KR100304374B1 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
KR100304374B1
KR100304374B1 KR1019980008778A KR19980008778A KR100304374B1 KR 100304374 B1 KR100304374 B1 KR 100304374B1 KR 1019980008778 A KR1019980008778 A KR 1019980008778A KR 19980008778 A KR19980008778 A KR 19980008778A KR 100304374 B1 KR100304374 B1 KR 100304374B1
Authority
KR
South Korea
Prior art keywords
active material
current collector
negative electrode
lithium ion
ion battery
Prior art date
Application number
KR1019980008778A
Other languages
Korean (ko)
Other versions
KR19990074885A (en
Inventor
재 훈 최
Original Assignee
전형구
파츠닉(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전형구, 파츠닉(주) filed Critical 전형구
Priority to KR1019980008778A priority Critical patent/KR100304374B1/en
Publication of KR19990074885A publication Critical patent/KR19990074885A/en
Application granted granted Critical
Publication of KR100304374B1 publication Critical patent/KR100304374B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided is a lithium ion battery, which can transfer the charges of anode and cathode active materials three-dimensionally in the upper and lower and the right and left directions, therefore it can prevent partial overcharge and overdischarge and extend lifetime of the battery. CONSTITUTION: The lithium ion battery comprises: a cathode active material(110) performing a reduction and an anode active material(120) performing an oxidation in a discharging process; an electrolyte layer being a channel for ions; a cathode current collector(140) and an anode current collector(150) being channels for electrons, which are made of a porous polymer resin having vent holes in the upper and lower and the right and left directions and coated with aluminium or copper.

Description

리튬이온 전지Lithium ion battery

본 발명은 리튬이온 전지에 관한 것으로, 더욱 상세하게는 양극 활성물질 및 음극 활성물질의 전하이동의 통로가 되는 양극 집전체 및 음극 집전체를 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지를 사용한 리튬이온 전지에 관한 것이다.The present invention relates to a lithium-ion battery, and more particularly, a porous sponge having a substantially scrubber shape in which holes are formed in the vertical and horizontal directions of the positive electrode current collector and the negative electrode current collector, which serve as charge transfer paths of the positive electrode active material and the negative electrode active material. It relates to a lithium ion battery using a high molecular resin.

일반적으로 리튬이온 전지는 음극 활성물질로 반응성이 강한 리튬 또는 리튬합금을 사용하거나, coke, graphite 등의 carbon powder를 많이 사용하고 있다.In general, lithium ion batteries use lithium or lithium alloys having high reactivity as a negative electrode active material, or use carbon powders such as coke and graphite.

이와 같은 리튬이온 전지는 방전과정 중 음극에서 리튬이온과 전자로 분해되며 전자는 전선을 따라 전지에 연결된 부하에 전달되어 전지의 양극으로 유입되게 되고, 리튬이온은 전해질쪽으로 나아가게 된다. 이때 전해질에 이온상으로 존재하는 알칼리금속인 리튬이온이 양극 활성물질과 외부 전선을 통해 공급된 전자와 함께 반응하여 전지반응 생성물을 만들게 된다.The lithium ion battery is decomposed into lithium ions and electrons at the negative electrode during the discharging process, and the electrons are transferred to the load connected to the battery along the electric wire to be introduced into the positive electrode of the battery, and the lithium ions proceed toward the electrolyte. In this case, lithium ions, which are alkali metals present in the ionic phase of the electrolyte, react with the positive electrode active material and the electrons supplied through an external wire to form a battery reaction product.

한편, 상기 양극 활성물질의 예로써 LiCoO2, LiNiO2또는 LiMnO4를 주로 하고, 전도성 카본과 이들을 결합시키는 바인더로 이루어진 것이 많이 사용되고 있다.Meanwhile, examples of the positive electrode active material include LiCoO 2 , LiNiO 2, or LiMnO 4 , and are mainly made of a conductive carbon and a binder bonding them.

상기 기능을 갖는 일반적인 리튬이온 전지의 구조를 도 1을 참조하여 설명하면 다음과 같다.The structure of a general lithium ion battery having the above function will be described with reference to FIG. 1.

도 1은 일반적인 리튬이온 전지를 나타내는 단면도이다.1 is a cross-sectional view showing a general lithium ion battery.

도 1에 도시된 바와 같이 통상의 리튬이온 전지(100)는, 방전과정 중 환원반응을 하는 양극 활성물질(110)과, 방전과정 중 산화반응을 하는 음극 활성물질(120)과, 상기 양극 활성물질(110) 및 음극 활성물질(120) 사이에 위치하여 방전과정 중 전자 및 이온의 통로가 되는 전해질 층(130)과, 상기 양극 활성물질(110)의 상면에 위치된 양극 집전체(140)와, 상기 음극 활성물질(120)의 하면에 위치된 음극 집전체(150)로 이루어진다.As shown in FIG. 1, a typical lithium ion battery 100 includes a cathode active material 110 that performs a reduction reaction during a discharge process, an anode active material 120 that performs an oxidation reaction during a discharge process, and the cathode activity. An electrolyte layer 130 positioned between the material 110 and the anode active material 120 to be a passage of electrons and ions during a discharge process, and a cathode current collector 140 disposed on an upper surface of the cathode active material 110. And a negative electrode current collector 150 positioned on a bottom surface of the negative electrode active material 120.

이때, 상기 양극 활성물질(110)은 원하는 출력에 따라 LiCoO2, LiNiO2또는 LiMn2O4계열이나 FeS2계열 등에서 선택하여 사용할 수 있는 것으로 방전과정 중에는 양극으로 들어오는 전자를 받아 양극 활성물질(110)과 전해질 층(130)의 사이 부근에서 환원반응을 수행하게 된다.In this case, the positive electrode active material 110 may be selected from LiCoO 2 , LiNiO 2 or LiMn 2 O 4 or FeS 2 based on the desired output, and receives the electrons coming into the positive electrode during the discharge process. ) And a reduction reaction in the vicinity of the electrolyte layer 130.

그리고, 상기 음극 활성물질(120)은 리튬이온 전지(100)에서는 주로 리튬박판이나 리튬합금박판 또는 coke나 graphite 등의 carbon powder가 사용되며, 방전과정 중 리튬이온 및 전자로 되는 산화반응을 일으켜 부하에 전자를 공급하게 된다.In addition, in the lithium ion battery 100, the negative electrode active material 120 mainly uses lithium thin plates, lithium alloy thin plates, or carbon powder such as coke or graphite, and causes an oxidation reaction of lithium ions and electrons during the discharge process. To supply electrons.

또한, 상기 전해질 층(130)은 리튬이온 전지(100)에서 방전과정 중 이온의 통로역할을 수행하게 된다.In addition, the electrolyte layer 130 serves as a passage of ions during the discharge process in the lithium ion battery 100.

한편, 상기 양극 집전체(140) 및 음극 집전체(150)는 알루미늄이나 구리의 포일 등을 이용하여 사용하는 데, 이러한 양극 집전체(140) 및 음극 집전체(150)는 도 2에 도시된 바와 같이 상하면이 막힌 형상으로 성형되어 상기 양극 활성물질(110) 및 음극 활성물질(120)의 전하이동을 가능하게 하는 기능을 수행한다.On the other hand, the positive electrode current collector 140 and the negative electrode current collector 150 is used using a foil of aluminum or copper, such a positive electrode current collector 140 and the negative electrode current collector 150 is shown in FIG. As described above, the upper and lower surfaces are formed in a clogged shape to perform a function of enabling charge movement of the positive electrode active material 110 and the negative electrode active material 120.

그런데, 종래 기술에 따른 리튬이온 전지(100)는 양극 집전체(140) 및 음극 집전체(150)가 상하면이 막힌 형상으로 성형되므로 인하여 전극반응 시 양극 활성물질(110) 및 음극 활성물질(120)의 전하이동 면적이 2차원적으로 한정되는 문제점이 있었다.However, in the lithium ion battery 100 according to the related art, since the positive electrode current collector 140 and the negative electrode current collector 150 are molded in a shape where the upper and lower surfaces thereof are blocked, the positive electrode active material 110 and the negative electrode active material 120 during the electrode reaction. ), There was a problem that the charge transfer area of) is two-dimensionally limited.

또한, 양극 활성물질(110) 및 음극 활성물질(120) 자체의 전기 전도도 역시 한정된 일정한 값을 가지므로 대전류의 충방전 시 전하의 이동이 원활하지 못하고, 국부적인 과충전 및 과방전이 발생하여 전극의 성능이 크게 저하되는 커다란 단점이 있었다.In addition, since the electrical conductivity of the positive electrode active material 110 and the negative electrode active material 120 itself also has a limited constant value, the movement of charge is not smooth when charging and discharging of a large current, and local overcharge and overdischarge occur so that the performance of the electrode There was a big disadvantage that this greatly degraded.

이에, 본 발명은 상기와 같은 제반 문제점을 해소하기 위하여 안출된 것으로 그 목적으로 하는 바는 양극 집전체 및 음극 집전체를 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지를 사용하므로써, 양극 활성물질 및 음극 활성물질의 전하이동이 상하좌우방향의 3차원적으로 이루어질 수 있도록 한 리튬이온 전지를 제공함에 있다.Accordingly, the present invention has been made in order to solve the above-mentioned problems, the object of the present invention is that the porous polymer resin of the roughly scrubber shape in which the positive electrode current collector and the negative electrode current collector are formed in through holes in the up, down, left and right directions The present invention provides a lithium ion battery that allows charge movement of a positive electrode active material and a negative electrode active material to be performed in three dimensions in the vertical, horizontal, left and right directions.

도 1은 일반적인 리튬이온 전지를 나타내는 단면도.1 is a cross-sectional view showing a typical lithium ion battery.

도 2는 종래 기술에 따른 리튬이온 전지의 양극 집전체 또는 음극 집전체를 나타내는 개략 단면도.2 is a schematic cross-sectional view showing a positive electrode current collector or a negative electrode current collector of a lithium ion battery according to the prior art.

도 3은 본 발명에 따른 리튬이온 전지의 양극 집전체 또는 음극 집전체를 나타내는 개략 단면도.3 is a schematic cross-sectional view showing a positive electrode current collector or a negative electrode current collector of a lithium ion battery according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

100 : 리튬이온 전지 110 : 양극 활성물질100 lithium ion battery 110 positive electrode active material

120 : 음극 활성물질 130 : 전해질 층120: negative electrode active material 130: electrolyte layer

140 : 양극 집전체 150 : 음극 집전체140: positive electrode current collector 150: negative electrode current collector

상기 목적을 달성하기 위한 본 발명은, 방전과정 중 환원반응 및 산화반응을 하는 양극 활성물질 및 음극 활성물질과, 이온의 통로가 되는 전해질 층과, 상기 양극 활성물질 및 상기 음극 활성물질에 접하여 전자의 이동통로가 되는 양극 집전체 및 음극 집전체를 포함하여 이루어진 리튬이온 전지에 있어서, 상기 양극 집전체 및 음극 집전체는 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지로 성형되어 알루미늄 및 구리로 무전해 도금되는 것을 그 기술적 구성상의 기본 특징으로 한다.The present invention for achieving the above object, the positive electrode active material and the negative electrode active material to the reduction and oxidation reaction during the discharge process, the electrolyte layer which is a passage of the ion, the positive electrode active material and the negative electrode active material in contact with the electron In a lithium ion battery comprising a positive electrode current collector and a negative electrode current collector to be a moving passage of the positive electrode current collector and the negative electrode current collector, the porous polymer resin having a roughly loofah shape having holes formed in the vertical, horizontal, vertical directions Molded by electroless plating with aluminum and copper is the basic feature of its technical construction.

이하, 본 발명에 따른 리튬이온 전지의 바람직한 실시예를 도 3을 참조하여 설명하면 다음과 같다.Hereinafter, a preferred embodiment of a lithium ion battery according to the present invention will be described with reference to FIG. 3.

도 3은 본 발명에 따른 리튬이온 전지의 양극 집전체 또는 음극 집전체를 나타내는 개략 단면도이고, 종래 구성과 동일 작용을 하는 동일 구성에 대해서는 동일 명칭 및 동일 부호를 병기 사용하기로 하고, 그에 대한 상세한 설명은 설명상의 번잡함을 피하기 위하여 생략하기로 한다.3 is a schematic cross-sectional view showing a positive electrode current collector or a negative electrode current collector of a lithium ion battery according to the present invention, the same configuration and the same reference numerals will be used for the same configuration having the same function as the conventional configuration, and detailed Descriptions will be omitted to avoid descriptive clutter.

도 1에 도시된 바와 같이 통상의 리튬이온 전지(100)는, 방전과정 중 환원반응을 하는 양극 활성물질(110)과, 방전과정 중 산화반응을 하는 음극 활성물질(120)과, 상기 양극 활성물질(110) 및 음극 활성물질(120) 사이에 위치하여 방전과정 중 이온의 통로가 되는 전해질 층(130)과, 상기 양극 활성물질(110)의 상면에 위치된 양극 집전체(140)와, 상기 음극 활성물질(120)의 하면에 위치된 음극 집전체(150)로 이루어진다.As shown in FIG. 1, a typical lithium ion battery 100 includes a cathode active material 110 that performs a reduction reaction during a discharge process, an anode active material 120 that performs an oxidation reaction during a discharge process, and the cathode activity. An electrolyte layer 130 disposed between the material 110 and the anode active material 120 to become a passage of ions during the discharge process, a cathode current collector 140 disposed on an upper surface of the cathode active material 110, The negative electrode current collector 150 is formed on the lower surface of the negative electrode active material 120.

이때, 상기 양극 집전체(140) 및 음극 집전체(150)는 도 3에 도시된 바와 같이, 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지로 성형됨과 동시에 알루미늄 및 구리 등으로 무전해 도금되어 이루어진다.At this time, the positive electrode current collector 140 and the negative electrode current collector 150, as shown in Figure 3, is formed of a porous polymer resin of approximately scrub-shaped porous resin having a through hole formed in the vertical, vertical, left and right directions and aluminum and It is made by electroless plating with copper or the like.

여기서, 상기 구성으로 이루어진 양극 집전체(140) 및 음극 집전체(150)는 양극 활성물질(110) 및 음극 활성물질(120)의 전하이동이 상하좌우방향의 3차원적으로 이루어질 수 있게 되어, 큰 부하 즉, 대전류의 충방전이 가능하며, 양극 활성물질(110) 및 음극 활성물질(120)의 이용율도 크게 할 수 있는 작용이 있음을 알 수 있다.Here, the positive electrode current collector 140 and the negative electrode current collector 150 having the above configuration can be carried out in the three-dimensional direction of the charge movement of the positive electrode active material 110 and the negative electrode active material 120 in the up, down, left and right directions, It can be seen that a large load, that is, charging and discharging of a large current is possible, and the utilization rate of the positive electrode active material 110 and the negative electrode active material 120 can also be increased.

이상에서와 같이 본 발명에 따른 리튬이온 전지에 의하면, 양극 활성물질 및 음극 활성물질의 전하이동의 통로가 되는 양극 집전체 및 음극 집전체를 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지로 성형하므로써, 상기 양극 활성물질 및 음극 활성물질의 전하이동이 상하좌우방향의 3차원적으로 이루어질 수 있게 되어, 큰 부하 즉, 대전류의 충방전이 가능하며, 양극 활성물질 및 음극 활성물질의 이용율도 크게 할 수 있으며, 국부적인 과충전 및 과방전을 예방할 수 있을 뿐만 아니라 전지의 수명을 더욱 연장할 수 있는 탁월한 효과가 있다.As described above, according to the lithium ion battery according to the present invention, the positive electrode current collector and the negative electrode current collector, which serve as charge transfer paths of the positive electrode active material and the negative electrode active material, have a substantially scrubber-shaped porosity in which holes are formed in up, down, left, and right directions. By molding into a high molecular resin, the charge movement of the positive electrode active material and the negative electrode active material can be made three-dimensionally in the up, down, left and right directions, so that a large load, that is, charging and discharging of a large current is possible, and the positive electrode active material and The utilization rate of the negative electrode active material can also be increased, and local overcharge and overdischarge can be prevented, as well as an excellent effect of further extending the life of the battery.

Claims (1)

방전과정 중 환원반응 및 산화반응을 하는 양극 활성물질 및 음극 활성물질과, 이온의 통로가 되는 전해질 층과, 상기 양극 활성물질 및 상기 음극 활성물질에 접하여 전자의 이동통로가 되는 양극 집전체 및 음극 집전체를 포함하여 이루어진 리튬이온 전지에 있어서,A positive electrode current collector and a negative electrode which are a cathode active material and a negative electrode active material which undergo a reduction reaction and an oxidation reaction during a discharge process, an electrolyte layer serving as an ion passage, and an electron moving path in contact with the positive electrode active material and the negative electrode active material In a lithium ion battery comprising a current collector, 상기 양극 집전체 및 음극 집전체는 상하좌우방향으로 통공이 형성된 대략 수세미 형상의 다공성(多孔性)의 고분자 수지로 성형되어 알루미늄 및 구리로 무전해 도금되는 것을 특징으로 하는 리튬이온 전지.The positive electrode current collector and the negative electrode current collector is a lithium ion battery, characterized in that it is formed of an approximately scrub-like porous polymer resin having holes formed in the vertical, vertical, left and right directions and electroless plated with aluminum and copper.
KR1019980008778A 1998-03-16 1998-03-16 Lithium ion battery KR100304374B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980008778A KR100304374B1 (en) 1998-03-16 1998-03-16 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980008778A KR100304374B1 (en) 1998-03-16 1998-03-16 Lithium ion battery

Publications (2)

Publication Number Publication Date
KR19990074885A KR19990074885A (en) 1999-10-05
KR100304374B1 true KR100304374B1 (en) 2001-11-30

Family

ID=37529883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980008778A KR100304374B1 (en) 1998-03-16 1998-03-16 Lithium ion battery

Country Status (1)

Country Link
KR (1) KR100304374B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666862B2 (en) * 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity

Also Published As

Publication number Publication date
KR19990074885A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
CN1114236C (en) Rechargeable lithium battery having improved reversible capacity
US8426052B2 (en) Li-ion battery with porous anode support
US9293796B2 (en) Metal-air battery with dual electrode anode
US8563173B2 (en) Li-ion battery with anode current collector coating
KR20090071633A (en) Hybrid energy storage device and method of making same
KR20070058484A (en) Improved lithium cell and method of forming same
CN109411823A (en) Improve or support the carbonate base electrolyte system with the efficiency of the electrochemical cell containing lithium anode
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
KR101028657B1 (en) Lithium powder and silicon oxide double layer anode, method of manufacturing the anode and lithium secondary battery using the anode
KR20230027162A (en) Lithium-ion battery with high specific energy density
EP2840630A1 (en) Anode active material for lithium secondary battery and lithium secondary battery including same
KR100447792B1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
EP3614463A1 (en) Electrode structure of electrochemical energy storage device and manufacturing method thereof
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
KR100304374B1 (en) Lithium ion battery
KR19990055229A (en) Lithium Battery and Manufacturing Method Thereof
KR20010037101A (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
KR20230023718A (en) Lithium-ion battery with high specific energy density
JPH0536401A (en) Lithium secondary battery
US11527759B2 (en) Dual porosity cathode for lithium-air battery
US20220293961A1 (en) Porous Polymer Lithium Cathode
JP2019067608A (en) Lithium ion battery
KR20180115485A (en) Battery Pack Having Top-Cap Housing with Hook-Type Fastening Structure
KR20230032159A (en) Anode for lithium secondary battery comprising composite material
JPH09161775A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee