KR100305777B1 - Toxicity measuring device based on activated sludge respiration rate and its operation method - Google Patents

Toxicity measuring device based on activated sludge respiration rate and its operation method Download PDF

Info

Publication number
KR100305777B1
KR100305777B1 KR1019980021040A KR19980021040A KR100305777B1 KR 100305777 B1 KR100305777 B1 KR 100305777B1 KR 1019980021040 A KR1019980021040 A KR 1019980021040A KR 19980021040 A KR19980021040 A KR 19980021040A KR 100305777 B1 KR100305777 B1 KR 100305777B1
Authority
KR
South Korea
Prior art keywords
sludge
respiratory rate
activated sludge
contact tank
tank
Prior art date
Application number
KR1019980021040A
Other languages
Korean (ko)
Other versions
KR20000001018A (en
Inventor
김창원
최광수
허남효
고주형
김병군
Original Assignee
박경재
송원칼라 주식회사
.
삼림종합건설 주식회사
김창원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박경재, 송원칼라 주식회사, ., 삼림종합건설 주식회사, 김창원 filed Critical 박경재
Priority to KR1019980021040A priority Critical patent/KR100305777B1/en
Publication of KR20000001018A publication Critical patent/KR20000001018A/en
Application granted granted Critical
Publication of KR100305777B1 publication Critical patent/KR100305777B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1231Treatments of toxic sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Activated Sludge Processes (AREA)

Abstract

본 발명은 활성슬러지 공정에서 활성슬러지의 호흡율을 연속 측정하여 유입수중의 독성물질을 사전에 측정, 차단함으로써 하폐수처리장의 안정적인 운전이 가능하도록 하는 장치와 그 운전방법에 관한 것으로,The present invention relates to an apparatus and a method for operating the sewage wastewater treatment plant by stably measuring the respiration rate of activated sludge in an activated sludge process to measure and block toxic substances in the influent in advance.

본 발명은 활성슬러지와 폐수를 혼합하는 접촉조(3), 폭기조(1)의 활성슬러지 농도를 측정하는 MLSS(Mixed Liquor Suspended Solid) 미터(4), 활성슬러지의 호흡율을 측정하는 연속호흡율 측정기(5), MLSS 측정치와 호흡율 측정치를 해석하여 독성물질의 존재를 판단하는 독성제어기(6), 폭기조 유입관의 솔레노이드 밸브(8a)와 접촉조 배출관 솔레노이드 밸브(8b)를 제어하는 구성으로 되며, 상기 접촉조(3)에 폐수와 슬러지 공급관(11a, 11b)을 통하여 폐수와 슬러지를 연속적으로 공급하는 접촉조 폐수 공급펌프(7a)와, 접촉조 슬러지 공급펌프(7b), 접촉조(3)에 공기를 공급하는 송풍기(14), 상기의 MLSS 미터(4), 호흡율 측정기(5), 두 솔레노이드 밸브(8a, 8b)와 독성제어기(6) 사이의 시그널을 전송하는 케이블(9a, 9b, 10a, 10b), 접촉조(3)에서 호흡율 측정기(5)로 슬러지를 이송하는 슬러지 공급관(12), 접촉조(3)와 호흡율 측정기(5)에서 배출되는 슬러지를 폭기조(1)로 반송하는 접촉조 슬러지 배출관(13b), 호흡율 측정기 슬러지 배출관(13a)으로 구성된 것에 요지가 있다.The present invention is a contact tank (3) for mixing activated sludge and waste water, MLSS (Mixed Liquor Suspended Solid) meter (4) for measuring the activated sludge concentration of the aeration tank (1), continuous breathing rate measuring device for measuring the respiratory rate of activated sludge ( 5), by analyzing the MLSS measurement and respiratory rate measurement to determine the presence of toxic substances 6, the solenoid valve (8a) of the aeration tank inlet pipe and the contact tank discharge pipe solenoid valve (8b) is configured to control, The contact tank waste water supply pump 7a for continuously supplying the waste water and the sludge to the contact tank 3 through the waste water and the sludge supply pipes 11a and 11b, and the contact tank sludge supply pump 7b and the contact tank 3, respectively. Blower 14 for supplying air, MLSS meter 4 above, respiratory rate meter 5, cables for transmitting signals between two solenoid valves 8a, 8b and toxic controller 6 9a, 9b, 10a , 10b), sludge transporting sludge from the contact tank 3 to the respiratory rate meter 5 The gist supply pipe 12, the contact tank 3 and the contact tank sludge discharge pipe 13b for conveying the sludge discharged from the respiratory rate meter 5 to the aeration tank 1, and the respiratory rate meter sludge discharge pipe 13a has a summary. .

Description

활성슬러지 호흡율에 의한 독성측정장치와 그 운전방법Toxicity measuring device based on activated sludge respiration rate and its operation method

본 발명은 하폐수처리장의 운전제어 및 자동화기술의 핵심적인 한 부분으로서 생물학적 공정으로 유입되는 원폐수중에 독성물질이 포함되어 있을 경우 그 존재를 사전에 측정하고 차단함으로써 살아있는 미생물인 활성슬러지를 독성물질로부터 보호하여 하폐수처리장의 안정적인 운전이 가능하게 하고 하폐수처리의 일신된 효율성을 제공하고자 하는 장치와 그 운전방법에 관한 것이다.The present invention is an essential part of the operation control and automation technology of the sewage water treatment plant. If the toxic material is included in the raw wastewater introduced into the biological process, the active sludge, which is a living microorganism, can be removed from the toxic material by measuring and blocking the presence of the toxic material in advance. The present invention relates to a device and a method of operating the same, which are intended to protect and enable stable operation of a wastewater treatment plant and provide updated efficiency of wastewater treatment.

통상적으로 대부분의 하폐수처리장에서는 생물학적 처리방법인 활성슬러지 공정을 이용하여 하폐수중의 유기물을 제거하고 있다.In general, most wastewater treatment plants use organic sludge, which is a biological treatment method, to remove organic matter in the wastewater.

이러한 활성슬러지 공정을 운전, 관리하는데 있어 가장 큰 문제는 여러 가지 외부 요인들에 의해 공정의 미생물들이 영향을 받아 처리공정의 성능이 저하되어 유출수질이 악화되는 것이다.The biggest problem in operating and managing the activated sludge process is that microorganisms of the process are affected by various external factors, and the performance of the treatment process is degraded and the effluent quality is deteriorated.

이와 같은 외부요인에는 유입 하폐수의 질적·양적 변화, 독성물질의 유입, 온도의 변화 등이 있으며, 이들로 인한 공정의 성능 저하시 당장에 발생하는 유출수질의 악화로 인한 배출부과금 부담 및 기타의 환경문제가 있다.Such external factors include qualitative and quantitative changes in the influent sewage, inflow of toxic substances, and temperature changes, and the burden of discharge charges due to the deterioration of effluent quality that occurs immediately when the performance of the process decreases due to these, and other environments. there is a problem.

이외에도 일단 성능이 악화된 활성슬러지 공정을 정상적으로 되돌리는 데는 많은 노력과 시일이 소요되며 교란이 심한 경우에는 수개월에 걸친 회복기간이 소요되어 상당한 경제적 문제를 유발하기도 한다.In addition, it takes a lot of effort and time to return the activated sludge process to degraded performance once, and in the case of severe disturbance, it may take several months to recover, causing considerable economic problems.

그리고 활성슬러지 공정은 악취와 소음 등의 발생으로 인해 혐오시설로 인식되면서 근무자들로부터 외면당하고 주변지역의 거주자들로부터도 냉대와 기피를 당하고 있다.The activated sludge process is recognized as a loathing facility due to the occurrence of odors and noise, and is neglected by the workers and coldly avoided by the residents of the surrounding area.

또한, 전기비와 약품비, 인건비 등의 상승으로 인한 운영, 관리비가 증가하고 있을뿐더러 갈수록 엄격해지는 유출수질기준에 적합한 방류수를 생산하기 위해 전체 시스템은 보다 복잡해지고 그 운전 또한 까다로워지고 있어 자동화에 대한 요구가 매우 높아지고 있다.In addition, the operation and management costs are increasing due to the increase of electricity, chemicals, labor costs, etc. In addition, the whole system becomes more complicated and the operation is more difficult to produce effluent that meets the stricter effluent quality standards. It's getting very high.

하폐수처리장으로 유입될 수 있는 독성물질에는 강산, 강염기, 각종 중금속, 유·무기 특정오염물질 등이 있으며, 이들은 공장의 생산공정에 따라 크게 달라진다.Toxic substances that can enter the sewage treatment plant include strong acids, strong bases, various heavy metals, organic and inorganic specific pollutants, and they vary greatly depending on the production process of the plant.

일반적으로 폐수처리장의 활성슬러지는 유입되는 원폐수에 장기간에 걸쳐 순치(馴致)되어 있으므로 일정 농도의 독성물질에 대해서는 적응력이 길러져 있다.In general, activated sludge from wastewater treatment plants is pure in the inflowing raw wastewater over a long period of time, so the adaptability is increased to a certain concentration of toxic substances.

따라서 정상적인 조업조건에서 유출되는 폐수를 처리하는 동안에는 상시적으로 발생하는 독성물질이 있다고 하더라고 활성슬러지는 급격한 독성영향을 받지 않는다고 볼 수 있다.Therefore, it can be said that activated sludge is not suddenly affected by toxic substances that occur constantly during the treatment of wastewater discharged under normal operating conditions.

그러나 생산공정의 이상가동 및 세척, 중단후 재가동 등의 발생시에는 유입수 중에 특정 독성물질의 농도가 급격히 높아져 활성슬러지에의 악영향을 초래할 수 있다.However, in the event of abnormal operation and cleaning of the production process and restarting after stopping, the concentration of certain toxic substances in the influent may be rapidly increased, which may adversely affect activated sludge.

따라서 이러한 독성물질이 활성슬러지 공정으로 유입되기 전에 그 독성물질의 존재를 사전에 측정하여 대책을 강구함으로써 활성슬러지를 보호하는 것은 활성슬러지 공정의 연속적이고 안정적인 운전을 위해서 필수적으로 요구되는 기술이다.Therefore, protecting activated sludge by measuring the presence of the toxic substance in advance and taking countermeasures before entering the activated sludge process is an essential technology for continuous and stable operation of the activated sludge process.

호흡율은 미생물에 의하여 기질이 산화되면서 에너지는 탈수소효소로 구성된 전자전달시스템(electron transport system)을 통하여 ATP(adenosine triphosphate)로 전달되는 데 이 과정에서 산소가 최종전자수용체로 이용되는 소모율이다.The respiration rate is transferred to the ATP (adenosine triphosphate) through the electron transport system composed of dehydrogenases as the substrate is oxidized by the microorganisms, in which oxygen is used as the final electron acceptor.

산소는 자가영양미생물에 의해 암모니아가 질산염으로 전환되는 질산화과정에서도 소모된다.Oxygen is also consumed in nitrification, where ammonia is converted to nitrates by autotrophic microorganisms.

그러므로 산소섭취율(호흡율)은 박테리아가 정상상태로서 건강하고 활동적인 가를 평가하는 데 유용한 파라미터가 된다.Therefore, the oxygen uptake rate (breathing rate) is a useful parameter for assessing whether bacteria are healthy and active as steady state.

박테리아의 호흡율은 활성슬러지 공정의 일차적인 함수를 직접적으로 측정하는 것으로서 억제인자의 존재에 급속히 반응한다.The respiratory rate of bacteria is a direct measure of the primary function of the activated sludge process and responds rapidly to the presence of inhibitors.

그러므로 활성슬러지의 호흡율 측정은 매우 빠르고 간편한 생물학적 조기경보시스템으로서의 잇점을 갖고 있다.(King and Dutka, 1986; Temmink et al., 1993)Therefore, measuring the respiratory rate of activated sludge has the advantage of being a very quick and simple biological early warning system (King and Dutka, 1986; Temmink et al., 1993).

Clarke(1977) 등에 의하면, 용존산소(DO)와 호흡율(respiration rate)은 급속하고 민감한 반응을 보이고 상대적으로 간편한 분석법의 주요한 파라미터로서 생물학적 시스템을 연속적으로 감시하고 활동도를 명확히 나타내주는 인자이다.According to Clarke (1977), dissolved oxygen (DO) and respiration rate are rapid and sensitive reactions and are key parameters for relatively simple assays, which are factors that continuously monitor biological systems and clarify their activity.

그들의 연구에 의하면, 용존산소/호흡율은 MLVSS, COD, TOC, ATP, BOD, cell count, cell 구성 측정 등의 인자들과 비교하였을 때 매우 우수한 특징을 보였다.In their study, dissolved oxygen / respiration rate was very good when compared with factors such as MLVSS, COD, TOC, ATP, BOD, cell count, and cell composition.

이러한 활성슬러지의 호흡율 측정에 기초한 독성측정 원리는 크게 불연속측정법과 연속측정법으로 나누어진다.The principle of toxicology based on the respiratory rate measurement of activated sludge is largely divided into discontinuous measurement and continuous measurement.

불연속측정법의 원리는 특정조건하에서 일련의 독성물질 농도로 호흡율을 측정하여 미생물에 미치는 독성영향을 평가하는 것이다.The principle of discontinuity measurement is to assess the toxic effects on microorganisms by measuring the respiratory rate with a series of toxic concentrations under specific conditions.

보통 4가지의 독성농도의 화합물과 슬러지, 그리고 생분해가능한 기질 등을 비이커나 시험용기에 넣고서 실험을 수행하는 데 대표적인 실험방법으로는 BOD 방해시험, ISO법 A, ISO법 B, 그리고 OECD법 등이 있다.(King and Dutka, 1986) 이들 방법은 짧은 경우 0.5-3시간 동안 용존산소농도를 측정하고(ISO법 A and B, OECD법), 긴 경우에는 5일이 소요된다.(BOD 방해시험)Usually, four kinds of toxic concentration compounds, sludge, and biodegradable substrates are put in a beaker or test container, and typical test methods include BOD interference test, ISO method A, ISO method B, and OECD method. (King and Dutka, 1986) These methods measure dissolved oxygen concentrations for 0.5-3 hours in short cases (ISO method A and B, OECD method) and 5 days in long cases (BOD disturbance test).

그리고 Spanjers 등(1987)은 RA-1000 연속호흡율 측정장치를 이용하여 불연속 회분식시험을 실시하였다.Spanjers et al. (1987) conducted a discontinuous batch test using RA-1000 continuous breathing rate measuring device.

이 연구에서는 내생호흡율(endogeneous respiration rate)을 이용하여 KCN, 2-nitropropane, triethylphosphate, acetate 등의 독성도를 시험하여 독성화합물의 양에 비례하는 내생비호흡율의 감소를 확인하였다.In this study, the toxicities of KCN, 2-nitropropane, triethylphosphate, acetate, etc. were tested using the endogeneous respiration rate to confirm the reduction of endogenous respiration rate in proportion to the amount of toxic compounds.

불연속 측정법들의 경우, 공통적으로 안고 있는 문제점은 분석자가 인위적으로 적당량의 시료와 슬러지를 혼합하고 일정한 조건하에서 용존산소농도를 측정함으로써 특정화합물에 의한 독성영향을 판단하기 때문에 분석에 많은 시일이 소요되고 연속적으로 측정되지 못함으로써 현장에의 적용성이 떨어진다.In the case of discontinuous assays, a common problem is that the analyser determines the toxic effects of certain compounds by artificially mixing the appropriate amount of sample and sludge and measuring the dissolved oxygen concentration under certain conditions. It is not applicable to the field because it cannot be measured.

반면에 연속호흡율 독성도 측정법은 실시간으로 폐수중의 독성오염물질의 존재를 판별할 수 있다.On the other hand, the continuous respiration rate toxicity test can determine the presence of toxic pollutants in the wastewater in real time.

연속측정법에는 BASF TOXIMETER, RA-1000 respirometer를 이용하는 방법과 Rapid Oxygen Demand and TOXicity tester(RODTOX) 등이 있다.Continuous measurements include BASF TOXIMETER, RA-1000 respirometer and Rapid Oxygen Demand and TOXicity tester (RODTOX).

활성슬러지의 호흡율을 이용한 또 다른 독성측정장치인 BASF TOXIMETER는 Pagga와 Gunthner에 의해 개발되었다.(Pagga and Gunthner, 1981)Another toxicology measuring device, BASF TOXIMETER, using respiratory rate of activated sludge was developed by Pagga and Gunthner (Pagga and Gunthner, 1981).

즉, 170L 용량의 소형폭기조에 활성슬러지와 폐수, 반송슬러지 등을 연속으로 공급하면서 용존산소농도, 슬러지 농도, pH, 온도 등을 측정한다.That is, dissolved oxygen concentration, sludge concentration, pH, temperature, etc. are measured while continuously supplying activated sludge, wastewater, and return sludge to a 170L small aeration tank.

용존산소농도가 2.0 mg/l에 도달하면 폭기를 중단시킨 후 0.5 mg/l에 도달하면 다시 폭기시키는 동작을 반복하면서 산소소모기간 동안의 호흡율을 계산하여 정상상태일 때의 값과 비교하여 독성물질의 영향을 판단하도록 하였다.When the dissolved oxygen concentration reaches 2.0 mg / l, the aeration is stopped and the aeration is repeated again when 0.5 mg / l is reached, and the respiratory rate during the oxygen consumption period is calculated and compared with the value in the normal state. To determine the impact of.

Temmink 등(1993)은 RA-1000 respirometer를 이용하여 herbicide와 vinyl chloride를 함유한 폐수가 활성슬러지에 미치는 독성영향을 시험하였고, Kim 등(1994)은 석유화학 폐수처리장에서 강산, 강염기, Co2+, 환원촉매폐수에 의한 독성영향을 실험하였다.Temmink et al. (1993) tested the toxic effects of wastewater containing herbicide and vinyl chloride on activated sludge using RA-1000 respirometer, and Kim et al. (1994) reported strong acid, strong base, and Co 2+ in petrochemical wastewater treatment plants. , Toxic effects of reduced catalyst wastewater were tested.

두 실험 모두에서 독성화합물과 활성슬러지의 충분한 접촉을 보장하기 위하여 접촉조를 두었고, 결과적으로 RA-1000 respirometer를 이용한 연속적인 독성 측정장치의 가능성을 제시하였다.In both experiments, contact tanks were installed to ensure sufficient contact between the toxic compounds and activated sludge, and as a result, the possibility of continuous toxicity measurement using RA-1000 respirometer was suggested.

Kong 등(1993)에 의해 개발된 RODTOX는 연속회분식 호흡율 측정기로서 생물학적 장치(biological unit), microprocessor 그리고 두 부분을 연계해주는 전자장치(electronic component)로 구성되어 있다.RODTOX, developed by Kong et al. (1993), is a batch-type respiratory rate meter that consists of a biological unit, a microprocessor, and an electronic component that links the two parts.

생물학적 장치는 10L의 활성슬러지 반응용기로서 연속적으로 폭기, 교반, 온도조절되고, 상부덮개에는 DO meter와 pH meter가 설치되어 있다.The biological device is a 10L activated sludge reaction vessel, which is continuously aerated, stirred and temperature controlled, and the upper cover is equipped with a DO meter and a pH meter.

매 30분 마다 일정량의 폐수를 슬러지에 주입하여 독성물질에 의하여 나타나는 호흡율 변수(peak slope, peak area, peak height)의 변화를, 2-3 시간마다 검증하는 기준치와 비교하여 방해분율(percentage inhibition, IC50)를 계산하므로써 독성을 측정하도록 하였다.(Vanrolleghem et al., 1994)Every 30 minutes, a certain amount of wastewater is injected into the sludge to compare the changes in the respiratory rate parameters (peak slope, peak area, peak height) caused by the toxic substances with a percentage inhibition compared to the reference value verified every 2-3 hours. Toxicity was determined by calculating IC 50 ) (Vanrolleghem et al., 1994).

Kong 등은 이 장치를 이용하여 3,5-dichlorophenol, Cu2+, CN-등의 급성독성 영향을 누적노출과정(cumulative exposure procedure)로 보여주었다.Kong et al. Demonstrated the acute toxic effects of 3,5-dichlorophenol, Cu 2+ and CN - as a cumulative exposure procedure.

또한, 만성독성 영향을 실험하기 위해 3,5-DCP, copper를 대상으로 실험을 수행하여 이동창회귀분석(moving window regression)이라 불리우는 통계해석법을 이용하여 독성측정방법을 정립하였다.(Kong, 1995)In addition, to test the effects of chronic toxicity, experiments were conducted on 3,5-DCP and copper to establish a toxicology measurement method using a statistical analysis called moving window regression (Kong, 1995).

[참고문헌][references]

Clarke A.N., Eckenfelder W.W.Jr. and Roth J.A., "The development of an influent monitor for biological treatment systems", Prog. Wat. Tech., Vol. 9, No. 5/6, pp. 103-107, 1977.Clarke A.N., Eckenfelder W.W.Jr. and Roth J.A., "The development of an influent monitor for biological treatment systems", Prog. Wat. Tech., Vol. 9, No. 5/6, pp. 103-107, 1977.

Kim C.-W., B.-G. Kim, T.-H. Lee and T.-J. Park, "Continuous and early detection of toxicity in industrial wastewater using an on-line respiration meter", Wat. Sci. Tech., Vol. 30, No. 3, pp. 11-19, 1994.Kim C.-W., B.-G. Kim, T.-H. Lee and T.-J. Park, "Continuous and early detection of toxicity in industrial wastewater using an on-line respiration meter", Wat. Sci. Tech., Vol. 30, no. 3, pp. 11-19, 1994.

King E.F. and B.J. Dutka, "Respirometric techniques, In: Toxicity testing using microorganisms", Vol. 1, Eds. Bitton G. and Dutka B.J., CRC Press, Florida, USA, pp. 75-112, 1986.King E.F. and B.J. Dutka, "Respirometric techniques, In: Toxicity testing using microorganisms", Vol. 1, Eds. Bitton G. and Dutka B.J., CRC Press, Florida, USA, pp. 75-112, 1986.

Kong Z., "Toxicity monitoring of wastewaters in activated sludge processes by a respirographic biosensor", Thesis, Gent Univ., 1995.Kong Z., "Toxicity monitoring of wastewaters in activated sludge processes by a respirographic biosensor", Thesis, Gent Univ., 1995.

Kong A., P.A. Vanrolleghem and W.Verstraete, "An activated sludge-based biosensor for rapid IC50 estimation and on-line toxicity monitoring", Biosens. Bioelectron., Vol. 8, pp. 49-58, 1993.Kong A., P.A. Vanrolleghem and W. Verstraete, "An activated sludge-based biosensor for rapid IC50 estimation and on-line toxicity monitoring", Biosens. Bioelectron., Vol. 8, pp. 49-58, 1993.

Pagga U. and W. Gunthner, "The BASF TOXIMETER - a helpful instrument to control and monitor biological waste water treatment plants", Wat. Sci. Tech., Vol. 13, pp. 233-238, 1981.Pagga U. and W. Gunthner, "The BASF TOXIMETER-a helpful instrument to control and monitor biological waste water treatment plants", Wat. Sci. Tech., Vol. 13, pp. 233-238, 1981.

Spanjers H. and A. Klapwijk, "Measurement of the toxicity of KCN and some organic compounds for activated sludge using the WAZU-respiration meter", Proc. Intern. Congress on Recent Advances in the Management of Hazardous and Toxic Wastes in the Process Industries, 1987.Spanjers H. and A. Klapwijk, "Measurement of the toxicity of KCN and some organic compounds for activated sludge using the WAZU-respiration meter", Proc. Intern. Congress on Recent Advances in the Management of Hazardous and Toxic Wastes in the Process Industries, 1987.

Temmink H, P. Vanrolleghem, A. Klapwijk and W. Verstraete, "Biological early warning systems for toxicity based on activated sludge respirometry", Wat. Sci. Tech., Vol. 28, No. 11/12, pp. 415-425, 1993.Temmink H, P. Vanrolleghem, A. Klapwijk and W. Verstraete, "Biological early warning systems for toxicity based on activated sludge respirometry", Wat. Sci. Tech., Vol. 28, No. 11/12, pp. 415-425, 1993.

Vanrolleghem P.A., Z. Kong, G. Rombouts and W. Verstraete, "An on-line respirographic biosensor for the characterization of load and toxicity of wastewaters", J. Chem. Tech. Biotechnol., Vol. 59, pp. 321-333, 1994.Vanrolleghem P.A., Z. Kong, G. Rombouts and W. Verstraete, "An on-line respirographic biosensor for the characterization of load and toxicity of wastewaters", J. Chem. Tech. Biotechnol., Vol. 59, pp. 321-333, 1994.

본 발명은 폐수처리장 활성슬러지 공정에서 활성슬러지의 호흡율을 연속 측정하여 유입수중에 포함되어 있는 독성물질을 사전에 측정, 차단하고자 하는 것이며, 이로부터 살아있는 미생물인 활성슬러지를 독성물질로부터 보호하여 하폐수처리장의 안정적인 운전과 하폐수처리의 효율성을 일신코져 하는 것이다.The present invention is to measure and block the toxic substances contained in the influent in advance by continuously measuring the respiratory rate of the activated sludge in the wastewater treatment plant activated sludge process, and to protect the activated sludge, which is a living microorganism, from the toxic substances in the wastewater treatment plant. It is to renew the efficiency of stable operation and wastewater treatment.

도 1은 본 발명의 바람직한 일 실시예를 도시한 전체 구성도1 is an overall configuration diagram showing an embodiment of the present invention

도 2는 본 발명의 원리가 되는 활성슬러지와 기질부하사이의 상관관계2 is a correlation between the activated sludge and the substrate load which is the principle of the present invention

☞도면의 주요부분에 사용된 부호에 대한 설명☜☞ Explanation of symbols used in the main part of the drawing ☜

1;폭기조(Aeration tank) 2;침전조(Settler)1; Aeration tank 2; Settler

3;접촉조(Aeration tank) 4;부유고형물 농도측정기(MLSS meter)3; Aeration tank 4; Floating solids concentration meter (MLSS meter)

5;연속호흡율 측정기(Respiration analyzer)5; Respiration analyzer

6;독성제어기(Toxicity controller)6; Toxicity controller

7a;접촉조 폐수 공급펌프 7b;접촉조 슬러지 공급펌프7a; contact bath wastewater supply pump 7b; contact bath sludge supply pump

8a;폭기조 유입관 솔레노이드밸브 8b;접촉조 배출관 솔레노이드밸브8a; aeration tank inlet pipe solenoid valve 8b; contact tank outlet pipe solenoid valve

9a;MLSS 시그널 전송 케이블 9b;호흡율 시그널 전송 케이블9a; MLSS signal transmission cable 9b; Respiration rate signal transmission cable

10a;폭기조 솔레노이드밸브 조절 시그널 전송 케이블10a; aeration valve solenoid valve adjustment signal transmission cable

10b;접촉조 솔레노이드밸브 조절 시그널 전송 케이블10b; Contact signal solenoid valve control signal transmission cable

11a;접촉조 폐수 공급관 11b;접촉조 슬러지 공급관11a; contact tank wastewater supply pipe 11b; contact tank sludge supply pipe

12;호흡율 측정기 슬러지 유입관12; respiratory rate meter sludge inlet pipe

13a;호흡율 측정기 슬러지 배출관 13b;접촉조 슬러지 배출관13a; breath rate sludge discharge line 13b; contact tank sludge discharge line

14;송풍기14; blower

도 1은 본 발명에 의한 활성슬러지 호흡율에 의한 하폐수의 독성측정 장치의 구성을 도시한 것으로서,1 is a view showing the configuration of a device for measuring the toxicity of wastewater by activated sludge respiration rate according to the present invention,

본 발명은 20리터의 접촉조3, 연속호흡율 측정기5, MLSS(Mixed Liquor Suspended Solid)미터4로 구성된 측정장치부와 제어부분에 해당하는 독성제어기6로 구성된다.The present invention consists of a measuring device section consisting of a contact tank 3 of 20 liters, a continuous respiration rate measuring instrument 5, a mixed liquor suspended solid (MLSS) meter and a toxicity controller 6 corresponding to the control part.

두 대의 펌프7a,7b와 각각의 공급관11a,11b에 의해 상기의 접촉조3로 폐수와 폭기조1의 활성슬러지가 연속적으로 공급된다.The two sludge pumps 7a and 7b and the respective supply pipes 11a and 11b continuously supply the activated sludge of the wastewater and the aeration tank 1 to the contact tank 3.

접촉조3에는 송풍기14에 의해 폭기되어 폐수와 활성슬러지가 혼합되고 이 혼합슬러지는 연속호흡율 측정기5로 공급된다.The contact tank 3 is aerated by the blower 14, and the wastewater and the activated sludge are mixed, and the mixed sludge is supplied to the continuous breath rate measuring instrument 5.

연속호흡율 측정기5는 Manotherm(Netherlands)에 의해 개발된 폭기조 활성슬러지의 호흡율(respiration rate)을 연속적으로 측정할 수 있는 장치인 바,Continuous respiration rate measuring instrument 5 is a device capable of continuously measuring the respiration rate of the aeration tank activated sludge developed by Manotherm (Netherlands).

상기 연속호흡율 측정기5는 0.75L의 밀폐형 호흡실(respiration chamber)과 슬러지를 인입하기 위한 펌프, 슬러지의 흐름방향을 조절하기 위한 4개의 솔레노이드밸브, 호흡실내의 용존산소(DO)농도를 측정하기 위한 DO 전극, 그리고 이들 측정시스템을 제어하고 데이터를 수집, 출력하는 콘트롤 보드로 구성되는 것으로, 이러한 연속호흡율 측정기5의 구성 등은 일반적인 것이다.The continuous respiration rate measuring instrument 5 is a 0.75L sealed respiration chamber and a pump for introducing sludge, four solenoid valves for adjusting the flow direction of the sludge, and a dissolved oxygen (DO) concentration in the respiratory chamber. It consists of a DO electrode and a control board that controls these measurement systems and collects and outputs data. Such a configuration of the continuous respiration rate measuring device 5 is common.

매분 측정된 활성슬러지의 호흡율 데이터는 아스키(ASCII) 포맷으로 컴퓨터로 전송된다.Respiratory rate data of activated sludge measured every minute is transferred to a computer in ASCII (ASCII) format.

일정 유량으로 인입되어 호흡실내에서 호흡율이 측정된 슬러지는 연속적으로 외부로 배출된다.Sludge which is drawn at a constant flow rate and whose respiratory rate is measured in the respiratory chamber is discharged continuously to the outside.

활성슬러지의 호흡율과 기질부하 사이에는 모나드 형태의 상관관계가 있다. 즉, 낮은 기질부하에서는 호흡율이 기질부하에 비례하고, 일정 수준이상의 기질부하에서는 부하에 상관없이 호흡율이 일정하며, 두 영역사이에 전이영역이 존재한다.(도 2 참조)There is a monad type correlation between the respiration rate of activated sludge and the substrate load. That is, at low substrate loads, the respiration rate is proportional to the substrate load, and if the substrate load is above a certain level, the respiration rate is constant regardless of the load, and there is a transition region between the two regions (see FIG. 2).

이때, 기질부하에 상관없이 일정한 호흡율을 최대호흡율(Maximum respiration rate, Rmax)이라 란다.At this time, the constant respiration rate regardless of the substrate load is called the maximum respiration rate (R max ).

그런데 활성슬러지에 독성물질이 주입될 경우, 미생물의 신진대사가 독성물질에 의해 영향을 받아 감소하면서 동시에 최대호흡율이 감소하게 된다.However, when toxic substances are injected into activated sludge, the metabolism of microorganisms is affected by the toxic substances, and at the same time, the maximum respiration rate is reduced.

독성물질에 의해 최대호흡율이 감소하는 정도는 독성물질의 농도와 접촉시간에 좌우된다.The extent to which the maximum respiration rate is reduced by toxic substances depends on the concentration of the toxic substance and the contact time.

본 발명은 이러한 활성슬러지 최대호흡율 측정에 기초하고 있다.The present invention is based on this activated sludge maximum respiration rate measurement.

일정 유량비로 폐수와 활성슬러지가 접촉조3로 공급되어 폭기됨으로서 접촉조3내의 용존산소농도를 5.0 mg/l 이상 유지하면서 슬러지의 완전혼합상태를 유지한다.Waste water and activated sludge are supplied to the aeration tank 3 at a constant flow rate and aerated to maintain a total mixed state of the sludge while maintaining the dissolved oxygen concentration in the aeration tank 3 to 5.0 mg / l or more.

원폐수와 슬러지의 혼합비는 최대호흡율을 얻을 수 있는 수준 이상으로 유지한다.The mixing ratio of raw wastewater and sludge is kept above the level at which the maximum respiration rate can be obtained.

접촉조3에서 일정시간동안 체류한 혼합슬러지는 연속호흡율 측정기5로 공급되어 매 1분 마다 호흡율이 측정된다.The mixed sludge staying in the contact tank 3 for a predetermined time is fed to the continuous breathing rate measuring instrument 5, and the respiratory rate is measured every minute.

이때의 호흡율은 최대호흡율(Rmax)이 된다.At this time, the respiration rate is the maximum respiration rate (R max ).

연속호흡율 측정기5에서 배출되는 슬러지는 폭기조1로 반송되거나 배수구로 유출될 수 있다.The sludge discharged from the continuous respiration rate measuring instrument 5 may be returned to the aeration tank 1 or may be discharged to the drain.

매 분 측정된 호흡율 데이터는 시그널 케이블9b을 통해 독성제어기6로 전송되어 기록·가공된다.The respiratory rate data measured every minute are transmitted to the toxic controller 6 via the signal cable 9b and recorded and processed.

독성물질이 유입되지 않는 정상상태에서는 최대호흡율이 항상 일정한 값을 유지하지만 원폐수중에 독성물질이 함유되어 있을 경우 최대호흡율은 독성물질의 종류와 농도에 따라 급격히 또는 서서히 감소한다.In the normal state where no toxic substances are introduced, the maximum respiration rate is always maintained at a constant value, but if the toxic substance is contained in the raw wastewater, the maximum respiration rate decreases rapidly or gradually depending on the type and concentration of the toxic substances.

폭기조1에 설치된 MLSS 미터4는 연속적으로 활성슬러지 농도를 측정하여 시그널 케이블9a을 통해 컴퓨터로 전송한다.The MLSS meter 4 installed in the aeration tank 1 continuously measures the activated sludge concentration and transmits it to the computer via the signal cable 9a.

온라인 계측장비에서 연속으로 측정되는 데이터들의 수집과 가공, 화면표시 등은 독성제어기6에 의해 수행된다.The collection, processing, and display of data continuously measured on an online instrument is performed by the toxic controller 6.

독성제어기6는 입력된 호흡율 데이터를 매분 저장하고 MLSS(Mixed Liquor Suspended Solid)데이터는 매분 평균을 내고 사전에 입력된 MLSS/MLVSS 비율을 이용하여 MLVSS(Mixed Liquor Volatile Suspended Solid) 값을 계산하여 독립된 변수값으로 저장한다.Toxicity controller 6 stores the entered respiratory rate data every minute and MLSS (Mixed Liquor Suspended Solid) data averages every minute and calculates MLVSS (Mixed Liquor Volatile Suspended Solid) values using the previously entered MLSS / MLVSS ratio. Save as a value.

호흡율 측정치를 MLVSS 값으로 나누어 최대비호흡율(specific maximum respiration rate, rmax)을 계산하고 별도의 변수값으로 저장한다.The respiratory rate measurement is divided by the MLVSS value to calculate the specific maximum respiration rate (r max ) and stored as a separate variable.

그리고 최대비호흡율을 24시간 평균하여 일평균 최대비호흡율 기준치로 삼는다.The maximum respiratory rate is averaged for 24 hours and used as the daily average maximum respiratory rate.

이와 같이 연속적으로 측정되는 최대비호흡율과 기준치를 비교하여 측정치가 기준치의 80 % 이하로 감소할 경우 독성으로 판단하여 운전자에게 경보를 발령하고 60% 이하로 감소하면 폭기조1 폐수유입관의 솔레노이드 밸브8a를 닫아서 폐수의 유입을 차단한다.Thus, when the measured value decreases below 80% of the reference value by comparing the maximum respiratory rate measured continuously with the reference value, it is judged to be toxic and alerts the driver and decreases below 60% .The solenoid valve of the aeration tank 1 wastewater inlet pipe 8a To close off the inflow of waste water.

최대비호흡율 기준치의 선정에 있어 일단 1일 1회 이상 독성물질이 측정되면 일평균치가 정상치보다 낮은 값을 갖게 되므로 기준치의 타당성을 확보하기 위해 독성경보가 발령된 날의 일평균치는 기준치에서 제외하고 그 전날의 일평균치를 기준치로 삼는다.In selecting the maximum respiratory rate reference value, once the toxic substance is measured more than once a day, the daily average value is lower than the normal value. Therefore, the daily average value of the day on which the toxicity alarm is issued to ensure the validity of the reference value is excluded from the standard value. The daily average for the previous day is taken as a reference.

일단 독성을 측정한 후 접촉조3내에는 독성물질이 존재하므로 연속적인 유입수의 독성측정를 위해 일단 독성경보가 발령된 이후에 접촉조3 하단의 솔레노이드밸브8b를 열어서 접촉조3내의 슬러지를 모두 배출시킨 다음 새로운 폐수와 슬러지를 공급하여 호흡율을 계속 측정한다.Toxic substances are present in the contact tank 3 after the toxicity is measured. After the toxicity alarm is issued, the solenoid valve 8b at the bottom of the contact tank 3 is opened to discharge all the sludge in the contact tank 3 for the continuous inflow toxicity measurement. Then supply fresh waste water and sludge to continue to measure respiration rate.

상기와 같이 독성이 감지되면 폭기조1 유입관 솔레노이드밸브8a를 이용하여 폭기조1로 유입되는 폐수를 차단하여 별도의 탱크로 바이패스시키며, 저류조의 용량이 충분한 경우에는 별도의 탱크없이 저류조에 독성물질을 함유한 폐수를 저장하고, 상기 독성이 감지된 독성폐수는 물리화화적인 방법으로 처리하거나 희석하여 폭기조1에서 생물학적으로 처리한다.When the toxicity is detected as described above, the wastewater flowing into the aeration tank 1 is blocked by using the aeration tank 1 inlet solenoid valve 8a and bypassed to a separate tank.If the storage tank capacity is sufficient, toxic substances are stored in the storage tank without a separate tank. The wastewater contained is stored, and the toxic wastewater in which the toxicity is detected is treated or diluted biologically in an aeration tank 1 by the physicalization method.

실시예Example

안료폐수처리장을 약 1/1,200으로 축소한 파일럿-스케일(pilot-scale)의 활성슬러지 공정에 본 발명에 의한 독성측정장치를 부착하여 실험하였다.The experiment was carried out by attaching a toxicity measuring device according to the present invention to a pilot-scale activated sludge process in which the pigment wastewater treatment plant was reduced to about 1 / 1,200.

활성슬러지 시스템은 원수저류조, 혼합조, 750L 4단의 폭기조(3㎥), 침전조와 방류수저류조로 구성하였고, 폐수는 안료생산공장에서 발생된 폐수로 현장의 중화조와 가압부상조를 거친 폭기조 유입수로서 CODcr 농도는 1,200㎎/l, 폭기조의 유입부하는 2.8㎏CODcr/㎥·day로 운전되었다.(표 1 참조)Activated sludge system consisted of raw water storage tank, mixing tank, aeration tank (3㎥) of 4 stages of 750L, sedimentation tank and discharge water storage tank.Waste water is the wastewater generated from the pigment production plant. The CODcr concentration was 1,200 mg / l and the inlet load of the aeration tank was operated at 2.8 kg CODcr / m 3 · day (see Table 1).

pilot-scale 활성슬러지 시스템의 운전조건Operating conditions of pilot-scale activated sludge system 매개변수parameter value 유입수 유량Influent Flow 2.12㎥/day2.12㎥ / day 혼합조 수리체류시간(HRTcc)Mixing tank repair time (HRTcc) 13.6min13.6 min 폭기조 수리체류시간(HRTat)Aeration tank repair time (HRTat) 8.5*4 = 34hrs8.5 * 4 = 34hrs 유입수 농도Influent Concentration 1,200 mgCODcr/l1,200 mgCODcr / l 활성슬러지농도(MLSS)Activated Sludge Concentration (MLSS) 4,000mg/l4,000 mg / l 용적부하율(Lv)Volume load rate (Lv) 2.8㎏CODcr/㎥·day2.8㎏CODcr / ㎥day F/M비(food to microorganism)F / M ratio (food to microorganism) 0.85㎏COD/㎏MLVSS·day0.85kgCOD / kgMLVSSday 슬러지 체류시간(SRT)Sludge Retention Time (SRT) 20 days20 days

원폐수의 pH를 3으로 조절하면서 최대호흡율을 측정한 결과, 접촉조의 pH가 6.5, 6.0, 5.5, 4.9일 때 최대호흡율이 각각 20, 40, 60, 80% 감소하였다.As a result of measuring the maximum respiration rate by adjusting the pH of the raw wastewater to 3, the maximum respiration rate decreased by 20, 40, 60, 80% when the contact tank pH was 6.5, 6.0, 5.5, and 4.9, respectively.

또한, 접촉조의 수리체류시간을 12.7분으로, 접촉조의 부피를 7.5L로 하였을 때 원폐수와 접촉조내의 pH는 1의 차이를 보였다.In addition, the pH of the wastewater and the contact tank showed a difference of 1 when the retention time of the contact tank was 12.7 minutes and the volume of the contact tank was 7.5L.

따라서 원수의 pH를 각각 5.5, 5.0, 4.5, 3.9로 조절하여 실제호흡율과 최대호흡율을 동시에 측정하였다.(표 2 참조)Therefore, the pH of the raw water was adjusted to 5.5, 5.0, 4.5, and 3.9, respectively, and the actual and maximum respiration rates were simultaneously measured (see Table 2).

주어진 조건하에서 산 독성 주입시 독성측정장치의 측정변수인 최대비호흡율과 활성슬러지 액티비티(activity)의 상태변수인 실제호흡율을 비교하면, 최대비호흡율이 실제비호흡율에 비해 두배 정도 높은 독성영향을 받았다.Under the given conditions, the maximum respiratory rate was twice as high as the actual respiratory rate when comparing the maximum respiration rate, which is a measurement variable of the toxicity measuring device, and the actual respiration rate, which is the state variable of activated sludge activity. .

따라서 본 발명에 의한 독성감시장치를 이용하여, 산 독성 유입시 폭기조의 활성슬러지가 받게 되는 독성영향을 두 배 높은 민감도를 갖고서 십여분 만에 감지할 수 있었다.Therefore, by using the toxic sensitizer according to the present invention, the toxic effect of the activated sludge of the aeration tank upon acid toxicity can be detected in about ten minutes with a twice higher sensitivity.

비실제호흡율과 최대비호흡율에 대한 수소이온농도(pH)의 영향Effect of Hydrogen Ion Concentration on Specific Respiration Rate and Maximum Specific Respiration Rate 실시예Example 1One 22 33 44 유입수 pHInfluent pH 5.55.5 5.05.0 4.54.5 3.93.9 rmax,initalr max, inital 86.186.1 74.274.2 80.080.0 83.383.3 rmax,finalr max, final 67.767.7 32.032.0 28.628.6 17.517.5 Response(rmax,%)Response (r max, %) 21.421.4 56.956.9 64.364.3 79.079.0 rmax,initalr max, inital 27.527.5 27.527.5 28.128.1 25.525.5 rmax,finalr max, final 24.624.6 20.420.4 20.620.6 15.715.7 Response(ra,%)Response (r a, %) 10.510.5 25.825.8 26.726.7 38.438.4

주) Response = Note) Response =

본 발명에 의해 개발된 활성슬러지 공정의 독성영향 측정 시스템은 일차적으로 활성슬러지 공정으로 유입되는 독성물질의 존재를 사전에 측정함으로써 활성슬러지를 독성물질로부터 보호할 수 있고, 아울러 폐수처리장을 자동화하고 운전을 제어하는 기술의 필수적인 핵심요소로서 그 기능을 할 수 있다.The toxic effect measurement system of the activated sludge process developed by the present invention can primarily protect the activated sludge from toxic substances by measuring the presence of toxic substances introduced into the activated sludge process in advance, and also automate and operate the wastewater treatment plant. It can function as an essential key element of the technology that controls the control.

특히, 하수와 폐수를 병합처리하는 처리장에서 유용하게 이용될 수 있다.In particular, it can be usefully used in a treatment plant that combines sewage and wastewater.

일반적으로 하수처리장으로 유입되는 하·오수의 경우에는 독성물질을 함유하고 있지 않으므로 정상적인 운전조건에서는 활성슬러지가 독성물질로부터 독성영향을 받을 가능성이 상대적으로 작으나, 공장에서 발생하는 폐수는 여러 가지 독성물질의 함유가능성 높아 이들에서 발생하는 특정 오염물질에 의해 활성슬러지가 독성영향을 받아 처리장의 성능이 악화될 가능성이 매우 높다.In general, the sewage and sewage flowing into the sewage treatment plant do not contain toxic substances. Therefore, under normal operating conditions, the activated sludge is relatively less likely to be affected by toxic substances. It is very likely that the activated sludge will be toxically affected by the specific pollutants generated by them, which will likely deteriorate the performance of the treatment plant.

그러므로 이와 같이 간헐적으로 독성을 함유한 산업폐수에 의해 독성영향을 받을 수 있는 하폐수 공동처리장에서는 본 발명을 이용함으로써 독성물질로부터 활성슬러지 공정을 보호하여 연속적이고 안정적인 운전을 가능하게 할 수 있는 잇점과 효과 등을 득할 수 있는 것이다.Therefore, in the sewage wastewater treatment plant that can be toxicly affected by such toxic industrial wastewater, it is possible to use the present invention to protect the activated sludge process from toxic substances and to enable continuous and stable operation. You can get a back.

Claims (2)

하폐수의 독성측정 장치를 구성함에 있어서,In constructing the toxicity measuring device of sewage water, 폐수를 공급하는 접촉조 폐수 공급 펌프7a와 폭기조1에서 활성슬러지를 인출하여 접촉조 슬러지 공급 펌프7b에 의해 폐수와 슬러지가 연속적으로 공급되며 유입된 슬러지와 폐수가 송풍기14에서 공급된 공기에 의해 폭기·혼합되는 접촉조3와, 접촉조3의 슬러지 이송관12을 통해 이송된 활성슬러지의 호흡율을 측정하는 연속호흡율 측정기5와, 연속호흡율 측정기5에서 출력되는 시그널과 폭기조1내 미생물농도를 측정하는 MLSS(Mixed Liquor Suspended Solid)미터4에서 출력되는 시그널의 전송으로 측정된 데이터를 수집,가공하여 최대비호흡율의 변화에 근거, 독성물질의 존재를 판단하고 이를 운전자에게 경보 발령하는 독성제어기6와, 독성제어기6와 연결되어 독성물질의 측정치에 따라 폐수의 유입을 단속하는 폭기조1 유입관의 솔레노이드 밸브8a, 접촉조3내의 슬러지를 배출하는 접촉조3 배출관의 솔레노이드 밸브8b로 구성된 것을 특징으로 하는 활성슬러지 호흡율에 의한 하폐수의 독성측정장치.Activated sludge is withdrawn from the contact tank wastewater supply pump 7a and the aeration tank 1 for supplying the wastewater, and the wastewater and sludge are continuously supplied by the contact tank sludge supply pump 7b, and the introduced sludge and the wastewater are aerated by the air supplied from the blower 14. A continuous respiration rate measuring instrument 5 for measuring the respiratory rate of activated sludge transferred through the mixed contact tank 3 and the sludge conveying tube 12 of the contact tank 3, and the signal output from the continuous breathing rate measuring instrument 5 and the microbial concentration in the aeration tank 1 Toxic controller 6, which collects and processes the data measured by transmission of signals output from MLSS (Mixed Liquor Suspended Solid) meter 4 to determine the presence of toxic substances based on the change in maximum respiratory rate and to alert the driver The solenoid valve 8a of the aeration tank 1 and the contact tank 3 of the aeration tank 1 connected to the toxic controller 6 to control the inflow of wastewater according to the measurement of toxic substances Toxicity measuring apparatus of the wastewater by consisting of a solenoid valve 8b of the contact tank discharge pipe 3 for discharging the sludge in the activated sludge respiration characterized. 호흡율측정기5와 MLSS(Mixed Liquor Suspended Solid)미터4에서 연속적으로 측정되는 데이터들을 이용하여 최대비호흡율을 연속적으로 계산하고 매 일분단위로 저장되는 이들 데이터를 바탕으로 24시간 평균치를 계산하여 기준 최대비호흡율을 계산한 다음 연속계산되는 최대비호흡율과 그 전날의 기준 최대비호흡율과 비교하여 최대비호흡율이 기준 최대비호흡율의 80% 이하로 감소하면 경보를 발령하고 60% 이하로 감소하면 폭기조1 폐수유입관의 솔레노이드 밸브8a를 자동으로 차단하고, 60% 이하로 최대비호흡율이 한 번 이상 감소한 경우에는 이날의 평균 최대비호흡율은 익일의 기준 최대비호흡율로 정하지 않고 그 전날의 평균 최대비호흡율을 익일의 기준 최대비호흡율로 정하여 활성슬러지 공정으로 유입되는 유입수중에 독성물질에 있을 때 이에 의해 나타나는 최대비호흡율의 감소를 바탕으로 독성물질을 측정토록 한 것을 특징으로 하는 활성슬러지 호흡율에 의한 독성측정장치의 운전방법.Using the data measured continuously on the respiratory rate meter 5 and the Mixed Liquor Suspended Solid (MLSS) meter 4, the maximum respiratory rate is continuously calculated and based on these data stored on a daily basis, a 24-hour average is used to calculate the baseline maximum ratio. The respiratory rate is calculated and compared with the maximum respiratory rate calculated continuously and the standard maximum respiratory rate on the previous day. An alarm is issued when the maximum respiratory rate decreases to 80% or less of the standard maximum respiratory rate. If the solenoid valve 8a of the inlet pipe is automatically shut off and the maximum respiratory rate is reduced more than once by 60% or less, the average maximum respiratory rate on the day is not determined by the standard maximum respiratory rate on the following day, but the average maximum respiratory rate on the previous day is determined. If the toxic substance is in the influent flowing into the activated sludge process by setting the standard maximum respiratory rate of the next day, A method of operating a toxicology measurement apparatus according to activated sludge respiration rate, characterized in that to measure the toxic substances on the basis of the decrease in the maximum specific respiration rate.
KR1019980021040A 1998-06-01 1998-06-01 Toxicity measuring device based on activated sludge respiration rate and its operation method KR100305777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980021040A KR100305777B1 (en) 1998-06-01 1998-06-01 Toxicity measuring device based on activated sludge respiration rate and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980021040A KR100305777B1 (en) 1998-06-01 1998-06-01 Toxicity measuring device based on activated sludge respiration rate and its operation method

Publications (2)

Publication Number Publication Date
KR20000001018A KR20000001018A (en) 2000-01-15
KR100305777B1 true KR100305777B1 (en) 2001-10-19

Family

ID=19538565

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980021040A KR100305777B1 (en) 1998-06-01 1998-06-01 Toxicity measuring device based on activated sludge respiration rate and its operation method

Country Status (1)

Country Link
KR (1) KR100305777B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450521B1 (en) * 2002-01-14 2004-10-06 주식회사 드림바이오스 The on-line measuring device of sludge retention time(SRT) of WWTPS and toxic effect of waste using biological respiration rate
KR101238726B1 (en) 2013-01-16 2013-03-07 (주)파이브텍 The system of auto monitoring control with sludge density continuous measurement
KR101301096B1 (en) * 2011-02-21 2013-08-27 이티컨설팅 주식회사 Water treatment equipment having device for microbial respiration monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490197B1 (en) * 2002-10-14 2005-05-17 삼성정밀화학 주식회사 Method of evaluating waste resources to utilize waste resources via external substrate required for nitrogen removal process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950014000A (en) * 1993-11-24 1995-06-15 박웅서 Wastewater treatment method using continuous breathing apparatus and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950014000A (en) * 1993-11-24 1995-06-15 박웅서 Wastewater treatment method using continuous breathing apparatus and its device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450521B1 (en) * 2002-01-14 2004-10-06 주식회사 드림바이오스 The on-line measuring device of sludge retention time(SRT) of WWTPS and toxic effect of waste using biological respiration rate
KR101301096B1 (en) * 2011-02-21 2013-08-27 이티컨설팅 주식회사 Water treatment equipment having device for microbial respiration monitoring
KR101238726B1 (en) 2013-01-16 2013-03-07 (주)파이브텍 The system of auto monitoring control with sludge density continuous measurement

Also Published As

Publication number Publication date
KR20000001018A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
EP0441327B1 (en) Toxic substance-detecting device and water quality-monitoring system employing the same
Vanrolleghem et al. On-line monitoring equipment for wastewater treatment processes: state of the art
KR101233623B1 (en) Process and device for simulating water quality
König et al. A microbial sensor for detecting inhibitors of nitrification in wastewater
US5401412A (en) Method and apparatus for monitoring biological activity in wastewater and controlling the treatment thereof
KR100305777B1 (en) Toxicity measuring device based on activated sludge respiration rate and its operation method
Massone et al. Biosensors for nitrogen control in wastewaters
Martin Jr et al. Low-temperature inhibition of the activated sludge process by an industrial discharge containing the azo dye acid black 1
Ryu et al. Novel techniques to determine dilution ratios of raw wastewater and wastewater treatment plant effluent in the 5-day biochemical oxygen demand test
Rozzi et al. Characterization of textile wastewater and other industrial wastewaters by respirometric and titration biosensors
CN117269447A (en) Method for judging oxygen consumption substance of raw water by means of intermittent monitoring of OUR
De Bel et al. Applications of a respirometry based toxicity monitor
KR100247321B1 (en) Method and apparatus optimizing the process of sequencing batch reactor for analyzing specific oxygen uptake rate and nitrate nitrogen by real time on-line measurement at the biological wastewater treatment process
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP2004188268A (en) Water quality monitoring/controlling apparatus and sewage treating system
KR20150064574A (en) Energy-saving system for treatment of wastewater and method for control of the same
Jönsson et al. Evaluation of nitrification-inhibition measurements
Kong et al. On-line stBOD measurement and toxicity control of wastewaters with a respirographic biosensor
KR20230053017A (en) Water quality monitoring system of small scale sewage treatment plant of upper stream of dam
Gernaey et al. Sensors for nitrogen removal monitoring in wastewater treatment
Vanrolleghem et al. Comparison of two respirometric principles for the determination of short-term biochemical oxygen demand
Fiocchi et al. Automatic set-point titration for monitoring nitrification in SBRs
JP2001235464A (en) Method for monitoring poisonous substance and apparatus therefor
Sieranen Nitrous oxide emissions at three Finnish wastewater treatment plants–Mechanisms behind nitrous oxide emissions and potential of process modelling in emission quantification
Davies et al. The role of respirometry in maximising aerobic treatment plant efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140625

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 16

EXPY Expiration of term