KR100291147B1 - Method of decreasing viscosity of dimethylaluminum hydride - Google Patents

Method of decreasing viscosity of dimethylaluminum hydride Download PDF

Info

Publication number
KR100291147B1
KR100291147B1 KR1019980001386A KR19980001386A KR100291147B1 KR 100291147 B1 KR100291147 B1 KR 100291147B1 KR 1019980001386 A KR1019980001386 A KR 1019980001386A KR 19980001386 A KR19980001386 A KR 19980001386A KR 100291147 B1 KR100291147 B1 KR 100291147B1
Authority
KR
South Korea
Prior art keywords
dimethylaluminum hydride
viscosity
benzylpyridine
hydride
dimethylaluminum
Prior art date
Application number
KR1019980001386A
Other languages
Korean (ko)
Other versions
KR19990065889A (en
Inventor
이시우
윤종호
이정현
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019980001386A priority Critical patent/KR100291147B1/en
Priority to JP10224426A priority patent/JPH11158186A/en
Publication of KR19990065889A publication Critical patent/KR19990065889A/en
Application granted granted Critical
Publication of KR100291147B1 publication Critical patent/KR100291147B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/065Aluminium compounds with C-aluminium linkage compounds with an Al-H linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/65Vaporizers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for decreasing the viscosity of dimethylaluminum hydride(CH3)2AlH that is used as metal organic precursor in the manufacture of aluminum CVD is provided, which is accomplished by adding aromatic amines in dimethylaluminum hydride(CH3)2AlH. The dimethylaluminum hydride containing aromatic amines is applicable to vapor transfer systems such as bubbler type and direct liquid injection type due to its remarkably decreased viscosity. CONSTITUTION: The aromatic amine compounds of the present invention are pyridine, pyrimidine, pyridazine, pyrazine, pyridazine, triazine or their substitutes, wherein substitution group is straight or branch alkyl group with a carbon number C1-C8, aryl, or arylalkyl. Preferably, the aromatic amine compounds of the present invention are 3-benzylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine(2,4-lutidine), 4-phenylpyridine, and more preferably 3-benzylpyridine. Since 3-benzylpyridine represented by below chemical formula has higher boiling point(287deg.C) than that of dimethylaluminum hydride(154deg.C), it has lower volatility than dimethylaluminum hydride.

Description

디메틸알루미늄 하이드라이드의 점도 저하 방법{METHOD OF DECREASING VISCOSITY OF DIMETHYLALUMINUM HYDRIDE}Method of lowering the viscosity of dimethylaluminum hydride {METHOD OF DECREASING VISCOSITY OF DIMETHYLALUMINUM HYDRIDE}

본 발명은 알루미늄 박막의 제조에 전구체로 사용되는 디메틸알루미늄 하이드라이드(dimethyl aluminum hydride; DMAH)의 점도 저하 방법에 관한 것으로, 구체적으로는 액상 디메틸알루미늄 하이드라이드에 방향족 아민을 첨가함(이하, 얻어진 용액은 "혼합 용액"이라 함)으로써 그의 점도를 현저히 저하시키는 방법에 관한 것이다.The present invention relates to a method for lowering the viscosity of dimethyl aluminum hydride (DMAH) used as a precursor for the production of an aluminum thin film, specifically, adding an aromatic amine to the liquid dimethylaluminum hydride (hereinafter, obtained solution Is referred to as a "mixed solution".

알루미늄 박막은 반도체 소자의 제조시 전기회로를 구성하는 배선 공정에 사용되는 중요한 소재이다. 현재 주로 사용되고 있는 알루미늄 박막은 물리 증착법(PVD; physical vapor deposition)에 따라 제조된 것으로, 층덮힘(stepcoverage) 특성이 저조하여 그 사용에 한계점을 가지고 있다.Aluminum thin film is an important material used in the wiring process constituting the electrical circuit in the manufacture of semiconductor devices. Currently used aluminum thin film is manufactured by physical vapor deposition (PVD), has a low stepcoverage characteristics and has a limitation in its use.

이러한 물리 증착법을 대체할 새로운 알루미늄 박막의 제조 공정으로 유기금속 전구체를 이용한 알루미늄 유기금속 화학 증착법이 주목받고 있다.Aluminum organic metal chemical vapor deposition using an organometallic precursor has attracted attention as a manufacturing process of a new aluminum thin film to replace the physical vapor deposition method.

한편 화학 증착법은 반응물을 자체의 증기압을 이용하거나 운반 기체에 실어서 기체 상태로 반응기 내부로 도입하여 기상에서의 확산, 표면 흡착, 표면 반응, 표면 확산, 핵생성, 박막 성장, 탈착 등의 일련의 복합적인 과정을 통하여 원하는 성분과 형태의 박막을 주어진 기판위에 제조하는 공정이다. 최근에는 유기금속 전구체를 원료로 이용하여 금속 또는 유전체 물질 등을 포함하는 다수의 박막의 제조 공정에 대한 연구가 활발히 진행되고 있으며 그 중 일부 공정은 반도체 소자의 대량 생산을 위한 산업화에 적용되는 단계에까지 이른 것으로 알려지고 있다.Chemical vapor deposition, on the other hand, employs a series of reactions such as diffusion in the gas phase, surface adsorption, surface reaction, surface diffusion, nucleation, thin film growth, desorption, etc. It is a process of manufacturing a thin film of a desired component and form on a given substrate through a complex process. Recently, research on the manufacturing process of many thin films including metals or dielectric materials using organometallic precursors as a raw material has been actively conducted, and some of them have been applied to industrialization for mass production of semiconductor devices. It is known to be early.

유기금속 화학 증착법에 있어 유기금속 전구체의 선정은 매우 중요한데, 현재 알루미늄 박막의 제조에 유망한 것으로 공지된 유기금속 전구체로는 디메틸알루미늄 하이드라이드가 있다. 디메틸알루미늄 하이드라이드는 상온에서 증기압이 2.2 torr로 상대적으로 높고 상온에서 액체이며 또한 상당히 안정한 것으로 알려지고 있다.The selection of organometallic precursors is very important in organometallic chemical vapor deposition. Currently, organometallic precursors known to be promising for the production of aluminum thin films include dimethylaluminum hydride. Dimethylaluminum hydride is known to have a relatively high vapor pressure of 2.2 torr at room temperature, is liquid at room temperature, and is fairly stable.

또한 디메틸알루미늄 하이드라이드는 증기상태에서는 하기 화학식 1의 이량체와 하기 화학식 2의 삼량체로 구성되고 액체 상태에서는 적어도 삼량체 이상으로 구성되는 것으로 추정된다.In addition, dimethylaluminum hydride is estimated to consist of a dimer of the following formula (1) and a trimer of the following formula (2) in a vapor state and at least a trimer in a liquid state.

디메틸알루미늄 하이드라이드는 분자들의 분자간 결합(intermolecular association) 경향이 매우 강하고 이러한 분자간 결합 경향으로 인해 디메틸알루미늄 하이드라이드 액체는 점도가 매우 높은 것으로 알려지고 있다. 본 발명자들이 디지털 점도계(digital viscometer)를 이용하여 상온에서 측정하여 확인한 바에 따르면 디메틸알루미늄 하이드라이드의 점도는 6,400 cp(centipoise)으로, 이는 버블러(bubbler) 형 및 직접 액체 주입 방법(direct liquid injection) 형 전구체 증기 이송 시스템에 적용되는 구리 증착용 전구체인 구리(헥사플루오로아세틸아세토산염)트리메틸비닐실란[Cu(hexafluoroacetylacetonate)trimethylvinylsilane; (hfac)Cu(VTMS)]의 점도가 3 내지 5 cp임에 비추어 볼 때 매우 높은 값임을 알 수 있다.Dimethylaluminum hydride has a very strong tendency for intermolecular association of molecules, and due to this tendency for intermolecular bonding, it is known that dimethylaluminum hydride liquid has a very high viscosity. According to the inventors' measurement by using a digital viscometer at room temperature, the dimethylaluminum hydride has a viscosity of 6,400 cp (centipoise), which is a bubbler type and a direct liquid injection method. Copper (hexafluoroacetylacetonate) trimethylvinylsilane [Cu (hexafluoroacetylacetonate) trimethylvinylsilane; a precursor for copper deposition applied to a type precursor vapor transfer system; It can be seen that the value of (hfac) Cu (VTMS)] is very high in view of the viscosity of 3 to 5 cps.

이와 같은 높은 점도로 인해 디메틸알루미늄 하이드라이드는 버블러를 이용한 증기 이송 시스템에 적용될 경우 버블러 내에서 운반 기체의 버블링 효율을 매우 저하시켜 디메틸알루미늄 하이드라이드 증기의 반응기내로의 도입이 매우 어렵고 결국 버블러 형을 이용한 알루미늄 박막의 대량 생산이 어려우며, 직접 액체 주입 방법에도 적용하기 어려운 단점이 있다.Due to this high viscosity, dimethylaluminum hydride, when applied to a vapor transport system using a bubbler, greatly reduces the bubbling efficiency of carrier gas in the bubbler, making it very difficult to introduce dimethylaluminum hydride vapor into the reactor and eventually to bubble. It is difficult to mass-produce aluminum thin film using the plunger type, and it is difficult to apply to direct liquid injection method.

카와사키 스틸사(Kawasaki Steel Co., 일본)는 버블러의 고안을 개선하여 버블링 효율을 향상시키는 방법을 개발한 바 있으나(미국특허공보 제 5,552,181 호), 이 경우는 버블러 형 전구체 증기 이송 시스템에 한정되는 것이고 디메틸알루미늄 하이드라이드 원액을 직접 액체 주입 방법에는 사용할 수 없다는 문제점이 여전히 남는다.Kawasaki Steel Co. (Japan) has developed a method to improve the bubbling efficiency by improving the design of the bubbler (US Patent No. 5,552,181), but in this case the bubbler-type precursor vapor transfer system. There is still a problem that the dimethylaluminum hydride stock solution cannot be used in the direct liquid injection method.

따라서, 디메틸알루미늄 하이드라이드를 유기금속 전구체로 사용하여 알루미늄 박막을 제조함에 있어서는 먼저 디메틸알루미늄 하이드라이드의 점도를 감소시키는 방법이 절실히 요구되고 있다.Therefore, in preparing an aluminum thin film using dimethylaluminum hydride as an organometallic precursor, a method of reducing the viscosity of dimethylaluminum hydride is urgently required.

따라서, 본 발명의 목적은 버블러 형 및 직접 액체 주입 방법 형의 전구체 증기 이송 시스템 모두에 적용할 수 있도록 디메틸알루미늄 하이드라이드의 점도를 저하시키고 더 나아가 알루미늄 박막을 대량생산할 수 있는 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for lowering the viscosity of dimethylaluminum hydride and further mass production of aluminum thin films to be applied to both precursor vapor transfer systems of the bubbler type and the direct liquid injection method type. .

도 1은 3-벤질피리딘의 첨가량에 따른 디메틸알루미늄 하이드라이드 액체의 점도를 나타내는 그래프이다.1 is a graph showing the viscosity of dimethylaluminum hydride liquid according to the amount of 3-benzylpyridine added.

상기 목적을 달성하기 위해 본 발명은 액상 디메틸알루미늄 하이드라이드에 방향족 아민을 0.5 내지 2 몰% 범위의 양으로 첨가하여 디메틸알루미늄 하이드라이드의 점도를 저하시키는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for reducing the viscosity of dimethylaluminum hydride by adding an aromatic amine to the liquid dimethylaluminum hydride in an amount in the range of 0.5 to 2 mol%.

상기 방향족 아민 화합물로는 피리딘, 피리미딘, 피라진, 피리다진, 트리아진, 또는 이들의 치환된 화합물이 있으며 이때 치환기로는 C1-8의 직쇄 또는 측쇄 알킬, 아릴 또는 아릴알킬이 사용될 수 있다. 바람직하게는 3-벤질피리딘, 4-에틸피리딘, 2,4-디메틸피리딘(2,4-루티딘), 4-페닐피리딘 등이 있고, 더욱 바람직하게는 3-벤질피리딘이다. 3-벤질피리딘은 하기 구조식을 가지고, 끓는점이 287℃로 디메틸알루미늄 하이드라이드(b.p.: 154℃)에 비해 높아 휘발도가 디메틸알루미늄 하이드라이드에 비해 낮다.The aromatic amine compound may be pyridine, pyrimidine, pyrazine, pyridazine, triazine, or substituted compounds thereof, and as the substituent, C 1-8 linear or branched alkyl, aryl or arylalkyl may be used. Preferred are 3-benzylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine (2,4-lutidine), 4-phenylpyridine and the like, more preferably 3-benzylpyridine. 3-benzylpyridine has the following structural formula, the boiling point is higher than dimethylaluminum hydride (bp: 154 ° C) at 287 ℃ low volatile compared to dimethylaluminum hydride.

본 발명에 사용되는 방향족 아민은 디메틸알루미늄 하이드라이드의 분자간 결합을 방지하여 디메틸알루미늄 하이드라이드의 점도를 획기적으로 낮추는 작용을 한다. 본 발명에 따른 방향족 아민은 디메틸알루미늄 하이드라이드에 대해 바람직하게는 0.5 내지 2 몰% 범위의 양으로 사용하는데, 사용량이 0.5 몰% 보다 적으면 점도 저하 효과가 그다지 크지 않으며, 2 몰% 보다 많아도 점도 저하 효과가 더이상 향상되지 않는다.The aromatic amine used in the present invention prevents the intermolecular bonds of dimethylaluminum hydride and serves to dramatically lower the viscosity of dimethylaluminum hydride. The aromatic amine according to the present invention is preferably used in an amount in the range of 0.5 to 2 mol% with respect to dimethylaluminum hydride. When the amount of use is less than 0.5 mol%, the effect of lowering the viscosity is not so great, and the viscosity is higher than 2 mol%. The degradation effect no longer improves.

이에 비해, 1차 아민과 2차 아민은 디메틸알루미늄 하이드라이드와 반응을 일으켜 새로운 화합물을 생성하므로 디메틸알루미늄 하이드라이드의 점도를 낮추기 위한 첨가제로는 적합하지 않다.In contrast, primary and secondary amines react with dimethylaluminum hydride to form new compounds, which is not suitable as an additive for lowering the viscosity of dimethylaluminum hydride.

본 발명에 따라 얻은 상기 혼합용액의 기화 온도는 20 내지 100℃ 이고 바람직하게는 20 내지 30℃ 범위이며, 증기압은 2.2 내지 30 torr 이다.The vaporization temperature of the mixed solution obtained according to the present invention is 20 to 100 ℃ and preferably in the range of 20 to 30 ℃, vapor pressure is 2.2 to 30 torr.

상기 혼합용액을 유기금속 전구체로 사용하여 통상적인 방법에 따라 기판위에 화학증착시켜 알루미늄 박막을 제조할 수 있다. 상기 증착 공정은 50 내지 400℃에서, 1.9x10-5내지 1.9 psi의 압력하에서 수행할 수 있다.By using the mixed solution as an organometallic precursor, an aluminum thin film may be prepared by chemical vapor deposition on a substrate according to a conventional method. The deposition process may be performed at 50 to 400 ° C., under a pressure of 1.9 × 10 −5 to 1.9 psi.

이하 실시예에 의하여 본 발명을 더욱 상세히 설명하나 본 발명이 이에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

실시예 1Example 1

액상 디메틸알루미늄 하이드라이드에 3-벤질피리딘을 0.47, 0.95, 1.35 및 1.93 몰%로 각각 가하여 혼합 용액을 제조하고, 이 혼합용액의 점도를 디지털 점도계(RVTDV-1, Brookfield 사)를 이용하여 상온에서 측정하였다. 이때, 대조구로는 액상 디메틸알루미늄 하이드라이드만을 사용하였다.3-benzylpyridine was added to liquid dimethylaluminum hydride at 0.47, 0.95, 1.35 and 1.93 mol%, respectively, to prepare a mixed solution, and the viscosity of the mixed solution was measured at room temperature using a digital viscometer (RVTDV-1, Brookfield). Measured. In this case, only liquid dimethylaluminum hydride was used as a control.

그 결과는 도 1과 같다. 도 1에서 보는 바와 같이, 대조구인 액상 디메틸알루미늄 하이드라이드의 점도는 6,400cp인데 비해, 3-벤질피리딘을 1.9 몰%로 첨가한 혼합용액의 경우에는 점도가 10cp까지 낮아짐을 알 수 있다.The result is shown in FIG. As shown in FIG. 1, the viscosity of the control dimethylaluminum hydride is 6,400 cps, whereas the viscosity of the mixed solution added with 1.9 mol% of 3-benzylpyridine is lowered to 10 cps.

본 발명의 방법은 액상 디메틸알루미늄 하이드라이드에 소량의 방향족 아민을 첨가함으로써 디메틸알루미늄 하이드라이드의 점도를 현저하게 저하시키는 것으로, 본 발명에 따라 얻어진 디메틸알루미늄 하이드라이드 혼합 용액은 유기금속 화학 증착법에 의한 박막의 제조에 있어 유기금속 전구체로 사용될 경우 버블러형 전구체 이송 시스템에서 버블링 효과가 뛰어날 뿐 아니라 직접 액체 주입형 이송 시스템에도 용이하게 사용할 수 있고 단위 시간당 증기화되는 디메틸알루미늄 하이드라이드 양이 증가되어 알루미늄 박막의 대량생산에 매우 유용하다.The method of the present invention significantly lowers the viscosity of dimethylaluminum hydride by adding a small amount of aromatic amine to liquid dimethylaluminum hydride. The dimethylaluminum hydride mixed solution obtained according to the present invention is a thin film by organometallic chemical vapor deposition. When used as an organometallic precursor in the production of aluminum, not only has excellent bubbling effect in the bubbler precursor transport system, but also can be easily used in the direct liquid injection type transport system, and the amount of dimethylaluminum hydride vaporized per unit time increases to increase the aluminum thin film. It is very useful for mass production.

Claims (2)

액상 디메틸알루미늄 하이드라이드에 방향족 아민을 0.5 내지 2 몰% 범위의 양으로 첨가하여 디메틸알루미늄 하이드라이드의 점도를 저하시키는 방법.A method for reducing the viscosity of dimethylaluminum hydride by adding aromatic amine to the liquid dimethylaluminum hydride in an amount in the range of 0.5 to 2 mol%. 제 1 항에 있어서,The method of claim 1, 방향족 아민으로서 하기 구조식의 화합물을 사용하는 것을 특징으로 하는 방법.A method characterized by using a compound of the following structural formula as an aromatic amine. 화학식 3Formula 3
KR1019980001386A 1997-10-21 1998-01-19 Method of decreasing viscosity of dimethylaluminum hydride KR100291147B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980001386A KR100291147B1 (en) 1998-01-19 1998-01-19 Method of decreasing viscosity of dimethylaluminum hydride
JP10224426A JPH11158186A (en) 1997-10-21 1998-08-07 Reduction of viscosity of dimethylaluminum hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980001386A KR100291147B1 (en) 1998-01-19 1998-01-19 Method of decreasing viscosity of dimethylaluminum hydride

Publications (2)

Publication Number Publication Date
KR19990065889A KR19990065889A (en) 1999-08-05
KR100291147B1 true KR100291147B1 (en) 2001-07-12

Family

ID=37525979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980001386A KR100291147B1 (en) 1997-10-21 1998-01-19 Method of decreasing viscosity of dimethylaluminum hydride

Country Status (1)

Country Link
KR (1) KR100291147B1 (en)

Also Published As

Publication number Publication date
KR19990065889A (en) 1999-08-05

Similar Documents

Publication Publication Date Title
JP6596737B2 (en) Metal complexes containing amidoimine ligands
US11804375B2 (en) Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
EP3348667A1 (en) Chemical vapor deposition feedstock comprising organic ruthenium compound and chemical vapor deposition method using said chemical vapor deposition feedstock
US8686138B2 (en) Heteroleptic pyrrolecarbaldimine precursors
WO2013015947A2 (en) Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
KR20210156444A (en) Molybdenum precursors, thin films using the same and deposition method of the same
KR20090018986A (en) Copper (i) amidinates and guanidinates for forming copper thin films
WO2001066347A1 (en) Composition and process for production of copper circuitry in microelectronic device structures
WO2000008225A2 (en) Organocopper precursors for chemical vapor deposition
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR20200123722A (en) Forming material, a method for forming material and novel compound
KR100291147B1 (en) Method of decreasing viscosity of dimethylaluminum hydride
KR100233961B1 (en) Method of decreasing viscosity of dimethylaluminum hydride which is useful as precursor in preparation of aluminum thin membrance
KR100863063B1 (en) Organometallic precursors solution for chemical deposition of metal thin films and preparation method there of
EP1556394A2 (en) Asymmetric group 8 (viii) metallocene compounds
US11401290B2 (en) Cobalt precursor, method of preparing same and method of manufacturing thin film using same
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR100298128B1 (en) Method of decreasing viscosity of dimethylaluminum hydride which is useful as precursor in prepration of aluminum thin membrane
JP2002538082A (en) Indium raw material reagent composition
KR100257073B1 (en) Method for improving viscosity of dimethylaluminum hydride liquid
CN116348632A (en) Thermally stable ruthenium precursor compositions and methods of forming ruthenium-containing films
KR101965217B1 (en) Tantalum compounds, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the composition
JPH04503954A (en) Organometallic addition compounds
CN112652519A (en) Composition for thin film deposition, method for producing thin film, and semiconductor device
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20060309

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee