KR100301625B1 - Manufacturing method for ceramic hot gas filter - Google Patents
Manufacturing method for ceramic hot gas filter Download PDFInfo
- Publication number
- KR100301625B1 KR100301625B1 KR1019990010530A KR19990010530A KR100301625B1 KR 100301625 B1 KR100301625 B1 KR 100301625B1 KR 1019990010530 A KR1019990010530 A KR 1019990010530A KR 19990010530 A KR19990010530 A KR 19990010530A KR 100301625 B1 KR100301625 B1 KR 100301625B1
- Authority
- KR
- South Korea
- Prior art keywords
- support layer
- neck portion
- hot gas
- impregnation
- gas filter
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 32
- 238000005470 impregnation Methods 0.000 claims description 30
- 239000002243 precursor Substances 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 5
- 239000011888 foil Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920003257 polycarbosilane Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 150000007523 nucleic acids Chemical class 0.000 claims description 2
- 102000039446 nucleic acids Human genes 0.000 claims description 2
- 108020004707 nucleic acids Proteins 0.000 claims description 2
- 239000011863 silicon-based powder Substances 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- UVBVCLIQCPOREQ-UHFFFAOYSA-N trichloro(methyl)silane Chemical compound C[Si](Cl)(Cl)Cl.C[Si](Cl)(Cl)Cl UVBVCLIQCPOREQ-UHFFFAOYSA-N 0.000 claims 1
- 238000001914 filtration Methods 0.000 abstract description 8
- 239000002245 particle Substances 0.000 abstract description 8
- 239000003623 enhancer Substances 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 37
- 239000000843 powder Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000005055 methyl trichlorosilane Substances 0.000 description 2
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0464—Impregnants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/10—Filtering material manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1275—Stiffness
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Filtering Materials (AREA)
Abstract
본 발명은 세라믹 고온가스필터의 제조방법에 관한 것으로, 입자가 큰 탄화규소분말을 이용하여 일정크기의 지지층용 성형체를 제조한 다음, 그 성형체를 소결하여 지지층용 소결체를 제조하고, 그와 같이 제조된 지지층용 소결체의 넥크부에 강도향상제를 함침한 후, 그와 같이 함침된 소결체의 외측에 입자크기가 작은 탄화규소분말을 코팅하여 여과층을 형성하는 방법으로 세라믹 고온가스필터를 제조함으로서, 필터의 취약부인 넥크부 강도가 강도향상제에 의하여 향상되게 되어 필터의 수명을 향상시키는 효과가 있다.The present invention relates to a method for producing a ceramic hot gas filter, and using a silicon carbide powder having a large particle, to produce a support layer molded body of a certain size, and then to sinter the molded body to produce a support layer sintered body, and to manufacture as such After impregnating the strength enhancer in the neck portion of the sintered compact for the support layer, a ceramic hot gas filter is produced by coating a silicon carbide powder having a small particle size on the outside of the sintered compact so as to form a filtration layer. The strength of the neck part, which is a weak part of, is improved by the strength enhancer, thereby improving the life of the filter.
Description
본 발명은 세라믹 고온가스필터의 제조방법에 관한 것으로, 특히 여과기능은 그대로 유지하면서 외부의 충격에 취약한 넥크분에 대하여 기계적인 강도를 향상시킨 세라믹 고온가스필터의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a ceramic hot gas filter, and more particularly, to a method for manufacturing a ceramic hot gas filter in which mechanical strength is improved for a neck powder that is vulnerable to external impact while maintaining a filtration function.
세라믹 고온가스필터란 연소로 발생된 300℃∼1200℃의 고온가스를 통과시켜서 분진을 제거하고 깨끗한 고온가스를 공급하는 필터를 말하며, 이 고온가스필터는 여러분야에서 응용되고 있지만, 특히 아이 지 시 시 시스템(INTEGRATED GASIFIED COMBINED CYCLE SYSTEM, 이하 IGCC 시스템이라함)의 주요부품으로 사용되어 지고 있다.Ceramic hot gas filter is a filter that removes dust and supplies clean hot gas by passing hot gas of 300 ℃ ~ 1200 ℃ generated by combustion. It is used as a main part of the system (INTEGRATED GASIFIED COMBINED CYCLE SYSTEM).
IGCC 시스템이란 기존의 화력발전의 개념보다 한 단계 진보된 것으로서 석탄의 연소가스로 가스터빈 발전기를 구동하고, 배기가스로서 다시 증기터빈 발전기를 구동하는 것이다. 이때 열효율은 종래의 40% 수준에서 55∼60%까지 달성될 수 있고, 석탄을 원료로 이용할 수 있다는 장점이 있다.The IGCC system is a step forward from the concept of thermal power generation, which drives gas turbine generators with coal combustion gas and steam turbine generators as exhaust gas. At this time, the thermal efficiency can be achieved up to 55 to 60% in the conventional 40% level, there is an advantage that can use coal as a raw material.
미국의 경우 현재 약 30%가 IGCC 시스템으로 전화된 상태인데, 이 시스템에서 세라믹 고온가스필터를 사용하여 고온가스에 섞여있는 분진을 효율적으로 제거하는 것은 전체공정을 좌우하는 주요과정이다.In the United States, about 30% of the current state has been converted to IGCC systems, in which the use of ceramic hot gas filters to efficiently remove dust mixed with hot gases is a major process that determines the overall process.
상기와 같은 IGCC 시스템의 전체구성은 도 1에 도시되어 있는 바와 같이, 압력연소실(1)에서 석탄을 가스화시켜서 가스터빈(2)을 가동하여 1차로 전력을 생산하고, 가스터빈(2)에서 나온 가스에 포함된 열을 회수하여 증기터빈(3)을 가동하여 2차로 전력을 생산하는 구조로 되어 있다. 이때 압력연소실(1)에서 나온 고온가스는 분진을 많이 포함하고 있으며, 이 분진은 가스터빈(2)에 치명적으로 나쁜 영향을 준다. 따라서 IGCC 시스템이 성공적으로 운용되기 위하여 압력연소실(1)에서 나온 고온연소가스를 여과하여 청정가스로 만들기 위한 세라믹 고온가스필터(4)들이 설치되어 있다.As shown in FIG. 1, the overall configuration of the IGCC system as shown in FIG. 1 operates gas turbine 2 by gasifying coal in the pressure combustion chamber 1 to produce electric power primarily and to exit the gas turbine 2. By recovering the heat contained in the gas to operate the steam turbine (3) has a structure to produce electric power secondary. At this time, the hot gas from the pressure combustion chamber (1) contains a lot of dust, which has a fatal adverse effect on the gas turbine (2). Therefore, in order to operate the IGCC system successfully, ceramic hot gas filters 4 are installed to filter the hot combustion gas from the pressure combustion chamber 1 to make the clean gas.
도 2는 종래의 세라믹 고온가스필터(4)의 형상을 보인 단면도로서, 통상적으로 외경 약 60 mm, 내경 약 40 mm, 길이 1∼2 m의 한쪽이 막힌 관형상으로 되어 있으며, 상세히 보인 부분과 같이 약 10 mm 두께의 지지층과 약 50 μm 두께의 여과층으로 구성되어 있다. 여과층은 약 5 μm 크기의 세라믹 입자로 구성되어 있기 때문에 작은 기공들이 많이 형성되어 있어서 분진을 여과하게 되고, 지지층은 가스필터 전체를 기계적으로 지지하는 역할을 한다.2 is a cross-sectional view showing the shape of a conventional ceramic hot gas filter 4, which is generally a tubular shape in which one of an outer diameter of about 60 mm, an inner diameter of about 40 mm, and a length of 1 to 2 m is blocked. Likewise, it consists of a support layer about 10 mm thick and a filter layer about 50 μm thick. Since the filtration layer is composed of ceramic particles having a size of about 5 μm, many small pores are formed to filter dust, and the support layer serves to mechanically support the entire gas filter.
이와 같이 구성되어 있는 종래의 고온가스필터(4)는 도 3의 공정도에서와 같이, 탄화규소, 알루미나와 같은 세라믹분말과 첨가제 같은 원재료를 준비하는 원재료준비작업을 실시하고, 그와 같이 준비된 원재료를 래밍법, 캐스팅법, 압출법 등과 같은 방법을 이용하여 일정형태로 성형하는 성형작업을 실시한 다음, 그와 같이 성형된 부품을 일정온도 또는 공기중에서 일정경도를 갖도록 소결하는 소결작업을 차례로 실시하여 제품을 완성한다.In the conventional high temperature gas filter 4 configured as described above, as shown in the process diagram of FIG. 3, a raw material preparation operation for preparing raw materials such as ceramic powder and additives such as silicon carbide and alumina, and the raw materials prepared as described above After the molding work to be formed into a certain shape by using a method such as the ramming method, the casting method, the extrusion method, etc., the sintering work is then sequentially performed to sinter the molded parts to have a certain hardness at a constant temperature or in the air. To complete.
그러나, 상기와 같이 제조된 고온가스필터(4)는 장치의 운전에서 발생되는진동응력, 쌓인 분진을 주기적으로 털어줄 때 발생되는 진동응력, 필터의 안쪽과 바깥쪽에서 생기는 기압차에 의한 응력들이 발생하게 되는데, 이와 같이 발생되는 응력은 고온가스필터(4)를 고정시키는 넥크부(4a)에 집중되어 고온가스필터(4)의 파손을 일으키는 주요인이 되는 문제점이 있었다.However, the hot gas filter 4 manufactured as described above has vibration stresses generated during operation of the apparatus, vibration stresses generated when the dust is periodically shaken off, and stresses caused by the pressure difference generated inside and outside the filter. However, the stress generated in this way is concentrated on the neck portion 4a for fixing the hot gas filter 4, thereby causing a problem of causing the breakage of the hot gas filter 4.
상기와 같은 문제점을 감안하여 안출한 본 발명의 목적은 고온가스필터의 넥크부의 강도를 향상시켜서 사용수명을 향상시키도록 하는데 적합한 세라믹 고온가스필터의 제조방법을 제공함에 있다.An object of the present invention devised in view of the above problems is to provide a method for producing a ceramic hot gas filter suitable for improving the service life by improving the strength of the neck portion of the hot gas filter.
도 1은 일반적으로 세라믹 고온가스필터가 사용되는 아이 지 시 시 시스템의 구조를 개략적으로 보인 구성도.1 is a schematic view showing the structure of an ISI system in which a ceramic hot gas filter is generally used.
도 2는 종래 고온가스필터의 구조를 보인 단면도.Figure 2 is a cross-sectional view showing the structure of a conventional hot gas filter.
도 3은 종래 고온가스필터의 제조순서를 보인 공정도.Figure 3 is a process chart showing the manufacturing procedure of the conventional hot gas filter.
도 4는 본 발명 세라믹 고온가스필터의 제조순서를 보인 공정도.Figure 4 is a process chart showing the manufacturing procedure of the ceramic hot gas filter of the present invention.
도 5는 본 발명에 따른 세라믹 고온가스필터의 구조를 보인 단면도.Figure 5 is a cross-sectional view showing the structure of a ceramic hot gas filter according to the present invention.
도 6은 종래와 본발명의 제조방법에 따라 제조된 필터들의 필터링기능 비교 그래프.Figure 6 is a graph comparing the filtering function of the filters prepared according to the conventional method of the present invention.
도 7은 종래 함침을 하지 않은 필터와 본 발명의 함침을 한 필터의 조직사진.Figure 7 is a tissue photograph of the filter impregnated and the filter of the present invention not conventionally impregnated.
도 8은 본 발명에 의하여 제조된 고온가스필터의 꺾임강도를 보인 표.8 is a table showing the bending strength of the hot gas filter manufactured by the present invention.
상기와 같은 본 발명의 목적을 달성하기 위하여 세라믹 고온가스필터의 제조에 있어서, 지지층용 소결체의 넥크부에 강도향상제를 함침시켜서 넥크부의 강도향상에 따른 수명을 향상시킨 것을 특징으로 하는 세라믹 고온가스필터의 제조방법이 제공된다.In the manufacture of the ceramic hot gas filter in order to achieve the object of the present invention as described above, by impregnating the strength enhancer in the neck portion of the sintered body for the support layer, the ceramic hot gas filter characterized in that to improve the lifespan according to the improved strength of the neck portion Provided is a method for preparing.
이하, 상기와 같은 본 발명 세라믹 고온가스필터의 제조방법에 따른 실시예를 도 4와 도 5를 참조하여 상세히 설명하면 다음과 같다.Hereinafter, an embodiment according to the method of manufacturing the ceramic hot gas filter of the present invention as described above will be described in detail with reference to FIGS. 4 and 5.
실시예Example
가) 원료준비 및 혼합A) Raw material preparation and mixing
세라믹 고온가스필터의 지지층용 원료로 사용되는 탄화규소분말(크기 약 50 μm, 중량 90%)과 유기물 결합제(CMC, 중량 5%) 및 무기물 결합제(카올린, 중량 5%)를 준비한 다음, 그와 같이 준비된 원료에 일정량의 물을 첨가하고, 습식 볼 밀링하여 충분히 혼합이 이루어지도록 한다. 단 후속공정으로 진행되는 성형방법에따라 소정양의 물을 첨가하여 슬러리로 제조할 수도 있다.Silicon carbide powder (size about 50 μm, weight 90%), organic binder (CMC, 5% by weight) and inorganic binder (kaolin, 5% by weight) used as raw materials for the support layer of the ceramic hot gas filter were prepared. A certain amount of water is added to the prepared raw material, and wet ball milling to allow sufficient mixing. However, the slurry may be prepared by adding a predetermined amount of water according to the molding method proceeding to a subsequent step.
나) 성형B) molding
상기와 같이 혼합된 혼합분말을 길이 1∼2 m, 외경 약 40 mm인 만드렐과 길이 1∼2 m, 내경 약 60 mm인 몰드로 구성된 성형금형에 넣고 래밍법(RAMMING)으로 성형한다. 또는 상기 혼합 슬러리 원료를 상기 성형몰드와 동일 크기의 석고 성형몰드에 넣고 진공캐스팅(VACCUM CASTING) 법으로 성형한다.The mixed powder mixed as described above is placed in a molding mold composed of a moldel having a length of 1 to 2 m and an outer diameter of about 40 mm, and a mold having a length of 1 to 2 m and an inner diameter of about 60 mm, and molded by ramming. Alternatively, the mixed slurry raw material is put into a gypsum molding mold having the same size as the molding mold and molded by vacuum casting (VACCUM CASTING) method.
그 다음, 상기와 같이 성형된 성형체와 몰드를 분리한 후, 상온에서 충분히 건조한 다음, 100℃ 이하의 온도에서 완전건조한다.Then, after separating the molded article and the mold formed as described above, and dried sufficiently at room temperature, and completely dried at a temperature of 100 ℃ or less.
다) 소결C) sintering
상기와 같이 성형한 성형체를 1250℃∼1450℃ 범위의 온도에서 1∼5 시간 동안 소결하여 성형체가 일정강도를 갖도록 한 다음, 그와 같이 소결된 소결체를 다시 공기중에서 1∼5 시간 동안 방치하여 소결체로된 지지층을 완성한다. 그리고, 상기와 같이 소결을 실시하는 조건중 가장 바람직한 조건은 1400℃에서 2 시간 실시하는 것이다.The molded article molded as described above is sintered at a temperature in the range of 1250 ° C. to 1450 ° C. for 1 to 5 hours so that the molded body has a constant strength. Complete the supporting layer. In addition, the most preferable conditions among the conditions which sinter as mentioned above are performed at 1400 degreeC for 2 hours.
라) 함침D) impregnation
상기와 같이 제조된 소결체인 지지층의 넥크부에는 강도를 향상시키기 위하여 여러가지 방법으로 함침을 실시하게 되는데, 대표적인 방법으로 화학증침법, 용액 및 졸 함침법, 용융금속 및 용융 세라믹스 함침법 등이 있으며, 이와 같은 방법들을 차례로 설명하면 다음과 같다.The neck portion of the support layer, which is the sintered body manufactured as described above, is impregnated in various ways to improve strength. Representative methods include chemical vapor deposition, solution and sol impregnation, molten metal and molten ceramic impregnation, and the like. These methods are explained in turn as follows.
1)화학증침법1) Chemical evaporation method
화학증침에 의한 함침일 경우에는 원료로 메틸트리클로로실란 (METHYLTRICHLOROSILANE, MTS, CH3SiCl3)을 준비하고, 필터의 넥크부만 증침시키기 위하여 소결된 소결체의 넥크부를 제외한 나머지 부분을 흑연 호일(GRAPHITE FOIL)로 마스킹한 다음, 마스킹된 필터를 밀봉된 관상의 튜브내에 위치시키고, 진공펌프로 펌핑하여 상기 튜브내의 압력을 5 kPa로 감압한 후, 1150℃로 온도를 올린다.In case of impregnation by chemical evaporation, methyltrichlorosilane (METHYLTRICHLOROSILANE, MTS, CH 3 SiCl 3 ) is prepared as a raw material, and the remaining portion except the neck portion of the sintered sintered body is added to the graphite foil (GRAPHITE) in order to immerse only the neck portion of the filter. FOIL), then the masked filter is placed in a sealed tubular tube and pumped with a vacuum pump to reduce the pressure in the tube to 5 kPa and then raise the temperature to 1150 ° C.
그 다음, 외부에서 수소 기체를 0℃의 메틸클로로실란 용액을 통과시킨 다음, 튜브의 내부로 이를 주입하여 약 6 시간 동안 반응시켜서 필터의 넥크부에 탄화규소가 함침되도록 한다.Then, hydrogen gas is passed through a methylchlorosilane solution at 0 ° C from the outside, then injected into the inside of the tube and reacted for about 6 hours to impregnate the silicon carbide in the neck portion of the filter.
그 다음, 상기와 같이 함침된 필터를 튜브에서 꺼내어 호일을 제거한다.Then, the filter impregnated as above is taken out of the tube to remove the foil.
2)용액 및 졸(SOL) 함침법2) solution and sol (SOL) impregnation method
-용액함침법Solution impregnation method
탄화규소분말(5 μm∼44 μm), 질화규소분말(1 μm∼20 μm), 알루미나분말(5 μm∼20μm), 멀라이트분말(5 μm∼20 μm)과 같은 세라믹분말을 준비한 다음, 지지층과 같은 조성의 유기물과 무기물 결합제, 그리고 물을 첨가하여 24 시간 볼밀하여 슬러리 용액을 제조한다.Prepare ceramic powders such as silicon carbide powder (5 μm to 44 μm), silicon nitride powder (1 μm to 20 μm), alumina powder (5 μm to 20 μm), mullite powder (5 μm to 20 μm), and then A slurry solution is prepared by ball milling for 24 hours with the addition of organic and inorganic binders of the same composition and water.
그 다음, 상기와 같이 제조된 용액을 소정의 용기에 넣고 상기와 같이 제조된 지지층으로만 제조된 세라믹 필터의 넥크부를 용기안의 슬러리에 담근다Then, the solution prepared as described above is placed in a predetermined container and the neck portion of the ceramic filter manufactured only with the support layer prepared as described above is immersed in the slurry in the container.
그 다음, 용기와 필터를 챔버에 넣고, 상온에서 10-1torr의 진공상태를 10 분간 유지한 다음 세라믹분말이 함침되면 꺼내어 건조한다.Next, the container and the filter are put in a chamber, and the vacuum state of 10 -1 torr is maintained at room temperature for 10 minutes, and when the ceramic powder is impregnated, it is taken out and dried.
세라믹분말이 원하는 만큼 함침될때까지 상기와 같은 함침과 건조과정을 반복한 다음, 공기중 1200℃에서 1 시간 열처리하여 함침을 완료한다.The impregnation and drying process is repeated until the ceramic powder is impregnated as desired, followed by heat treatment at 1200 ° C. in air for 1 hour to complete the impregnation.
-졸 함침법-Sol impregnation method
탄화규소 전구체인 폴리카보실란, 알루미나 전구체인 알루미늄 수산화물 졸, 실리카 전구체인 실리카 전구체 졸과 같은 전구체를 사용하게 되는데,Precursors such as polycarbosilane, a silicon carbide precursor, aluminum hydroxide sol, an alumina precursor, and silica precursor sol, a silica precursor, are used.
탄화규소 전구체인 폴리카보실란의 경우에는, 핵산(HEXANE)을 용매로 끊는 점까지 가열하면서 소정량의 전구체를 용해시켜서 졸을 만든다. 가열한 졸 용액에 지지층으로만 구성된 세라믹 필터의 넥크부를 담그고 약 30 분간 유지시켜서 함침시킨다. 함침이 끝나면 세라믹 필터를 건조하여 아르곤 분위기의 600℃에서 약 1 시간 동안 열처리한다. 그리고 원하는 양 만큼 함침될때 까지 이 과정을 반복한다. 단, 마지막 반복과정에서는 아르곤 분위기의 1000℃에서 1시간 동안 열처리 한다.In the case of polycarbosilane, which is a silicon carbide precursor, a sol is formed by dissolving a predetermined amount of precursor while heating the nucleic acid (HEXANE) to the point where the solvent is broken. The neck portion of the ceramic filter consisting only of the support layer is immersed in the heated sol solution and held for about 30 minutes for impregnation. After the impregnation, the ceramic filter is dried and heat treated at 600 ° C. in an argon atmosphere for about 1 hour. Then repeat this process until the desired amount is impregnated. In the last iteration, however, heat treatment is performed at 1000 ° C for 1 hour in an argon atmosphere.
알루미나 전구체인 알루미늄 수산화물을 이용하는 경우에는, 물을 용매로 소정량의 알루미나 전구체를 용해하여 알루미나 졸을 만든다. 제조한 졸 용액을 소정의 용기에 넣고 상기에서 제작한 지지층으로만 구성된 세라믹 필터의 넥크부를 용기안의 졸 용액에 담근다. 그리고 용기와 필터를 챔버에 넣고 상온에서 10-1torr의 진공상태를 30 분간 유지하여 함침한다. 함침이 끝나면 세라믹 필터를 건조하여 공기중 900℃에서 1 시간 동안 열처리한다. 그리고 원하는 함침량에 도달할 때까지 이 과정을 반복한다.In the case of using an aluminum hydroxide which is an alumina precursor, a predetermined amount of alumina precursor is dissolved in water as a solvent to form an alumina sol. The prepared sol solution is placed in a predetermined container, and the neck portion of the ceramic filter composed only of the support layer prepared above is immersed in the sol solution in the container. The container and the filter are put in a chamber and impregnated with a vacuum of 10 -1 torr for 30 minutes at room temperature. After impregnation, the ceramic filter is dried and heat-treated for 1 hour at 900 ℃ in air. Then repeat this process until the desired impregnation is reached.
실리카 전구체인 실리카 졸을 이용하는 경우에는 알루미나 전구체를 이용하는 과정과 동일하다.When using the silica sol which is a silica precursor, it is the same process as using an alumina precursor.
3)용융금속 및 용융세라믹스 함침법3) Molten metal and molten ceramic impregnation method
알루미늄 분말 또는 실리콘 분말을 소정용기에 넣고 가열하여 용융상태를 만든 다음, 여기에 지지층으로 구성된 세라믹 필터의 넥크부를 담그고 60분 정도 유지시켜서 함침시킨다. 함침이 끝나면 세라믹 필터를 꺼내어 공기중의 1300℃에서 120 분 동안 열처리 한다.Aluminum powder or silicon powder is placed in a predetermined container and heated to form a molten state. Then, the neck portion of the ceramic filter composed of the support layer is dipped therein and held for about 60 minutes to be impregnated. After the impregnation, take out the ceramic filter and heat-treated at 1300 ℃ in air for 120 minutes.
한편, 상기와 같은 본 발명의 제조방법에 의하여 제조된 세라믹 고온가스필터(F)는 도 5에 도시되어 있는 바와 같이, 필터링기능을 수행하는 몸체 부분에는 입자크기가 큰 탄화규소와 결합제로된 지지층과, 그 지지층의 외측에 입자크기가 작은 탄화규소와 결합제로 된 여과층으로 이루어져 있으며, 넥크부에는 함침물질이 함침되어 있어서 넥크부의 강도가 종래보다 향상된 구조로 되어 있다.On the other hand, the ceramic hot gas filter (F) manufactured by the manufacturing method of the present invention as shown in Figure 5, the support layer made of a silicon carbide and a binder having a large particle size in the body portion performing the filtering function And a filtration layer made of silicon carbide and a binder having a small particle size on the outside of the support layer, and the neck portion is impregnated with an impregnation material, so that the strength of the neck portion is improved than before.
도 6은 종래와 본발명의 제조방법에 따라 제조된 필터들의 필터링기능 비교 그래프로서, 공기 투과시 필터에서 발생하는 압력의 감소(DIFFERENTIAL PRESSURE FOR AIR FLOW)는 함침하지 않은 경우(A)와 탄화규소분말을 함침한 경우(C)나 알루미나분말을 함침한 경우(D)가 대등하여 필터의 넥크부를 함침함으로 인해서 필터링기능이 저하되거나 손상되지 않은 것으로 확인되었다.Figure 6 is a graph comparing the filtering function of the filters prepared according to the conventional method of the present invention, the decrease in pressure generated in the filter during air permeation (DIFFERENTIAL PRESSURE FOR AIR FLOW) is not impregnated (A) and silicon carbide When the powder was impregnated (C) or when the alumina powder was impregnated (D), it was confirmed that the filtering function was not degraded or damaged due to impregnation of the neck portion of the filter.
반면에, 도 7은 종래 함침을 하지 않은 필터와 본 발명의 함침을 한 필터의 미세조직을 보인 사진으로서, 함침을 하지 않은 경우(A)와 알루미나분말 용액을 함침한 경우(D)를 비교해 보면 함침한 경우(D)가 입자의 치밀화가 크게 이루어졌음을 확인할 수 있었고, 이는 강도를 증가 시키는 요인됨을 알 수 있었다.On the other hand, Figure 7 is a photograph showing the microstructure of the filter without impregnation and the filter impregnated according to the present invention, comparing the case without impregnation (A) and the case of impregnating alumina powder solution (D) In the case of impregnation (D) was confirmed that the densification of the particles was made large, which can be seen to increase the strength.
실제로 도 8은 본 발명에 의하여 제조된 고온가스필터의 꺾임강도를 측정하여 정리한 표로서, 함침하지 않는 경우(A) 보다 함침한 경우(D)의 꺾임강도가 훨씬 높음을 알 수 있다.In fact, Figure 8 is a table summarized by measuring the bending strength of the hot gas filter manufactured by the present invention, it can be seen that the bending strength in the case of impregnation (D) than the case of not impregnation (A).
이상에서 상세히 설명한 바와 같이, 본 발명 세라믹 고온가스필터의 제조방법은 입자가 큰 탄화규소분말을 이용하여 일정크기의 지지층용 성형체를 제조한 다음, 그 성형체를 소결하여 지지층용 소결체를 제조하고, 그와 같이 제조된 지지층용 소결체의 넥크부에 강도향상제를 함침한 후, 그와 같이 함침된 소결체의 외측에 입자크기가 작은 탄화규소분말을 코팅하여 여과층을 형성하는 방법으로, 필터의 취약부인 넥크부 강도가 강도향상제에 의하여 향상되어 필터의 수명을 향상시키는 효과가 있다.As described in detail above, in the method of manufacturing the ceramic hot gas filter of the present invention, a support layer molded body having a predetermined size is manufactured using silicon carbide powder having large particles, and then the molded body is sintered to produce a support layer sintered body, and After impregnating the strength enhancer in the neck portion of the sintered body for the support layer manufactured as described above, the neck is a weak part of the filter by coating a silicon carbide powder having a small particle size on the outer side of the sintered body so formed. The negative strength is improved by the strength enhancer, thereby improving the life of the filter.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990010530A KR100301625B1 (en) | 1999-03-26 | 1999-03-26 | Manufacturing method for ceramic hot gas filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990010530A KR100301625B1 (en) | 1999-03-26 | 1999-03-26 | Manufacturing method for ceramic hot gas filter |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000061476A KR20000061476A (en) | 2000-10-16 |
KR100301625B1 true KR100301625B1 (en) | 2001-09-22 |
Family
ID=19577890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990010530A KR100301625B1 (en) | 1999-03-26 | 1999-03-26 | Manufacturing method for ceramic hot gas filter |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100301625B1 (en) |
-
1999
- 1999-03-26 KR KR1019990010530A patent/KR100301625B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20000061476A (en) | 2000-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4976760A (en) | Porous ceramic article for use as a filter for removing particulates from diesel exhaust gases | |
RU2401821C2 (en) | Method of reinforcing porous ceramic articles and articles made using said method | |
US4871495A (en) | Process for producing porous ceramic filter for filtering of particulates from diesel exhaust gases | |
US6777114B2 (en) | Silicon carbide-based porous body and process for production thereof | |
JP5368970B2 (en) | Method and apparatus for drying honeycomb molded body | |
US4814300A (en) | Porous ceramic shapes, compositions for the preparation thereof, and method for producing same | |
JPWO2006013931A1 (en) | Firing furnace and method for producing a porous ceramic fired body using the firing furnace | |
CN109020628B (en) | SiC nanowire reinforced porous ceramic composite material and preparation method thereof | |
JPWO2007015550A1 (en) | Silicon carbide firing jig and method for producing porous silicon carbide body | |
JP4473463B2 (en) | Porous silicon nitride and method for producing the same | |
CN101823884B (en) | Method for preparing high-density re-crystallized silicon carbide product through impregnation pyrolysis | |
JP4484004B2 (en) | Method for producing ceramic matrix composite member | |
WO2016052461A1 (en) | Method for producing honeycomb filter | |
KR100301625B1 (en) | Manufacturing method for ceramic hot gas filter | |
WO2003021161A1 (en) | Integrated volumetric receiver unit and process for producing silicon infiltrated bodies | |
JP3697670B2 (en) | Sialon ceramic porous body and method for producing the same | |
JP4574044B2 (en) | Porous silicon nitride and method for producing the same | |
WO2016052457A1 (en) | Method for producing honeycomb filter | |
JP4633449B2 (en) | Silicon carbide based porous material and method for producing the same | |
JP2004002130A (en) | Ceramic porous body and its forming process | |
JPH03271151A (en) | Production of sintered ceramic | |
JP2552194B2 (en) | Method for manufacturing porous ceramic material | |
JPH03271152A (en) | Production of sintered ceramic | |
JP4269514B2 (en) | Ceramic filter for high temperature dust collection | |
JP2009226390A (en) | Ceramic filter, ceramic filter for exhaust gas purification, diesel particulate filter, and manufacturing method of ceramic filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070531 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |