase the spray angle, the thermal spraying coating was made perpendicular to the substrate. The plasma forming gas during the coating was Ar as the primary gas and H 2 was immersed in the secondary gas. The thermal spray system (METCO MBN type gun, maximum output 40kW) used in the experiment used a jig designed and manufactured to be firmly fixed on the substrate holder to prevent the ring-shaped substrate from falling during the thermal spraying.

플라즈마 용사코팅 전후의 자기특성의 변화를 알아 보기 위하여 B-H Analyer(model명:IWATSU SY-8232)를 이용하여 각 기판별로 Fe-6.5%Si분말의 코팅전 후의 자기특성을 측정하였다. 표면 거칠기는 자기특성 측정시 영향을 받으므로 자기특성평가를 행하기전에 코팅한 시편을 연마하여 표면상태에 의한 자기특성영향을 가능한 배제하였다. 연마한후의 코팅두께는 최종적으로 약 200μm으로 하였다.Magnetic properties before and after coating of Fe-6.5% Si powder were measured for each substrate by using B-H Analyer (model name: IWATSU SY-8232). Surface roughness is affected when measuring the magnetic properties, so the coated specimens were polished before the magnetic properties were evaluated to eliminate the influence of the magnetic properties due to the surface condition. The coating thickness after polishing was finally about 200 μm.

상기 링형태의 시편은 1차 및 2차측 코일권수를 JIS규격에 따라 약 50회(내경ø 33mm, 외경ø45mm의 경우)로 하였으며 동일시편 2매를 절연하여 라미네이선(lamination)시켜 주파수에 따른 자기특성을 평가한 후 그 결과를 제3도에 나타내었다.In the ring-shaped specimen, the number of primary and secondary coil turns were about 50 times (in case of inner diameter ø 33 mm and outer diameter ø45 mm) according to JIS standard, and two sheets of the same specimen were insulated and laminated to lamination. After evaluating the characteristics, the results are shown in FIG.

한편, 본 발명 코팅방법과 비교분석하기 위하여 기판의 R.P.M 및 좌우왕복속도(Traverse rate)를 각각 50 및 1.0cm/sec로 변경하여, 상술한 동일한 방법으로 시편을 제작, 자기특성 평가를 행한 후 그 결과를 제3도에 비교예로서 나타내었다.On the other hand, for comparative analysis with the coating method of the present invention by changing the RPM and the reciprocation rate (traverse rate) of the substrate to 50 and 1.0cm / sec, respectively, the specimens were prepared by the same method described above, and the magnetic properties were evaluated. The results are shown in FIG. 3 as a comparative example.

제3도에 나타난 바와같이, 본 발명조건으로 코팅한 후의 압연강판의 투자율은 코팅전에 비해 전반적으로 약 60%이상 증가함을 보이고 있었으며, 특히 측정 주파수가 100Hz이하인 상용주파수 영역에서는 투자율이 약 1600으로 양호한 자기특성을 발현함을 알 수 있었다. 반면 용사조건에서 벗어난 경우인 비교예에서는 코팅전의 투자율에 거의 유사함을 보이고 있어 자기특성은 동일한 두께의 코팅층이라도 용사 조건에 따라 좌우됨을 알 수 있었다. 따라서, 본 발명인 코팅조건을 잘 활용한다면 기판두께의 선택 및 기판두께에 대한 코팅두께의 비에 따라 투자율을 보다 향상 시킬수 있는 특징이 있다.As shown in FIG. 3, the permeability of the rolled steel sheet after coating according to the present invention showed an overall increase of about 60% or more, and the permeability was about 1600 in the commercial frequency range of 100 Hz or less. It was found that good magnetic properties were expressed. On the other hand, the comparative example, which is a case out of the spraying conditions, showed almost similar to the permeability before coating, and it was found that the magnetic properties depend on the spraying conditions even with the coating layer having the same thickness. Therefore, if the coating conditions of the present invention are well utilized, the permeability can be further improved according to the selection of the substrate thickness and the ratio of the coating thickness to the substrate thickness.

상술한 바와 같이, 본 발명은 Fe-6.5%Si 분말을 용사코팅에 응용하여 생산 단가가 낮은 기판상에 투자율이 높은 재료를 코팅함으로써 차폐재료를 고부가가치화 할 수 있는 효과가 있다. 또한, 자기장 발생원의 형상에 관계없이 대면적이나 굴곡이 있는 자장발생원을 차폐할 수 있도록 소형의 기판을 연결하여 차폐할 수 있으므로 가공과 복잡한 형상처리가 용이한 차폐판재를 대량으로 양산화 할 수 있는 효과가 있다.As described above, the present invention has the effect of applying high Fe-6.5% Si powder to the thermal spray coating to coat the material with a high permeability on the substrate with a low production cost to increase the value of the shielding material. In addition, regardless of the shape of the magnetic field source, it can be shielded by connecting a small board to shield the magnetic field source with large area or curvature, thereby mass-producing a shielding plate that is easy to process and complex shape processing. There is.

Claims (7)

좌우로 왕복운동을 하면서 회전하도록 구성된 홀더(1)에 기판(2)이 수직으로 장착되고, 상기 기판(2)과 일정한 간격을 두고 대향되어 용사기건(3)이 마련되고, 그리고 상기 기판(2)과 용사기건(3)사이에 용사재가 공급되는 용사시스템을 이용하여 기판의 표면을 코팅하는 방법에 있어서, 먼저 상기 기판(2)을 숏블라스트에 의해 표면전처리한 다음, 용사재(4)로 60-120μm의 크기인 Fe-6.5%Si 분말을 공급하여 상기 표면전처리된 기판에 용사함을 특징으로 하는 자기차폐성이 우수한 기판의 코팅방법.The substrate 2 is vertically mounted on a holder 1 configured to rotate while reciprocating left and right, and is opposed to the substrate 2 at regular intervals to provide a thermal spray gun 3, and the substrate 2 In the method of coating the surface of the substrate by using a thermal spraying system in which the thermal spray material is supplied between the thermal spray gun and the thermal spray gun 3, the surface of the substrate 2 is first pretreated by shot blasting, and then the thermal spraying material 4 is sprayed onto the thermal spraying material 4. A method of coating a substrate having excellent magnetic shielding property by spraying Fe-6.5% Si powder having a size of 60-120 μm to the surface pretreated substrate. 제1항에 있어서, 상기 숏블라스트는 50-60psi의 압력하에 알루미나분말을 투사하여 이루어짐을 특징으로 하는 방법.2. The method of claim 1, wherein the shot blast is achieved by projecting alumina powder under a pressure of 50-60 psi. 제1항에 있어서, 상기 용사는 용사기건(3)과 기판(2)과의 거리를 110-120mm 한 상태에서 상기 홀더(1)의 좌우왕복속도를 3.0-3.5cm/초, 그리고 그 회전속도를 110-120rpm로 하며, 또한 용사기건(3)의 출력을 30-35kw의 범위로 인가한 상태에서 그 내부에 흐르는 가스의 압력을 120-150psi범위인 조건을 행함을 특징으로 하는 방법.The method of claim 1, wherein the thermal spraying speed of the left and right reciprocating speed of the holder 1 is 3.0-3.5cm / second, and the rotational speed of 110-120mm between the thermal spray gun 3 and the substrate 2 Is 110-120rpm, and the pressure of the gas flowing therein is applied in the range of 120-150psi while the output of the spray gun (3) is applied in the range of 30-35kw. 제1항에 있어서, 두께가 t0(mm)인 기판의 코팅층두께는 기판의 두께 t0를 아래에 대입하여 얻어지는 범위로 함을 특징으로 하는 방법. 코팅층의 두께(㎛)=t0×200-t0×600(여기서 t0의 단위는 mm임).The method according to claim 1, wherein the thickness of the coating layer of the substrate having a thickness of t 0 (mm) is in a range obtained by substituting the thickness t 0 of the substrate below. Thickness of the coating layer (mu m) = t 0 x 200-t 0 x 600, where the unit of t 0 is mm. 제1항에 있어서, 상기 기판은 그 용융온도가 500℃이상이고, 표면경도가 비커스 경도수로 100이상인 금속, 비금속 또는 이들의 화합물임을 특징으로 하는 방법.The method of claim 1, wherein the substrate is a metal, a nonmetal, or a compound thereof having a melting temperature of 500 ° C. or more and a surface hardness of 100 or more in Vickers hardness number. 제5항에 있어서, 상기 기판은 연결되는 양측에 판재가 결합되도록 접하는 각 측면에 요부(5) 내지 철부(6)가 형성된 것임을 특징으로 하는 방법.6. The method according to claim 5, wherein the substrate is provided with recesses (5) and convex portions (6) on each side contacting the plate to be coupled to both sides to be connected. 제6항에 있어서, 상기 기판은 굴곡가능한 것임을 특징으로 하는 방법.The method of claim 6, wherein the substrate is bendable.
KR1019960059241A 1996-11-29 1996-11-29 Method for coating substrate with superior magnetic shielding property KR100306155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960059241A KR100306155B1 (en) 1996-11-29 1996-11-29 Method for coating substrate with superior magnetic shielding property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960059241A KR100306155B1 (en) 1996-11-29 1996-11-29 Method for coating substrate with superior magnetic shielding property

Publications (2)

Publication Number Publication Date
KR19980040103A KR19980040103A (en) 1998-08-17
KR100306155B1 true KR100306155B1 (en) 2001-11-30

Family

ID=37530273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960059241A KR100306155B1 (en) 1996-11-29 1996-11-29 Method for coating substrate with superior magnetic shielding property

Country Status (1)

Country Link
KR (1) KR100306155B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088033A (en) * 2004-09-24 2006-04-06 Future Vision:Kk Wet treatment apparatus

Also Published As

Publication number Publication date
KR19980040103A (en) 1998-08-17

Similar Documents

Publication Publication Date Title
EP0445538B1 (en) Wear resistant titanium nitride coating and methods of application
EP1749899B1 (en) Method and apparatus for the application of twin wire arc spray coatings
US5213848A (en) Method of producing titanium nitride coatings by electric arc thermal spray
EP0455419B1 (en) Coating steel articles
KR102130346B1 (en) Coating method of spray surface
CN112853254B (en) Amorphous columnar structure coating and preparation method and application thereof
WO2015071621A1 (en) Method of welding first and second metallic workpiece with cold or thermal spraying a layer of weld modifying material to one of the surfaces
CN112899605A (en) Preparation method and application of tungsten carbide coating
Moon et al. Thick tungsten coating on ferritic–martensitic steel applied with a vacuum plasma spray coating method
US5298095A (en) Enhancement of hot workability of titanium base alloy by use of thermal spray coatings
CN108720619B (en) Cooking utensil and preparation method thereof
KR100306155B1 (en) Method for coating substrate with superior magnetic shielding property
EP4092287A1 (en) Brake body and brake device
EP2845655A1 (en) Method for manufacturing piercing plug
US6758915B2 (en) Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
CN109972073B (en) Molybdenum coating spraying method, component for aero-engine and spraying device
James A review of experimental findings in surface preparation for thermal spraying
Weglowski et al. Remelting of thermal spraying coatings-technologies, properties and applications
KR102084841B1 (en) Surface treating method for controlling surface roughness of carbon material
SU1407731A1 (en) Method of pressure welding with heating of unsimilar materials
CN118256853A (en) Composite remelting coating and preparation process thereof
CN114016019A (en) Iron-based amorphous coating and preparation method and application thereof
CN113737170A (en) Copper alloy pantograph and preparation method thereof
SU1759559A1 (en) Method of producing wear-resistant composite coat
KR20220078602A (en) Method for manufacturing highly corrosion-resistant and wear-resistant cast iron parts by water jet surface activation, softening and thermal spray coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E801 Decision on dismissal of amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130802

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee