KR100290858B1 - quantum dot infrared detection device and method for fabricating the same - Google Patents

quantum dot infrared detection device and method for fabricating the same Download PDF

Info

Publication number
KR100290858B1
KR100290858B1 KR1019990008477A KR19990008477A KR100290858B1 KR 100290858 B1 KR100290858 B1 KR 100290858B1 KR 1019990008477 A KR1019990008477 A KR 1019990008477A KR 19990008477 A KR19990008477 A KR 19990008477A KR 100290858 B1 KR100290858 B1 KR 100290858B1
Authority
KR
South Korea
Prior art keywords
quantum dot
layer
gaas
infrared light
doped
Prior art date
Application number
KR1019990008477A
Other languages
Korean (ko)
Other versions
KR20000060294A (en
Inventor
유태경
오재응
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019990008477A priority Critical patent/KR100290858B1/en
Publication of KR20000060294A publication Critical patent/KR20000060294A/en
Application granted granted Critical
Publication of KR100290858B1 publication Critical patent/KR100290858B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Abstract

양자점에서 검지한 미약한 원적외선 신호를 상온에서도 냉각을 하지 않고 원적외선을 검지하는 양자점 원적외선 수광 소자 및 그 제조방법에 관한 것으로, 베리어층 및 채널층을 포함하는 헴트(HEMT) 구조를 고온에서 성장시킨 후 그 위에 양자점과 분리층이 교대로 적층된 양자점부를 저온으로 성장시켜 원적외선 수광 소자를 제조함으로써, 상온에서 냉각없이 동작이 가능하고 그 특성이 향상되며 소자의 크기 및 가격을 낮출 수 있다.The present invention relates to a quantum dot far-infrared light-receiving device and a method of manufacturing the same, wherein the weak far-infrared signal detected by the quantum dots is detected without cooling at room temperature, and a HEMT structure including a barrier layer and a channel layer is grown at a high temperature. By manufacturing a far-infrared light-receiving device by growing a quantum dot portion in which the quantum dots and the separation layer are alternately stacked at a low temperature, it is possible to operate without cooling at room temperature, its characteristics are improved, and the size and cost of the device can be lowered.

Description

양자점 원적외선 수광소자 및 그 제조방법{quantum dot infrared detection device and method for fabricating the same}Quantum dot infrared detection device and method for fabricating the same

본 발명은 양자점에서 검지한 미약한 원적외선 신호를 상온에서도 냉각을 하지 않고 원적외선을 검지하는 양자점 원적외선 수광 소자 및 그 제조방법에 관한 것이다.The present invention relates to a quantum dot far-infrared light-receiving device for detecting far infrared rays without cooling the weak far-infrared signal detected by the quantum dots at room temperature and a method of manufacturing the same.

일반적으로 파장이 약 5∼6㎛이상에서 십 수 ㎛이상이 되는 원적외선을 검지하는 방법은 물질에 따라 여러 가지 방법이 존재하였으나, 상온에서 동작시키기 위해서는 최소 77K이하까지 냉각을 시켜야 양질의 신호를 검지할 수 있다.In general, there are various methods of detecting far infrared rays having a wavelength of about 5 to 6 µm or more and several tens of µm or more, depending on the substance. However, in order to operate at room temperature, it must be cooled to at least 77K to detect high quality signals. can do.

그러나, 이와 같이 저온으로 냉각시키는 방법은 냉각 자체가 매우 복잡하고 가격이 비싸며 부피가 커서 널리 보급되지 못하고 특수한 응용에 고가로 사용되는 단점이 있었다.However, such a method of cooling to low temperature has a disadvantage that the cooling itself is very complicated, expensive, and bulky, so that it is not widely used and expensive for special applications.

그러므로, 이러한 단점을 개선하기 위해 최근에는 원적외선을 검지하는 소자에 대한 많은 연구가 진행되고 있다.Therefore, in order to improve such a disadvantage, many researches have recently been conducted on devices for detecting far infrared rays.

일반적으로 원적외선을 검지하는 소자의 동작 원리는 다음과 같다.In general, the operation principle of the device for detecting far infrared rays is as follows.

먼저, 양자점(Quantum Dot)에 원적외선이 조사되면 양자점의 인터-서브밴드 천이 에너지(inter-subband transition energy)에 해당하는 원적외선이 흡수되고, 이 흡수된 빛은 전자(광전류)로 변환되어져 원적외선을 검지하게 된다.First, when far infrared rays are irradiated to the quantum dots, the far infrared rays corresponding to the inter-subband transition energy of the quantum dots are absorbed, and the absorbed light is converted into electrons (photocurrent) to detect far infrared rays. Done.

이러한 양자점 원적외선 수광 소자의 종래 기술로는 도 1에 도시된 바와 같이 양자점과 핀 다이오드(pin diode)가 결합한 구조가 잘 알려져 있고, 최근에는 도 2에 도시된 바와 같이 양자점과 헴트(HEMT ; High Electron Mobility Transistor)를 결합한 구조가 개발되었다.As a conventional technique of such a quantum dot far infrared light receiving device, a structure in which a quantum dot and a pin diode are combined as shown in FIG. 1 is well known, and recently, as shown in FIG. 2, a quantum dot and a HEMT (HEMT; A structure combining Mobility Transistors has been developed.

도 1에 도시된 양자점과 핀 다이오드가 결합된 형태의 소자는 양자점의 서브-밴드 에너지(sub-band energy) 차이에 해당되는 원적외선의 흡수에 의하여 생성된 전자가 기존의 핀 디텍터(pin detector)의 역방향 바이어스(bias)에 의하여 광 전류를 생성한다.In a device in which a quantum dot and a pin diode are shown in FIG. 1, electrons generated by absorption of far-infrared rays corresponding to sub-band energy differences of the quantum dots are formed of the conventional pin detector. The photocurrent is generated by the reverse bias.

그러나, 이 소자는 양자점 생성시 생성될 수 있는 극히 낮은 밀도의 디스로케이션(dislocation)을 통한 누설 전류나 또는 핀 다이오드 구조에서 역방향 전압에 의하여 생성된 재결합-생성(recombination-generation)전류에 의한 누설 전류 때문에 상온에서 극히 미약한 신호를 검지하기가 거의 불가능하다고 알려져 있다.However, the device has a leakage current through extremely low density dislocations that can be generated during quantum dot generation, or leakage current due to recombination-generation currents generated by reverse voltage in the pin diode structure. For this reason, it is known that it is almost impossible to detect an extremely weak signal at room temperature.

이처럼, 신호 특성을 얻기 위해서는 누설 전류 값이 낮은 저온(약 100K 이하)에서만 동작되어야 하므로 범용 원적외선 CCD 카메라와 같이 상온 혹은 간단한 쿨링 시스템(cooling system)을 이용하는 시스템에는 거의 적용이 불가능하다.As such, the signal characteristics must be operated only at low temperature (about 100K or less) with a low leakage current value, so it is hardly applicable to a system using a room temperature or a simple cooling system such as a general-purpose far infrared CCD camera.

한편, 도 2에 도시된 양자점과 헴트(HEMT)가 결합된 형태의 소자는 양자점 영역에 서브-밴드 에너지 차이에 해당하는 원적외선이 소자의 앞쪽 또는 뒤쪽으로부터 입사될 경우, 양자점의 스테이트(state)의 전자 밀도(electron density)가 델타 펑션(delta function)의 형태이며, 그라운드 스테이트(ground state)와 퍼스트 익사이티드 스테이트(first excited state)의 차이가 상온의 열에너지보다 크기 때문에 상온에서의 동작이 기대된다.On the other hand, the device of the quantum dot and the HEMT (HMT) combined type shown in Figure 2 when the far infrared rays corresponding to the sub-band energy difference in the quantum dot region is incident from the front or rear of the device, Electron density is a form of delta function, and the difference between the ground state and the first excited state is greater than the thermal energy at room temperature, so operation at room temperature is expected.

특히, 이 구조의 장점은 도 3에 도시된 바와 같이 원적외선이 양자점에 흡수되어 인터-서브밴드 천이(inter-subband transition)가 일어나고, 이로부터 여기된 전자가 언도프트 GaAs 채널(undoped GaAs channel)로 터널링(tunneling)되어 제 1 터미널(terminal)과 제 2 터미널 사이의 전압차에 의하여 포집되거나 혹은 양자점 영역에서 터미널 사이의 전압 차이에 의하여 포집된다.In particular, the advantage of this structure is that far-infrared rays are absorbed by the quantum dots as shown in FIG. 3, resulting in inter-subband transitions, from which the excited electrons are directed into the undoped GaAs channel. It is tunneled and collected by the voltage difference between the first terminal and the second terminal or by the voltage difference between the terminals in the quantum dot region.

즉, 양자점에서 검지된 미약한 신호를 전자 손실이 없이 이송시킬 수 있는 깨끗한 채널로 전송시켜 그 신호를 주변 잡음이나 누설 전류로부터 분리해 낼 수 있다.That is, the weak signal detected at the quantum dot can be transmitted to a clean channel that can be transported without loss of electrons, and the signal can be separated from ambient noise or leakage current.

이 경우, 주로 언도프트 GaAs 채널(undoped GaAs channel)에서 포집되는 전자에 의한 신호가 전체 특성을 좌우하게 되는데, 이것은 AlGaAs 베리어(barrier)로 제한된 언도프트 GaAs 채널 영역이 전자를 손실 없이 이동시키는 고속 모빌리티(mobility) 특성을 갖기 때문이다.In this case, the signal mainly caused by the electrons captured in the undoped GaAs channel dominates the overall characteristics, which is due to the high-speed mobility of the undoped GaAs channel region confined by the AlGaAs barrier to move the electrons without loss. It is because it has a (mobility) characteristic.

그러나, 이 구조는 실제 소자 제작 시, 도 4에 도시된 바와 같이 일반적인 AlGaAs/GaAs 헴트(HEMT) 성장조건, 특히 결정성장온도{Tg(HEMT) : 550∼650℃}에 비하여 양자점 형성온도{Tg(QD) : 약 500℃ 이하}가 매우 낮다는 문제점이 있다.However, this structure has a quantum dot formation temperature {Tg compared to the general AlGaAs / GaAs hept (HEMT) growth conditions, in particular the crystal growth temperature {Tg (HEMT): 550 ~ 650 ℃}, as shown in FIG. (QD): less than about 500 ℃} has a problem that is very low.

즉, 양질의 양자점을 얻기 위해서는 양자점을 상대적 저온에서 형성하고, 그 후에 양질의 AlGaAs/GaAs 헴트 구조를 성장하기 위하여 고온으로 형성하여야 한다.In other words, in order to obtain high quality quantum dots, the quantum dots should be formed at a relatively low temperature, and then formed at high temperature to grow high quality AlGaAs / GaAs hept structures.

그러나, 이전에 형성되었던 양자점이 헴트 구조를 고온에서 성장할 때, 급격히 열화되어 상온에서 원적외선 검지가 거의 불가능하게 된다.However, when the previously formed quantum dots grow the hept structure at a high temperature, the quantum dots are rapidly deteriorated, making far infrared detection at room temperature almost impossible.

만일, 헴트 구조를 양질로 유지시키기 위하여 양자점을 고온에서 형성시키면 In의 확산이 일어나고, 이로 인하여 양자점의 인테그리티(integrity)가 열악해져 이 또한 양호한 검지 특성을 갖는 양자점 형성을 기대하기가 어렵게 된다.If the quantum dots are formed at a high temperature to maintain the heme structure at high temperature, diffusion of In occurs, thereby resulting in poor integrity of the quantum dots, which makes it difficult to expect quantum dots to have good detection characteristics.

이와는 반대로 헴트 구조를 저온에서 성장시키면 AlGaAs 특성이 열악해져 채널 자체의 특성이 악화되는 문제가 발생한다.On the contrary, when the heme structure is grown at a low temperature, AlGaAs properties are deteriorated, resulting in deterioration of the characteristics of the channel itself.

이러한 문제는 양자점 이후 공정의 써멀 버젯(thermal budget)에 관련된 문제로서 저온에서 우수한 AlGaAs/GaAs 헴트를 성장하는 결정성장기술의 개발이 필요하거나 혹은 써멀 버젯의 문제가 없는 개선된 구조의 개발이 필요하다.This problem is related to the thermal budget of the process after the quantum dot, which requires the development of crystal growth technology that grows excellent AlGaAs / GaAs hept at low temperature, or the development of an improved structure without the problem of thermal budget. .

본 발명의 목적은 양질의 양자점을 저온에서 형성하고 동시에 양질의 전류 이송 채널을 고온에서 형성함으로써, 소자를 냉각 없이 상온에서 동작시키고, 그 성능을 개선시킬 수 있는 양자점 원적외선 수광 소자 및 그 제조방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a quantum dot far-infrared light-receiving device and a method of manufacturing the same, which are capable of operating the device at room temperature without cooling and improving its performance by forming a good quality quantum dot at a low temperature and simultaneously forming a good current transfer channel at a high temperature. To provide.

본 발명의 다른 목적은 기존 소자보다 고온동작을 가능케 함으로써, 소자의 크기 및 가격을 줄이는데 있다.Another object of the present invention is to reduce the size and cost of the device by enabling a higher temperature operation than the existing device.

도 1 및 도 2는 종래 기술에 따른 원적외선 수광 소자를 보여주는 구조단면도1 and 2 is a structural cross-sectional view showing a far-infrared light receiving device according to the prior art

도 3은 도 2에서 인터-서브밴드 흡수에 의하여 생성된 전자의 광전류를 보여주는 개념도3 is a conceptual diagram illustrating a photocurrent of electrons generated by inter-subband absorption in FIG. 2;

도 4는 도 2의 양자점 및 헴트(HEMT) 구조의 결정 성장 온도를 보여주는 그래프4 is a graph showing the crystal growth temperature of the quantum dot and the HEMT (HEMT) structure of FIG.

도 5는 본 발명 제 1 실시예에 따른 양자점 원적외선 수광 소자를 보여주는 구조단면도5 is a structural cross-sectional view showing a quantum dot far infrared light receiving device according to a first embodiment of the present invention;

도 6은 도 5의 양자점부의 구조를 보여주는 상세도6 is a detailed view showing the structure of the quantum dot unit of FIG.

도 7은 도 5의 양자점 및 헴트(HEMT) 구조의 결정 성장 온도를 보여주는 그래프FIG. 7 is a graph showing crystal growth temperatures of the quantum dot and HEMT structures of FIG. 5.

도 8은 본 발명 제 2 실시예에 따른 양자점 원적외선 수광 소자를 보여주는 구조단면도8 is a structural cross-sectional view showing a quantum dot far infrared light receiving device according to a second embodiment of the present invention;

본 발명에 따른 양자점 원적외선 수광 소자의 특징은 메사(mesa) 구조를 갖는 양자점 원적외선 수광 소자에 있어서, 기판과, 기판상에 형성되는 도프트(doped) 베리어층과, 도프트 베리어층상에 형성되는 언도프트(undoped) 채널층과, 도프트 채널층상에 형성되는 양자점부와, 메사 영역 양측에 형성되는 전극들로 구성되는데 있다.A quantum dot far infrared light receiving device according to the present invention is characterized in that, in a quantum dot far infrared light receiving device having a mesa structure, a substrate, a doped barrier layer formed on the substrate, and an undolet formed on the doped barrier layer And an undoped channel layer, a quantum dot portion formed on the doped channel layer, and electrodes formed on both sides of the mesa region.

본 발명의 다른 특징은 양자점부가 양자점과 분리층이 교대로 적층된 다층 구조로 이루어지는데 있다.Another feature of the present invention is that the quantum dot portion has a multilayer structure in which quantum dots and separation layers are alternately stacked.

본 발명에 따른 양자점 원적외선 수광 소자 제조방법은 기판상에 도프트(doped) 베리어층, 언도프트(undoped) 채널층을 고온에서 순차적으로 형성하고, 그 위에 양자점과 분리층이 교대로 적층된 양자점부를 저온에서 형성하는 제 1 단계와, 양자점부, 채널층, 베리어층의 소정영역을 메사 식각하여 메사 영역 양측에 전극들을 형성하는 제 2 단계로 이루어지는데 있다.In the method for manufacturing a quantum dot far-infrared light receiving device according to the present invention, a doped barrier layer and an undoped channel layer are sequentially formed at a high temperature on a substrate, and a quantum dot portion in which a quantum dot and a separation layer are alternately stacked thereon is formed. The first step of forming at a low temperature and the second step of forming electrodes on both sides of the mesa by mesa etching a predetermined region of the quantum dot portion, the channel layer, and the barrier layer.

본 발명의 다른 특징은 양자점부의 양자점이 In(x)GaAs(여기서, 0<x≤1)로 이루어지고 분리층이 GaAs 혹은 Al(y)GaAs(여기서, 0<y≤1)로 이루어지거나 또는 양자점이 In(z)GaAs(여기서, 0.3≤z≤0.8)로 이루어지고 분리층이 InP 로 이루어지는데 있다.Another feature of the invention is that the quantum dots of the quantum dots are made of In (x) GaAs (where 0 <x ≦ 1) and the separation layer is made of GaAs or Al (y) GaAs (here, 0 <y ≦ 1) or The quantum dot is made of In (z) GaAs (here, 0.3 ≦ z ≦ 0.8) and the separation layer is made of InP.

본 발명의 또 다른 특징은 양자점부의 양자점 두께를 1∼20nm로 하고, 분리층의 두께를 5∼30nm으로 하는데 있다.Another feature of the present invention is that the quantum dot thickness of the quantum dot portion is 1-20 nm, and the thickness of the separation layer is 5-30 nm.

본 발명의 또 다른 특징은 베리어층 및 채널층을 550∼750℃ 온도 범위에서 성장시키고, 양자점부를 400∼540℃ 온도 범위에서 성장시키는데 있다.Another feature of the present invention is to grow the barrier layer and the channel layer in the temperature range of 550 ~ 750 ℃, and to grow the quantum dot portion in the temperature range of 400 ~ 540 ℃.

상기와 같은 특징을 갖는 본 발명에 따른 양자점 원적외선 수광 소자 및 그 제조방법을 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the accompanying drawings, a quantum dot far infrared light receiving device and a method of manufacturing the same according to the present invention having the above characteristics are as follows.

먼저, 본 발명의 개념은 베리어층 및 채널층을 포함하는 헴트(HEMT) 구조를 고온에서 성장시킨 후, 그 위에 양자점과 분리층이 교대로 적층된 양자점부를 저온으로 성장시켜 원적외선 수광 소자를 제조함으로써, 상온에서 동작이 가능하고 그 특성이 향상되며 소자의 크기 및 가격을 낮추는데 있다.First, the concept of the present invention by growing a hemet (HEMT) structure including a barrier layer and a channel layer at high temperature, by growing a quantum dot portion laminated alternately on the quantum dot and the separation layer at low temperature to produce a far infrared light receiving device It is possible to operate at room temperature, improve its characteristics, and reduce the size and cost of the device.

도 5는 본 발명 제 1 실시예에 따른 양자점 원적외선 수광 소자를 보여주는 구조단면도이고, 도 6는 도 5의 양자점부를 상세히 보여주는 도면이다.FIG. 5 is a structural cross-sectional view showing a quantum dot far infrared light receiving device according to a first embodiment of the present invention, and FIG. 6 is a view showing the quantum dot part of FIG. 5 in detail.

도 5에 도시된 바와 같이, 먼저, GaAs기판상에 MBE(Moleculer Beam Epitaxy) 혹은 MOCVD(Metal Organic Chemical Vapor Deposition)방법을 이용하여 약 550∼750℃ 온도 범위를 갖는 고온에서 Si-도프트(doped) AlGaAs 베리어층 및 언도프트(undoped) GaAs 채널층을 순차적으로 성장시킨다.As shown in FIG. 5, first, Si-doped at a high temperature having a temperature range of about 550 to 750 ° C. on a GaAs substrate using a MBE (Moleculer Beam Epitaxy) or a MOCVD (Metal Organic Chemical Vapor Deposition) method. ) The AlGaAs barrier layer and the undoped GaAs channel layer are sequentially grown.

여기서, 베리어층은 델타-도프트(delta-doped) Si 혹은 언도프트(undoped) AlGaAs로 이루어지고, GaAs기판과 Si-도프트(doped) AlGaAs 베리어층 사이에는 GaAs 혹은 AlGaAs로 이루어진 버퍼층을 형성할 수도 있다.Here, the barrier layer is made of delta-doped Si or undoped AlGaAs, and a buffer layer made of GaAs or AlGaAs is formed between the GaAs substrate and the Si-doped AlGaAs barrier layer. It may be.

이어, 언도프트(undoped) GaAs 채널층상에 양자점부를 형성하게 되는데, 도 6에 도시된 바와 같이 약 400∼540℃ 온도 범위를 갖는 저온에서 분리층과 양자점을 교대로 적층하여 다층 구조로 성장시킨다.Subsequently, a quantum dot portion is formed on the undoped GaAs channel layer, and as shown in FIG. 6, the separation layer and the quantum dot are alternately stacked at a low temperature having a temperature range of about 400 to 540 ° C. to grow into a multilayer structure.

여기서, 양자점부의 양자점은 In(x)GaAs(여기서, 0<x≤1)로 이루어지고, 분리층은 GaAs 혹은 Al(y)GaAs(여기서, 0<y≤1)로 이루어진다.Here, the quantum dot of the quantum dot portion is made of In (x) GaAs (here, 0 <x ≦ 1), and the separation layer is made of GaAs or Al (y) GaAs (here, 0 <y ≦ 1).

그리고, 양자점 두께는 약 1∼20nm로 하고, 양자점과 양자점을 분리하는 분리층의 두께는 약 5∼30nm로 한다.The thickness of the quantum dots is about 1 to 20 nm, and the thickness of the separation layer separating the quantum dots and the quantum dots is about 5 to 30 nm.

이 후, 양자점부 상부에 보호층 및 무반사층을 형성하고, 기판 하부를 랩핑(lapping)한 다음, 반사층을 코팅(coating)한다.Thereafter, a protective layer and an antireflective layer are formed on the quantum dot part, the bottom of the substrate is wrapped, and then the reflective layer is coated.

여기서, 반사층은 양자점 영역에서 흡수되지 않은 원적외선을 반사시킨 후 흡수하는 역할을 수행한다.Here, the reflective layer reflects and absorbs far-infrared rays which are not absorbed in the quantum dot region.

그리고, 양자점부, 채널층, 베리어층의 소정영역을 메사 식각하여 메사 영역 양측에 제 1, 제 2 터미널을 형성함으로써, 소자의 제작을 완성한다.Prefabrication of the device is completed by mesa etching predetermined regions of the quantum dot portion, the channel layer, and the barrier layer to form first and second terminals on both sides of the mesa region.

이와 같이, 본 발명에서는 도 7에 도시된 바와 같이 베리어층 및 채널층을 포함하는 헴트(HEMT) 구조를 Tg(HEMT)가 550∼750℃ 온도 범위를 갖는 고온에서 성장시킨 다음에 온도를 하강시켜 양자점과 분리층이 교대로 적층된 양자점부를 Tg(QD)가 400∼540℃ 온도 범위를 갖는 저온으로 성장시킴으로써, 양질의 양자점과 채널을 얻을 수 있다.As such, in the present invention, as shown in FIG. 7, a HEMT structure including a barrier layer and a channel layer is grown at a high temperature of Tg (HEMT) having a temperature range of 550 to 750 ° C., and then the temperature is lowered. By growing the quantum dot portion in which the quantum dot and the separation layer are alternately stacked at a low temperature having a Tg (QD) of 400 to 540 ° C, high quality quantum dots and channels can be obtained.

즉, 광전하 생성을 위한 양자점과 전류 이송 채널이 최적 조건에서 형성되므로 소자를 상온에서 냉각하지 않고 동작시킬 수 있을 뿐만 아니라 그 성능을 혁신적으로 개선시킬 수 있다.That is, since the quantum dots and current transfer channels for generating photocharges are formed under optimum conditions, the devices can be operated without cooling at room temperature and innovatively improved in performance.

또한, 원적외선이 소자의 앞쪽에서 입사될 때, Si-도프트(doped) AlGaAs 베리어층이 양자점 아래쪽에 위치하므로 기존과는 달리 Si-도프트(doped) AlGaAs 베리어층의 불순물 준위에 의한 광전류 생성을 억제하여 검출율(detectivity) 및 잡음 특성을 개선시킬 수 있다.In addition, when far-infrared rays are incident from the front of the device, since the Si-doped AlGaAs barrier layer is located below the quantum dot, photocurrent generation by the impurity level of the Si-doped AlGaAs barrier layer is unlikely. Suppression can improve detection and noise characteristics.

그리고, 채널 영역의 캐리어(carrier) 수송 특성이 우수하여 광전하 생성에 따른 검출율이 최적화된다.In addition, since carrier transport characteristics of the channel region are excellent, the detection rate according to the generation of photocharges is optimized.

도 8은 본 발명 제 2 실시예에 따른 양자점 원적외선 수광 소자를 보여주는 구조단면도로서, 도 8에 도시된 바와 같이 구조는 도 5와 동일하나 다른 물질로도 형성 가능하다.FIG. 8 is a cross-sectional view illustrating a quantum dot far infrared light receiving device according to a second exemplary embodiment of the present invention. As illustrated in FIG. 8, the structure is the same as that of FIG. 5, but may be formed of other materials.

즉, InP 기판상에 Si-도프트 InAlAs 베리어층, 언도프트 InGaAs 채널층, In(z)GaAs(여기서, 0.3≤z≤0.8) 양자점과 InP 분리층이 교대로 적층된 양자점부, 보호층이 순차적으로 형성된 구조로 이루어진다.That is, a Si-doped InAlAs barrier layer, an undoped InGaAs channel layer, an In (z) GaAs (here 0.3≤z≤0.8) quantum dot and an InP separation layer alternately stacked on an InP substrate, and a protective layer It consists of a structure formed sequentially.

도 5에서는 GaAs 기판을 사용하였지만 도 8과 같이 InP 기판을 사용하여 형성할 수도 있다.Although a GaAs substrate is used in FIG. 5, it may be formed using an InP substrate as shown in FIG. 8.

물론 제조 공정은 도 5와 동일하며, 그 효과도 도 5의 구조를 갖는 소자와 동일하다.Of course, the manufacturing process is the same as in Fig. 5, the effect is also the same as the device having the structure of Fig.

본 발명에 따른 양자점 원적외선 수광 소자 및 그 제조방법에 있어서는 다음과 같은 효과가 있다.The quantum dot far-infrared light receiving element and the manufacturing method thereof according to the present invention have the following effects.

양질의 양자점 및 채널을 얻을 수 있으므로 소자의 성능이 향상되고, 소자를 상온에서도 동작시킬 수 있다.High quality quantum dots and channels can be obtained to improve device performance and allow the device to operate at room temperature.

또한, 본 발명은 기존보다 고온에서도 동작이 가능하므로 이를 CCD 카메라와 같은 곳에 적용시키면 CCD 카메라를 소형화시킬 수 있고 그 가격을 낮출 수 있다.In addition, since the present invention can operate at a higher temperature than the conventional one, applying it to a place such as a CCD camera can reduce the size of the CCD camera and lower the cost.

Claims (15)

메사(mesa) 구조를 갖는 양자점 원적외선 수광 소자에 있어서,In a quantum dot far infrared light receiving device having a mesa structure, 기판;Board; 상기 기판상에 형성되는 도프트(doped) 베리어층;A doped barrier layer formed on the substrate; 상기 도프트 베리어층상에 형성되는 언도프트(undoped) 채널층;An undoped channel layer formed on the doped barrier layer; 언도프트 채널층상에 형성되는 양자점부;A quantum dot part formed on the undoped channel layer; 상기 메사 영역 양측에 형성되는 전극들로 구성되는 것을 특징으로 하는 양자점 원적외선 수광 소자.A quantum dot far infrared light receiving device, characterized in that composed of electrodes formed on both sides of the mesa region. 제 1 항에 있어서, 상기 기판은 GaAs 혹은 InP로 이루어지고, 베리어층은 Si-도프트(doped) AlGaAs 혹은 Si-도프트 InAlAs로 이루어지며, 채널층은 언도프트(undoped) GaAs 혹은 언도프트 InGaAs로 이루어지는 것을 특징으로 하는 양자점 원적외선 수광 소자.The method of claim 1, wherein the substrate is made of GaAs or InP, the barrier layer is made of Si-doped AlGaAs or Si-doped InAlAs, and the channel layer is undoped GaAs or undoped InGaAs. A quantum dot far infrared light receiving element, characterized in that consisting of. 제 1 항에 있어서, 상기 양자점부는 양자점과 분리층이 교대로 적층된 다층 구조로 이루어진 것을 특징으로 하는 양자점 원적외선 수광 소자.The quantum dot far infrared light receiving device of claim 1, wherein the quantum dot part has a multilayer structure in which quantum dots and a separation layer are alternately stacked. 제 3 항에 있어서, 상기 양자점은 In(x)GaAs(여기서, 0<x≤1) 혹은 In(z)GaAs(여기서, 0.3≤z≤0.8)로 이루어지고, 분리층은 GaAs, Al(y)GaAs(여기서, 0<y≤1), InP 중 어느 하나로 이루어지는 것을 특징으로 하는 양자점 원적외선 수광 소자.The method of claim 3, wherein the quantum dot is formed of In (x) GaAs (here, 0 <x ≦ 1) or In (z) GaAs (here, 0.3 ≦ z ≦ 0.8), and the separation layer is GaAs, Al (y). ) A quantum dot far-infrared light-receiving element comprising any one of GaAs (where 0 <y≤1) and InP. 제 3 항에 있어서, 상기 양자점부의 양자점 두께는 1∼20nm이고, 상기 양자점과 양자점을 분리하는 분리층의 두께는 5∼30nm인 것을 특징으로 하는 양자점 원적외선 수광 소자.4. The quantum dot far-infrared light-receiving device according to claim 3, wherein the quantum dot thickness of the quantum dot portion is 1 to 20 nm, and the thickness of the separation layer separating the quantum dots and the quantum dots is 5 to 30 nm. 제 1 항에 있어서, 상기 기판과 도프트(doped) 베리어층 사이에는 버퍼층이 형성되는 것을 특징으로 하는 양자점 원적외선 수광 소자.The quantum dot far infrared light receiving device of claim 1, wherein a buffer layer is formed between the substrate and the doped barrier layer. 제 6 항에 있어서, 버퍼층은 GaAs, AlGaAs, InP 중 어느 하나로 이루어지는 것을 특징으로 하는 양자점 원적외선 수광 소자.The quantum dot far-infrared light-receiving device according to claim 6, wherein the buffer layer is made of any one of GaAs, AlGaAs, and InP. 제 1 항에 있어서, 상기 양자점부 상부에는 보호층 및 무반사층이 순차적으로 형성되고, 기판 하부에는 반사층이 형성되는 것을 특징으로 하는 양자점 원적외선 수광 소자.The quantum dot far infrared light receiving device of claim 1, wherein a protective layer and an antireflective layer are sequentially formed on the quantum dot part, and a reflective layer is formed on the lower part of the substrate. 기판상에 도프트(doped) 베리어층, 언도프트(undoped) 채널층을 고온에서 순차적으로 형성한 후, 그 위에 양자점과 분리층이 교대로 적층된 양자점부를 저온에서 형성하는 제 1 단계;A first step of sequentially forming a doped barrier layer and an undoped channel layer on a substrate at a high temperature, and then forming a quantum dot portion in which quantum dots and a separation layer are alternately stacked thereon at a low temperature; 상기 양자점부, 채널층, 베리어층의 소정영역을 메사 식각하여 메사 영역 양측에 전극들을 형성하는 제 2 단계로 이루어지는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.And mesa-etching predetermined regions of the quantum dot portion, the channel layer, and the barrier layer to form electrodes on both sides of the quantum dot portion, the channel layer, and the barrier layer. 제 9 항에 있어서, 상기 제 2 단계 이전에, 상기 양자점부 상부에는 무반사층을, 기판 하부에 반사층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.The method of claim 9, further comprising, before the second step, forming an anti-reflective layer on the quantum dot portion and a reflective layer on the bottom of the substrate. 제 9 항에 있어서, 상기 기판은 GaAs 혹은 InP로 이루어지고, 베리어층은 Si-도프트(doped) AlGaAs 혹은 Si-도프트 InAlAs로 이루어지며, 채널층은 언도프트(undoped) GaAs 혹은 언도프트 InGaAs로 이루어지고, 상기 양자점은 In(x)GaAs(여기서, 0<x≤1) 혹은 In(z)GaAs(여기서, 0.3≤z≤0.8)로 이루어지며, 분리층은 GaAs, Al(y)GaAs(여기서, 0<y≤1), InP 중 어느 하나로 이루어지는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.10. The method of claim 9, wherein the substrate is made of GaAs or InP, the barrier layer is made of Si-doped AlGaAs or Si-doped InAlAs, and the channel layer is undoped GaAs or undoped InGaAs. The quantum dot is composed of In (x) GaAs (here, 0 <x≤1) or In (z) GaAs (here, 0.3≤z≤0.8), and the separation layer is GaAs, Al (y) GaAs. (Where 0 &lt; y ≦ 1) and InP is any one of the methods for manufacturing a quantum dot far infrared light receiving element. 제 11 항에 있어서, 상기 Si-도프트(doped) AlGaAs 베리어층은 델타-도프트(delta-doped) Si 혹은 언도프트(undoped) AlGaAs로 형성하는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.12. The method of claim 11, wherein the Si-doped AlGaAs barrier layer is formed of delta-doped Si or undoped AlGaAs. 제 9 항에 있어서, 상기 제 1 단계의 각층들은 MBE 혹은 MOCVD 방법을 이용하여 형성하는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.10. The method of claim 9, wherein each layer of the first step is formed using an MBE or MOCVD method. 제 9 항에 있어서, 상기 제 1 단계는 상기 기판과 도프트(doped) 베리어층 사이에 GaAs, AlGaAs, InP 중 어느 하나로 이루어지는 버퍼층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.10. The method of claim 9, wherein the first step further comprises the step of forming a buffer layer consisting of any one of GaAs, AlGaAs, InP between the substrate and the doped barrier layer manufacturing a quantum dot far infrared light receiving device Way. 제 9 항에 있어서, 상기 베리어층 및 채널층은 550∼750℃ 온도 범위에서 형성되고, 상기 양자점부는 400∼540℃ 온도 범위에서 형성되는 것을 특징으로 하는 양자점 원적외선 수광 소자 제조방법.The method of claim 9, wherein the barrier layer and the channel layer are formed at a temperature range of 550 to 750 ° C, and the quantum dot portion is formed at a temperature range of 400 to 540 ° C.
KR1019990008477A 1999-03-13 1999-03-13 quantum dot infrared detection device and method for fabricating the same KR100290858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990008477A KR100290858B1 (en) 1999-03-13 1999-03-13 quantum dot infrared detection device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990008477A KR100290858B1 (en) 1999-03-13 1999-03-13 quantum dot infrared detection device and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20000060294A KR20000060294A (en) 2000-10-16
KR100290858B1 true KR100290858B1 (en) 2001-05-15

Family

ID=19576496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990008477A KR100290858B1 (en) 1999-03-13 1999-03-13 quantum dot infrared detection device and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR100290858B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017312A (en) * 2015-09-17 2017-08-04 三星电子株式会社 Photoelectric device and the electronic installation including the photoelectric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349599B1 (en) * 2000-04-14 2002-08-23 삼성전자 주식회사 Quantum Dot Infrared Photodetector(QDIP) improved quantum efficiency

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761620A (en) * 1986-12-03 1988-08-02 American Telephone And Telegraph Company, At&T Bell Laboratories Optical reading of quantum well device
JPH0319381A (en) * 1989-06-16 1991-01-28 Nec Corp Infrared sensor and drive thereof
JPH0697471A (en) * 1992-09-16 1994-04-08 Mitsubishi Electric Corp Infrared detector device and assembling method thereof
JPH06232441A (en) * 1993-02-05 1994-08-19 Casio Comput Co Ltd Photosensor and driving method for photosensor
JPH06291353A (en) * 1993-03-30 1994-10-18 Casio Comput Co Ltd Optical detection method of photosensor
JPH0794774A (en) * 1993-09-22 1995-04-07 Honda Motor Co Ltd Semiconductor photodetector and image sensor
JPH08316522A (en) * 1995-05-19 1996-11-29 Canon Inc Photodetector with hemt type photo-detecting part
KR19980083829A (en) * 1997-05-19 1998-12-05 윤종용 Ferroelectric infrared detectors and how they work
JPH114014A (en) * 1997-06-13 1999-01-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761620A (en) * 1986-12-03 1988-08-02 American Telephone And Telegraph Company, At&T Bell Laboratories Optical reading of quantum well device
JPH0319381A (en) * 1989-06-16 1991-01-28 Nec Corp Infrared sensor and drive thereof
JPH0697471A (en) * 1992-09-16 1994-04-08 Mitsubishi Electric Corp Infrared detector device and assembling method thereof
JPH06232441A (en) * 1993-02-05 1994-08-19 Casio Comput Co Ltd Photosensor and driving method for photosensor
JPH06291353A (en) * 1993-03-30 1994-10-18 Casio Comput Co Ltd Optical detection method of photosensor
JPH0794774A (en) * 1993-09-22 1995-04-07 Honda Motor Co Ltd Semiconductor photodetector and image sensor
JPH08316522A (en) * 1995-05-19 1996-11-29 Canon Inc Photodetector with hemt type photo-detecting part
KR19980083829A (en) * 1997-05-19 1998-12-05 윤종용 Ferroelectric infrared detectors and how they work
JPH114014A (en) * 1997-06-13 1999-01-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017312A (en) * 2015-09-17 2017-08-04 三星电子株式会社 Photoelectric device and the electronic installation including the photoelectric device
CN107017312B (en) * 2015-09-17 2021-11-26 三星电子株式会社 Photoelectric device and electronic apparatus including the same

Also Published As

Publication number Publication date
KR20000060294A (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US9178089B1 (en) Strain-balanced extended-wavelength barrier detector
US6407439B1 (en) Programmable multi-wavelength detector array
US7148463B2 (en) Increased responsivity photodetector
US6894267B2 (en) Photodetector device having stacked structure with improved response rate
US5457331A (en) Dual-band infrared radiation detector optimized for fabrication in compositionally graded HgCdTe
JP4702977B2 (en) Receiver
CN112786731A (en) Double-color infrared detector and manufacturing method thereof
CN111403505A (en) Bipolar visible light detector and preparation method thereof
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
Colace et al. Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon
KR100290858B1 (en) quantum dot infrared detection device and method for fabricating the same
US20020094597A1 (en) Quantum dot infrared photodetector and method for fabricating the same
JP2000323746A (en) Avalanche photodiode and its manufacture
JP2695112B2 (en) Avalanche photodiode with superlattice-structured amplification layer
CN113410329B (en) Dual-color infrared detector and manufacturing method thereof
CN111799350A (en) Double-color infrared detector and manufacturing method thereof
Ito et al. High-efficiency unitraveling-carrier photodiode with an integrated total-reflection mirror
JP2730472B2 (en) Semiconductor light receiving element
JPH11330536A (en) Semiconductor light receiving element
KR100313889B1 (en) quantum dot infrared detection device and method for fabricating the same
Walther et al. III-V semiconductor quantum well and superlattice detectors
US20180308999A1 (en) Semiconductor light receiving device
CN215266335U (en) Double-color infrared detector
US20230114881A1 (en) Barrier Infrared Detector Architecture for Focal Plane Arrays
JPH0832105A (en) Optical semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051201

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee