KR100302879B1 - a method for manufacturing a reflective-type micro-liquid crystal display - Google Patents

a method for manufacturing a reflective-type micro-liquid crystal display Download PDF

Info

Publication number
KR100302879B1
KR100302879B1 KR1019990046412A KR19990046412A KR100302879B1 KR 100302879 B1 KR100302879 B1 KR 100302879B1 KR 1019990046412 A KR1019990046412 A KR 1019990046412A KR 19990046412 A KR19990046412 A KR 19990046412A KR 100302879 B1 KR100302879 B1 KR 100302879B1
Authority
KR
South Korea
Prior art keywords
film
deposited
substrate
titanium nitride
liquid crystal
Prior art date
Application number
KR1019990046412A
Other languages
Korean (ko)
Other versions
KR20010038443A (en
Inventor
석가문
Original Assignee
황인길
아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황인길, 아남반도체 주식회사 filed Critical 황인길
Priority to KR1019990046412A priority Critical patent/KR100302879B1/en
Publication of KR20010038443A publication Critical patent/KR20010038443A/en
Application granted granted Critical
Publication of KR100302879B1 publication Critical patent/KR100302879B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Liquid Crystal (AREA)

Abstract

규소 기판 위에 게이트 전극과 반도체 패턴, 소스 및 드레인 전극으로 이루어진 박막 트랜지스터를 형성한다. 이어, 절연막을 증착하고 패터닝하여 드레인 전극 드러내는 접촉 구멍을 형성한다. 이어, 배리어 금속층과 텅스텐층을 증착한 후 절연막이 드러날 때까지 평탄화 공정을 실시한다. 이어, 질화 티타늄막을 증착하고 기판을 대기 중에 방치한다. 이어, 질화 티타늄막 위에 반사막으로 알루미늄막을 증착한다. 이렇게 증착한 알루미늄막은 질화 티타늄막을 증착한 후 이어서 증착한 알루미늄막에 비해 활성화 에너지가 작아서 그레인 크기가 작기 때문에 표면이 균일하다. 표면이 균일하면 난반사가 적어지므로 빛이 입사되면 알루미늄막은 90-92%의 높은 반사율을 나타낸다. 또한, 알루미늄막의 두께를 1,000Å까지 줄여도 90-92%의 높은 반사율을 얻을 수 있다.A thin film transistor including a gate electrode, a semiconductor pattern, a source, and a drain electrode is formed on the silicon substrate. The insulating film is then deposited and patterned to form contact holes exposing the drain electrode. Subsequently, after the barrier metal layer and the tungsten layer are deposited, the planarization process is performed until the insulating film is exposed. Then, a titanium nitride film is deposited and the substrate is left in the air. Next, an aluminum film is deposited on the titanium nitride film as a reflective film. The aluminum film thus deposited has a uniform surface because the activation energy is smaller and the grain size is smaller than that of the subsequently deposited titanium nitride film. If the surface is uniform, the diffuse reflection is reduced, so when the light is incident, the aluminum film has a high reflectance of 90-92%. In addition, even if the thickness of the aluminum film is reduced to 1,000 mW, a high reflectance of 90-92% can be obtained.

Description

반사형 마이크로 액정 표시 장치용 기판의 제조 방법{a method for manufacturing a reflective-type micro-liquid crystal display}A manufacturing method of a substrate for a reflective micro liquid crystal display device {a method for manufacturing a reflective-type micro-liquid crystal display}

본 발명은 반사형 마이크로(micro) 액정 표시 장치용 기판에 관한 것으로, 더욱 상세하게는 반사율을 높이는 반사형 마이크로 액정 표시 장치용 기판에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a reflective micro liquid crystal display device, and more particularly, to a substrate for a reflective micro liquid crystal display device for increasing a reflectance.

액정 표시 장치는 현재 가장 널리 사용되고 있는 평판 표시 장치 중의 하나로서, 전극이 형성되어 있는 두 장의 기판, 두 기판 사이의 액정층으로 이루어지며, 전극에 전압을 인가하여 액정층의 액정 분자들을 재배열시킴으로써 투과되는 빛의 양을 조절하는 표시 장치이다.The liquid crystal display is one of the most widely used flat panel display devices. The liquid crystal display includes two substrates on which electrodes are formed and a liquid crystal layer between the two substrates. The liquid crystal molecules are rearranged by applying a voltage to the electrodes. The display device controls the amount of light transmitted.

이러한 액정 표시 장치는 빛을 발광하는 백 라이트(back light)가 부착되어 있는 투과형과 자연광을 이용하는 반사형으로 나눌 수가 있는데, 이 중에서 반사형 액정 표시 장치는 박막 트랜지스터와 반사막이 형성되어 있는 제1 기판과 컬러 필터가 형성되어 있는 제2 기판으로 형성되어 있다.Such a liquid crystal display may be classified into a transmissive type having a back light emitting light and a reflective type using natural light, among which a reflective liquid crystal display device has a first substrate having a thin film transistor and a reflective film formed thereon. And the second substrate on which the color filters are formed.

이러한 반사형 액정 표시 장치의 광효율을 높이기 위해서는 제1 기판에 형성되어 있는 반사막의 반사율을 높여야 한다.In order to increase the light efficiency of the reflective liquid crystal display, the reflectance of the reflective film formed on the first substrate should be increased.

본 발명이 이루고자 하는 기술적 과제는 반사형 마이크로 액정 표시 장치의 반사막의 반사율을 높이는 것이다.An object of the present invention is to increase the reflectance of the reflective film of the reflective micro liquid crystal display.

도 1a 내지 도 1d는 본 발명의 실시예에 따른 반사형 마이크로 액정 표시 장치용 기판의 제조 방법을 그 공정 순서에 따라 도시한 단면도이고,1A to 1D are cross-sectional views illustrating a method of manufacturing a substrate for a reflective micro liquid crystal display according to an exemplary embodiment of the present invention according to a process sequence thereof.

도 2는 제조 방법이 다른 두 박막의 반사율을 측정하여 나타낸 그래프이고,Figure 2 is a graph showing the measurement of the reflectance of two different thin film manufacturing method,

도 3은 본 발명의 실시예에 따라 제조된 박막에서 알루미늄막의 두께 변화에 따른 반사율을 측정하여 나타낸 그래프이다.Figure 3 is a graph showing the measurement of the reflectance according to the thickness change of the aluminum film in the thin film prepared according to the embodiment of the present invention.

본 발명에 따르면, 먼저 규소 기판 위에 게이트 전극과 반도체 패턴, 소스 및 드레인 전극으로 이루어진 박막 트랜지스터를 형성하고, 그 위에 절연막을 증착한다. 이어, 절연막을 패터닝하여 드레인 전극을 드러내는 접촉 구멍을 형성한다. 이어, 배리어 금속층과 텅스텐층을 차례로 증착한 후 절연막이 드러나도록 텅스텐층을 평탄화한다. 이어, 질화 티타늄막을 증착하고 기판을 대기 중에 방치한다. 이어, 질화 티타늄막 위에 알루미늄막을 증착한다.According to the present invention, first, a thin film transistor including a gate electrode, a semiconductor pattern, a source and a drain electrode is formed on a silicon substrate, and an insulating film is deposited thereon. Next, the insulating film is patterned to form a contact hole that exposes the drain electrode. Subsequently, the barrier metal layer and the tungsten layer are sequentially deposited, and the tungsten layer is planarized to expose the insulating film. Then, a titanium nitride film is deposited and the substrate is left in the air. Next, an aluminum film is deposited on the titanium nitride film.

여기서, 알루미늄막은 1,000-2,000Å의 두께로 형성하는 것이 바람직하다.Here, the aluminum film is preferably formed to a thickness of 1,000-2,000 kPa.

이러한 본 발명에서는 질화 티타늄막을 증착한 후 기판을 대기 중에 방치하면 이어서 질화 티타늄막 위에 증착되는 알루미늄막 표면이 균일하게 된다.In the present invention, when the titanium nitride film is deposited, the substrate is left in the air, whereby the surface of the aluminum film deposited on the titanium nitride film is uniform.

그러면, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 반사형 마이크로액정 표시 장치용 기판의 제조 방법에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 상세히 설명한다.Then, with reference to the accompanying drawings, a method for manufacturing a substrate for a reflective micro-liquid crystal display device according to an embodiment of the present invention will be described in detail to be easily carried out by those skilled in the art. do.

도 1a 내지 도 1d를 참조하여 본 발명의 실시예에 따른 반사형 마이크로 액정 표시 장치용 기판의 제조 방법에 대하여 상세히 설명한다.A method of manufacturing a reflective micro liquid crystal display substrate according to an exemplary embodiment of the present invention will be described in detail with reference to FIGS. 1A to 1D.

먼저, 도 1a에서와 같이 규소 기판(도시하지 않음) 위에 게이트 전극(도시하지 않음)과 반도체 패턴(도시하지 않음), 소스 전극(도시하지 않음) 및 드레인 전극(11)으로 이루어진 박막 트랜지스터를 형성한다. 이어, 드레인 전극(11) 위에 절연막(12)을 증착하고 패터닝하여 드레인 전극(11)을 드러내는 접촉 구멍(13)을 형성한다.First, as shown in FIG. 1A, a thin film transistor including a gate electrode (not shown), a semiconductor pattern (not shown), a source electrode (not shown), and a drain electrode 11 is formed on a silicon substrate (not shown). do. Subsequently, an insulating film 12 is deposited and patterned on the drain electrode 11 to form a contact hole 13 exposing the drain electrode 11.

이어, 도 1b에서와 같이 얇은 배리어 금속층을 증착하고 그 위에 텅스텐층을 증착하여 접촉 구멍(13)을 채운 후, 절연막(12)이 노출될 때까지 평탄화 공정을 실시하여 접촉 구멍(13) 내부에 배리어 금속층(14) 및 텅스텐층(15)을 남긴다.Subsequently, as shown in FIG. 1B, a thin barrier metal layer is deposited and a tungsten layer is deposited thereon to fill the contact hole 13, and then a planarization process is performed until the insulating film 12 is exposed, thereby forming the inside of the contact hole 13. The barrier metal layer 14 and the tungsten layer 15 are left.

이어, 도 1c에서와 같이 티타늄 표적이 장착되어 있는 증착실 안에 질소 기체를 넣고 반응성 스퍼터링법을 이용하여 질화 티타늄막(16)을 증착한다. 이어, 기판을 대기 중으로 꺼내어 냉각시킨다.Subsequently, nitrogen gas is placed in a deposition chamber in which the titanium target is mounted as shown in FIG. 1C, and the titanium nitride film 16 is deposited by using a reactive sputtering method. Then, the substrate is taken out into the atmosphere and cooled.

이어, 도 1d에서와 같이 기판을 다시 알루미늄 타겟이 장착되어 있는 증착실 안에 넣고 스퍼터링법을 이용하여 질화 티타늄막(16) 위에 알루미늄막(17)을 증착한다.Subsequently, as shown in FIG. 1D, the substrate is placed in the deposition chamber in which the aluminum target is mounted, and the aluminum film 17 is deposited on the titanium nitride film 16 by sputtering.

이러한 방법으로 제조된 박막의 반사율을 측정하여 도 2에 나타내었다.The reflectance of the thin film manufactured by this method was measured and shown in FIG. 2.

도 2에서 x축은 박막에 입사된 빛의 파장으로서 적(700nm), 녹(546nm),청(436nm)의 파장을 포함하는 가시광선 파장 대역(380-780nm)이며, y축은 입사된 빛이 박막에서 반사되는 정도를 나타내는 반사율이다.In FIG. 2, the x-axis is a wavelength of light incident on the thin film and is a visible light wavelength band (380-780 nm) including wavelengths of red (700 nm), green (546 nm), and blue (436 nm). Reflectance that reflects the degree of reflection in.

여기서, 그래프 A는 질화 티타늄막(16)을 증착한 후 기판을 대기 중으로 꺼내지 않고 이어서 알루미늄막(17)을 증착한 박막의 반사율을 측정한 것이고, 그래프 B는 질화 티타늄막(16)을 증착한 후 기판을 대기 중으로 꺼내어 냉각시키고 다시 증착실에 넣어 알루미늄막(17)을 증착한 박막의 반사율을 측정한 것이다. 이때, 그래프 A와 B의 질화 티타늄막(16)과 알루미늄막(17)의 두께는 각각 600Å, 1,500Å이다.Here, graph A measures the reflectance of the thin film on which the aluminum film 17 is deposited without depositing the substrate into the atmosphere after depositing the titanium nitride film 16, and graph B shows the deposition of the titanium nitride film 16 on the substrate. After that, the substrate was taken out into the atmosphere, cooled, and put back into the deposition chamber to measure the reflectance of the thin film on which the aluminum film 17 was deposited. At this time, the thicknesses of the titanium nitride film 16 and the aluminum film 17 of graphs A and B are 600 kPa and 1,500 kPa, respectively.

먼저, 그래프 A에서 박막의 반사율은 87-89%로서 90% 이상의 반사율을 얻을 수 없다. 질화 티타늄막(16)을 증착한 후 연속하여 알루미늄막(17)을 증착하면 그레인(grain)을 형성하기 위한 활성화 에너지(activation energy)가 크기 때문에 그레인 크기가 커지게 되어 알루미늄막(17) 표면이 거칠어지는데, 이로 인해 빛이 입사될 때 난반사가 일어나므로 반사율이 감소하게 된다.First, in the graph A, the reflectance of the thin film is 87-89% and a reflectance of 90% or more cannot be obtained. After depositing the titanium nitride film 16 and subsequently depositing the aluminum film 17, since the activation energy for forming grains is large, the grain size is increased so that the surface of the aluminum film 17 is increased. This results in rough reflections, which results in reduced reflectance because diffuse reflection occurs when light is incident.

그래프 B에서, 알루미늄막(17)의 반사율은 90-92%로서 그래프 A에 나타난 반사율보다 높다. 질화 티타늄막(16)을 증착하고 기판을 대기 중으로 꺼내어 식힌 후 알루미늄막(17)을 증착하는 경우에는 질화 티타늄막(16)을 증착한 후 연속하여 알루미늄막(17)을 증착할 때보다 활성화 에너지가 작기 때문에 알루미늄막(17)의 그레인 크기가 감소한다. 따라서, 알루미늄막(17)의 표면이 균일하게 되어 난반사가 일어나지 않기 때문에 반사율이 증가한다.In graph B, the reflectance of the aluminum film 17 is 90-92%, which is higher than the reflectance shown in graph A. In the case where the titanium nitride film 16 is deposited, the substrate is taken out into the air, cooled, and the aluminum film 17 is deposited, the activation energy is increased when the titanium nitride film 16 is deposited and subsequently the aluminum film 17 is continuously deposited. Because of the small size, the grain size of the aluminum film 17 is reduced. Therefore, the reflectance increases because the surface of the aluminum film 17 is uniform and no diffuse reflection occurs.

도 3에는 알루미늄막(17)의 두께 변화에 따른 박막의 반사율을 도시하였다.3 shows the reflectance of the thin film according to the thickness change of the aluminum film 17.

도 3은 질화 티타늄막(16)을 600Å으로 증착하고 기판을 대기 중으로 꺼내어 식힌 후 다시 기판을 증착실 안에 넣어 알루미늄막(17)을 증착한 것이다.3 shows that the titanium nitride film 16 is deposited at 600 kPa, the substrate is taken out into the air, cooled, and the aluminum film 17 is deposited by placing the substrate in the deposition chamber.

도 3에서와 같이, 알루미늄막(17)의 두께가 1,000Å-2,000Å일 때 모두 반사율은 90-92%를 나타낸다.As shown in FIG. 3, when the thickness of the aluminum film 17 is 1,000 kPa-2,000 kPa, the reflectance is 90-92%.

이와 같이 본 발명에 따른 반사형 마이크로 액정 표시 장치의 제조 방법에서는 질화 티타늄막을 증착하고 기판을 냉각시킨 후 알루미늄막을 증착함으로써 90% 이상의 반사율을 얻을 수 있다.As described above, in the method of manufacturing the reflective micro liquid crystal display according to the present invention, a reflectance of 90% or more can be obtained by depositing a titanium nitride film, cooling the substrate, and depositing an aluminum film.

Claims (2)

규소 기판 위에 게이트 전극과 반도체 패턴, 소스 및 드레인 전극으로 이루어진 박막 트랜지스터를 형성하는 단계,Forming a thin film transistor comprising a gate electrode, a semiconductor pattern, a source and a drain electrode on a silicon substrate, 상기 기판 위에 절연막을 증착하고 패터닝하여 상기 드레인 전극을 드러내는 접촉 구멍을 형성하는 단계,Depositing and patterning an insulating film on the substrate to form a contact hole exposing the drain electrode, 배리어 금속층을 증착하는 단계,Depositing a barrier metal layer, 상기 배리어 금속층 위에 텅스텐층을 증착하는 단계,Depositing a tungsten layer on the barrier metal layer; 상기 절연막이 드러나도록 상기 텅스텐층을 평탄화하는 단계,Planarizing the tungsten layer to expose the insulating film; 질화 티타늄막을 증착하는 단계,Depositing a titanium nitride film, 상기 기판을 대기 중에 방치하는 단계,Leaving the substrate in the air, 상기 질화 티타늄막 위에 알루미늄막을 증착하는 단계Depositing an aluminum film on the titanium nitride film 를 포함하는 반사형 마이크로 액정 표시 장치용 기판의 제조 방법.Method for manufacturing a substrate for a reflective micro liquid crystal display comprising a. 제1항에서,In claim 1, 상기 알루미늄막의 두께는 1,000-2,000Å의 두께를 가지는 반사형 액정 표시 장치용 기판의 제조 방법.The thickness of the aluminum film is a manufacturing method of a substrate for a reflective liquid crystal display device having a thickness of 1,000-2,000Å.
KR1019990046412A 1999-10-25 1999-10-25 a method for manufacturing a reflective-type micro-liquid crystal display KR100302879B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990046412A KR100302879B1 (en) 1999-10-25 1999-10-25 a method for manufacturing a reflective-type micro-liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990046412A KR100302879B1 (en) 1999-10-25 1999-10-25 a method for manufacturing a reflective-type micro-liquid crystal display

Publications (2)

Publication Number Publication Date
KR20010038443A KR20010038443A (en) 2001-05-15
KR100302879B1 true KR100302879B1 (en) 2001-11-02

Family

ID=19616808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990046412A KR100302879B1 (en) 1999-10-25 1999-10-25 a method for manufacturing a reflective-type micro-liquid crystal display

Country Status (1)

Country Link
KR (1) KR100302879B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258622A (en) * 1993-03-08 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> Display and recording medium, display and recording method and display and recording device
JPH07287223A (en) * 1994-04-19 1995-10-31 Casio Comput Co Ltd Reflection type liquid crystal display element
JPH0821987A (en) * 1994-07-07 1996-01-23 Sanyo Electric Co Ltd Production of polymer liquid crystal layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258622A (en) * 1993-03-08 1994-09-16 Nippon Telegr & Teleph Corp <Ntt> Display and recording medium, display and recording method and display and recording device
JPH07287223A (en) * 1994-04-19 1995-10-31 Casio Comput Co Ltd Reflection type liquid crystal display element
JPH0821987A (en) * 1994-07-07 1996-01-23 Sanyo Electric Co Ltd Production of polymer liquid crystal layer

Also Published As

Publication number Publication date
KR20010038443A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US6951400B2 (en) High index coated light management films
US7158302B2 (en) Wire grid polarizer with double metal layers
US5932895A (en) Saturated full color stacked organic light emitting devices
KR20070010472A (en) Hybrid type polarizer, method for manufacturing thereof and display device having the same
WO2007076271A3 (en) Semiconductor device with antireflective coating
CN108873519A (en) COA type array substrate and preparation method thereof
US8169428B2 (en) Display substrate, method of manufacturing the same and display device having the same
KR100302879B1 (en) a method for manufacturing a reflective-type micro-liquid crystal display
CA2457905C (en) Method for making a colour image sensor with recessed contact apertures prior to thinning
KR19990080631A (en) LCD Display
KR20010038442A (en) a panel for a reflective-type micro-liquid crystal display and a manufacturing method thereof
KR20050079138A (en) Transflective liquid crystal display device and manufacturing method thereof
US20090189513A1 (en) LED using thin film dichroic filters
AU2003294393A1 (en) High index of refraction coated light management films
KR100361570B1 (en) Method for manufacturing panel of reflective-type micro liquid crystal display
US20100112488A1 (en) Method for forming microlens of image sensor and method for manufacturing the image sensor
KR100487783B1 (en) Fabrication method of an array substrate having a reflective plate for a liquid crystal display device
US20060066784A1 (en) Method of manufacturing a semi-transparent type liquid crystal display panel
KR100355866B1 (en) a method manufacturing a panel for a reflective-type micro-liquid crystal display
KR950004969B1 (en) Exposure method for semicondutor device
JP2003279945A (en) Liquid crystal display device
KR100508859B1 (en) A manufacturing method of semiconductor device
JPH11330480A (en) Fabrication of thin film transistor
JP3382038B2 (en) Manufacturing method of surface acoustic wave device
JP2003330016A (en) Liquid crystal display and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee