KR100290066B1 - How to fix titanium dioxide, used as an air freshener, on activated carbon - Google Patents

How to fix titanium dioxide, used as an air freshener, on activated carbon Download PDF

Info

Publication number
KR100290066B1
KR100290066B1 KR1019980028088A KR19980028088A KR100290066B1 KR 100290066 B1 KR100290066 B1 KR 100290066B1 KR 1019980028088 A KR1019980028088 A KR 1019980028088A KR 19980028088 A KR19980028088 A KR 19980028088A KR 100290066 B1 KR100290066 B1 KR 100290066B1
Authority
KR
South Korea
Prior art keywords
activated carbon
titanium dioxide
concentration
air
air freshener
Prior art date
Application number
KR1019980028088A
Other languages
Korean (ko)
Other versions
KR20000008326A (en
Inventor
이동근
김성우
조인철
변은숙
안상준
Original Assignee
김명신
주식회사대림화학
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김명신, 주식회사대림화학, 대한민국 filed Critical 김명신
Priority to KR1019980028088A priority Critical patent/KR100290066B1/en
Publication of KR20000008326A publication Critical patent/KR20000008326A/en
Application granted granted Critical
Publication of KR100290066B1 publication Critical patent/KR100290066B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic

Abstract

본 발명은 공기중의 오염 물질을 제거하기 위해 공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시키는 방법에 관한 것이다.The present invention relates to a method of fixing titanium dioxide, which is used as an air freshener to remove contaminants in air, to activated carbon.

즉, 본 발명은 활성탄 표면에 각각 부피비 1 : 1의 티타늄 테트라이소프로퍼옥시드 및 물을 동시에 증착시켜서, 공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시키는 방법에 관한 것이다.That is, the present invention relates to a method of fixing titanium dioxide, which is used as an air freshener, on an activated carbon by simultaneously depositing titanium tetraisopropoxide and water in a volume ratio of 1: 1 on the surface of activated carbon.

이와 같은 방법에 의해 이산화티타늄을 활성탄에 고정시킨 장치는 활성탄의 흡착 작용 및 자외선 조사로 발생하는 광촉매 반응에 의해 공기중의 오염 물질을 제거할 수 있다.The apparatus in which titanium dioxide is fixed to activated carbon by such a method can remove contaminants in the air by the adsorption action of activated carbon and photocatalytic reaction generated by ultraviolet irradiation.

Description

공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시키는 방법How to fix titanium dioxide, used as an air freshener, on activated carbon

본 발명은 공기 청정제로 사용되는 이산화티타늄을 고정시키는 방법에 관한 것이다. 더욱 상세하게는, 공기중의 오염 물질을 광촉매 반응에 의해 제거하는 작용을 하는 이산화티타늄을 활성탄에 고정시키는 방법에 관한 것이다.The present invention relates to a method for fixing titanium dioxide used as an air freshener. More specifically, the present invention relates to a method of fixing titanium dioxide to activated carbon, which serves to remove airborne contaminants by a photocatalytic reaction.

현재 날로 심각해져가는 대기오염 문제중, 인간의 생활, 특히 건강과 밀접한 관계를 가지고 있는 저 농도의 실내공기 오염의 문제는 지금까지 소홀히 다루어져왔고, 발생원에서의 처리 대책이 수립되어 있지 않은 상태에서 실내 생활자에게 육체적, 정신적 피해가 우려된다. 일반적인 대기 환경중 유기 오염물, 악취 및 세균에 대한 피해의 정도는 명확히 밝혀진 바 없으나, 최근 실내 공기 청정기, 청정제 및 살균제의 소비가 늘어나고 있는 추세이다. 그러나, 이들 약품의 사용이 실내 공기중의 미량 유기 오염물질, 악취 및 세균 등을 완벽하게 처리할 수 있는 것은 아니고 처리 기기의 설치와 설치장소 및 비용 등의 측면에서도 바람직한 것은 아니다.Among the problems of air pollution, which are becoming more serious today, the problem of low concentration of indoor air pollution, which is closely related to human life, especially health, has been neglected until now, and indoors have not been established. There is concern about physical and mental damage to the living person. The degree of damage to organic pollutants, odors and bacteria in the general air environment has not been clearly identified, but the consumption of indoor air cleaners, detergents and fungicides has recently increased. However, the use of these chemicals is not able to completely deal with trace organic contaminants, odors and bacteria in the indoor air, and is not preferable in terms of the installation of the processing equipment, the installation location and the cost.

반도체 재료에 빛을 조사하면 광촉매 작용을 일으키는 것은 이미 알려져 있다. 그 중에서도 이산화티타늄은 매우 강한 광촉매 작용을 나타내는데 이러한 반응성을 이용하여 실내공기 중의 악취 성분을 분해하여 제거할 수 있다. 그러나, 이산화티타늄은 일반적으로 매우 작은 분말 상태로 존재하기 때문에 미세한 공기흐름에도 손쉽게 날아가서 공기중에 부유하는 입상 물질로 작용하여 새로운 대기 오염 물질이 될 수 있다. 이에 따라, 이산화티타늄 반도체 물질의 광촉매 작용을 이용하여 실내 공기중의 악취 물질을 분해시키기 위해서는 이를 고정화시키는 것이 무엇보다도 필요하다.It is known to cause photocatalytic action when light is irradiated to a semiconductor material. Among them, titanium dioxide has a very strong photocatalytic action, and by using such reactivity, it is possible to decompose and remove odor components in indoor air. However, since titanium dioxide is generally present in a very small powder state, it can easily fly even in fine air flow and act as a particulate matter suspended in air, thereby becoming a new air pollutant. Accordingly, in order to decompose odorous substances in the indoor air by using the photocatalytic action of the titanium dioxide semiconductor material, it is necessary to first fix them.

가정과 사무실에서 발생하는 악취는 질소화합물(암모니아, 아민류, 인돌류 및 스카톨 등), 황화합물(황화수소, 메틸머캡탄, 황화메틸 및 이황화메틸 등), 지방산 및 방향족 화합물 등의 매우 다양한 성분으로 이루어진다.Odors that occur in homes and offices consist of a wide variety of components, including nitrogen compounds (such as ammonia, amines, indole and scatol), sulfur compounds (such as hydrogen sulfide, methylmercaptan, methyl sulfide and methyl disulfide), fatty acids and aromatic compounds.

이러한 악취 물질을 탈취하기 위해 가장 손쉽게 사용할 수 있는 방법이 활성탄과 같은 흡착제를 사용하는 방법이다. 흡착제를 이용하는 방법은 강한 흡착력을 지니는 흡착제의 표면에 악취 유발 물질이 화학적으로 흡착되어 제거하는 방법이다. 그러나, 흡착제의 경우 흡착용량이 포화되면 탈취 성능이 현저히 저하되어 흡착제를 다시 재생하여 사용하던가 또는 새로운 흡착제로 교환해 주어야 하는 문제점이 있다.The easiest way to deodorize these odorous substances is to use an adsorbent such as activated carbon. The method using the adsorbent is a method of chemically adsorbing and removing odor causing substances on the surface of the adsorbent having a strong adsorption force. However, in the case of the adsorbent, when the adsorption capacity is saturated, the deodorizing performance is significantly lowered, and there is a problem in that the adsorbent is regenerated and used again or replaced with a new adsorbent.

이와 같은 문제를 해결하기 위해 본 발명자들은 예의 연구를 거듭한 결과, 활성탄 표면에 각각 부피비 0.5 : 1 내지 2 : 1의 티타늄 테트라이소프로퍼옥시드 및 물을 동시에 증착시켜서, 공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시킬 경우 자외선을 조사하여 발생하는 광촉매 반응 및 활성탄의 흡착 작용에 의해 공기중의 오염 물질을 쉽게 제거할 수 있을 뿐 아니라, 상기의 이산화티타늄 광촉매와 활성탄 흡착제가 각각 지니고 있는 단점을 극복하기 위해 이산화티타늄 반도체가 입상 활성탄에 고정화 되도록 하여 실내 악취 유발물질을 흡착 및 광촉매 반응에 의해 제거하는 것을 그 목적으로 한다.In order to solve such a problem, the present inventors earnestly studied, and simultaneously deposited titanium tetraisopropoxide having a volume ratio of 0.5: 1 to 2: 1 and water on the surface of activated carbon, respectively, titanium dioxide used as an air freshener. Is fixed to activated carbon, it is not only easy to remove pollutants in the air by photocatalytic reaction caused by UV irradiation and activated carbon adsorption, but also overcomes the disadvantages of the titanium dioxide photocatalyst and activated carbon adsorbent, respectively. For this purpose, the titanium dioxide semiconductor is immobilized on granular activated carbon to remove indoor odor causing substances by adsorption and photocatalytic reaction.

본 발명은 활성탄을 80 내지 120。C에서 진공 처리한 후, 온도를 0 내지 20。C로 낮추고, 상기 활성탄 표면에 각각 부피비 0.5 : 1 내지 2 : 1의 티타늄 테트라이소프로퍼옥시드 및 물을 동시에 증착시켜서 되는 공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시키는 방법임을 특징으로 한다.The present invention vacuums activated carbon at 80 to 120 ° C., and then lowers the temperature to 0 to 20 ° C., and simultaneously adds titanium tetraisopropoxide and water in a volume ratio of 0.5: 1 to 2: 1 on the surface of the activated carbon, respectively. A method of fixing titanium dioxide used as an air freshener to be deposited on activated carbon.

본 발명에서는 입상 활성탄을 80 내지 120。C에서 진공 처리한 다음에 온도를 0 내지 20。C로 낮춘다.In the present invention, the granular activated carbon is vacuumed at 80 to 120 ° C. and then the temperature is lowered to 0 to 20 ° C.

상기와 같은 방법에 의해 활성탄의 표면을 진공 처리했을 때, 상기 활성탄에 각각 티타늄 테트라이소프로퍼옥시드 및 물을 동시에 증착시킨 후, 일정 시간동안 진공 건조시키게 되면 상기 활성탄의 표면에 이산화티타늄이 고정된다.When the surface of activated carbon is vacuum-treated by the above method, titanium tetraisopropoxide and water are deposited on the activated carbon at the same time, and when vacuum-dried for a predetermined time, titanium dioxide is fixed to the surface of the activated carbon. .

상기 증착시키는 방법은, 상기 두 용액이 담겨진 유리병을 80。C로 가온하여 용액을 기화시키고, 활성탄이 담겨져 있는 진공 유리병과 연결하여 상기 용액의 유리병과 활성탄의 유리병과의 압력차이에 의해 진공 유리병으로 두 용액의 증기가 흘러 들어옴으로써 증착이 발생된다.In the deposition method, the glass bottles containing the two solutions are heated at 80 ° C. to vaporize the solution, and the vacuum glass is formed by the pressure difference between the glass bottle of the solution and the glass bottle of the activated carbon by connecting with the vacuum glass bottle containing the activated carbon. Deposition occurs by the vapor of both solutions flowing into the bottle.

상기 활성탄에 이산화티타늄이 고정되는 화학적·물리적 반응의 메카니즘은 활성탄의 미세 구멍 내부에서 티타늄테트라이소프로퍼옥사이드와 물의 가수 분해에 의해 미세한 이산화티타늄이 생성되어 부착된다.The mechanism of chemical and physical reaction in which titanium dioxide is immobilized on the activated carbon is formed by attaching fine titanium dioxide by hydrolysis of titanium tetraisopropoxide and water in the fine pores of activated carbon.

상기와 같은 방법에 의해 이산화티타늄을 활성탄에 고정시켜 이산화티타늄이 미세 분말 상태가 아닌 고정화된 상태로 입상 활성탄에 존재하도록 하여서, 이산화티타늄이 비산되는 단점을 극복함과 동시에 활성탄의 흡착 용량이 포화되면 이산화티타늄의 광촉매 반응에 의해 흡착된 악취 유발 물질을 분해시켜 활성탄의 흡착 능력을 계속 재생시켜 주는 것이다.Titanium dioxide is fixed to activated carbon by the above method so that titanium dioxide is present in the granular activated carbon in an immobilized state rather than in a fine powder state, thereby overcoming the disadvantage of titanium dioxide scattering and at the same time saturating adsorption capacity of activated carbon. By decomposing odor causing substances adsorbed by the photocatalytic reaction of titanium dioxide, it continues to regenerate the adsorption capacity of activated carbon.

이하 본 발명을 실시 예에 의해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail by way of examples.

[실시예]EXAMPLE

광촉매 반응 실험Photocatalytic Reaction Experiment

본 실험에 사용된 자외선 램프는 15와트(Watt) 중압 수은 램프로서 최대 발광 파장은 254nm이다. 실험은 가로 50cm, 세로 50cm 및 높이 30cm의 알루미늄으로 제작된 방(반응실)에서 수행하였으며, 스텐레스강으로 제작된 지지대 위에 5g의 이산화티타늄이 고정화된(또는 이산화티타늄이 존재하지 않음) 활성탄이 위치하여 광원으로부터의 수직거리가 15cm가 되도록 하였다.The UV lamp used in this experiment was a 15-watt medium pressure mercury lamp with a maximum emission wavelength of 254 nm. The experiment was carried out in a room (reaction chamber) made of aluminum with a width of 50 cm, a height of 50 cm, and a height of 30 cm, with activated carbon having 5 g of titanium dioxide fixed (or no titanium dioxide) on a support made of stainless steel. The vertical distance from the light source was 15 cm.

지지대위에 놓여진 이산화티타늄이 고정화된(또는 이산화티타늄이 존재하지 않음) 활성탄은 실시예 및 비교예 실험 전에 해당되는 악취 유발 물질로 미리 흡착시켜 더 이상의 악취 유발 물질이 흡착되지 않도록 하였다.Activated carbon immobilized on titanium dioxide (or no titanium dioxide) placed on the support was previously adsorbed with the corresponding malodor causing substances before the experiments of Examples and Comparative Examples to prevent any further malodor causing substances from adsorbing.

실시예 1Example 1

입상 활성탄을 진공에서도 견딜 수 있는 진공 유리병에 담그고 100。C에서 진공처리를 했다. 진공도가 10-2mmHg이하로 떨어지면 진공 유리병의 온도를 0 내지 20。C로 떨어뜨렸다. 이후 두 개의 유리병을 각각 티타늄 테트라이소프로퍼옥시드와 물을 넣고 80。C로 유지시킨 후에 각 유리병의 출구를 활성탄이 들어있는 진공 처리된 유리병으로 연결했다. 이후 진공 유리병의 압력이 10-1mmHg가 될 때부터 진공 유리병의 온도를 2。C/분의 속도로 상승시켰다. 진공 유리병의 온도가 200。C가 되면 온도 상승을 중단시켰고 200。C에서 진공 유리병의 압력이 760mmHg이상이 될 때까지 유지시켰다.The granular activated carbon was immersed in a vacuum glass bottle that can withstand vacuum and vacuumed at 100 ° C. When the degree of vacuum dropped below 10 −2 mmHg, the temperature of the vacuum glass bottle was dropped to 0 to 20 ° C. Then, two glass bottles were added with titanium tetraisopropoxide and water, respectively, and maintained at 80 ° C., and then the outlets of the glass bottles were connected to vacuum-treated glass bottles containing activated carbon. Then, the temperature of the vacuum glass bottle was raised at a rate of 2 ° C / min from when the pressure of the vacuum glass bottle became 10 −1 mmHg. The temperature rise was stopped when the temperature of the vacuum glass bottle reached 200 ° C. and maintained at 200 ° C. until the pressure of the vacuum glass bottle became 760 mmHg or more.

이렇게 제조된 시료는 이후 200。C에서 72시간 동안 진공 건조시킨 후, 250。C에서 흐르는 산소로 다시 72시간 동안 처리하여 이산화티타늄을 활성탄에 고정시켰다.The sample thus prepared was then vacuum dried at 200 ° C. for 72 hours and then treated with oxygen flowing at 250 ° C. for 72 hours to fix titanium dioxide on activated carbon.

상기와 같이 제조된 이산화티타늄이 고정된 활성탄을 반응실에 설치했고, 반응실에 998ppm의 황화수소(나머지 기체는 공기)를 채운 후, 상기 기재한 광촉매 반응 실험 조건에서 자외선 램프로 빛을 조사하기 시작하였다. 빛을 조사한 후 황화수소의 농도는 천천히 감소하기 시작하여 1시간이 경과한 후 황화수소의 농도는 879ppm이었다. 이후 24시간이 경과한 후에 황화수소의 농도는 327ppm으로 감소하였다.Titanium dioxide-fixed activated carbon prepared as described above was installed in the reaction chamber, and after filling 998 ppm of hydrogen sulfide (the remaining gas was air) in the reaction chamber, the light was irradiated with an ultraviolet lamp under the photocatalytic reaction test conditions described above. It was. After irradiation with light, the concentration of hydrogen sulfide began to decrease slowly, and after 1 hour, the concentration of hydrogen sulfide was 879 ppm. After 24 hours, the concentration of hydrogen sulfide decreased to 327 ppm.

실시예 2Example 2

상기 실시예 1과 동일하게 하되, 황화수소 대신에 반응실에 59ppm의 포름알데히드를 주입한 후 자외선 램프로 빛을 조사하기 시작하였다. 빛을 조사한 후 포름알데히드의 농도는 천천히 감소하기 시작하여 1시간이 경과한 후 포름알데히드의 농도는 36.5ppm이었다. 이후 24시간이 경과한 후에 포름알데히드의 농도는 6.4ppm으로 감소하였다.In the same manner as in Example 1, instead of hydrogen sulfide, 59 ppm of formaldehyde was injected into the reaction chamber and then irradiated with an ultraviolet lamp. After irradiation with light, the concentration of formaldehyde began to decrease slowly. After 1 hour, the concentration of formaldehyde was 36.5 ppm. After 24 hours, the concentration of formaldehyde was reduced to 6.4 ppm.

실시예 3Example 3

상기 실시예 1과 동일하게 하되, 황화수소 대신에 반응실에 503ppm의 메틸머캡탄을 채운 후 자외선 램프로 빛을 조사하기 시작하였다. 빛을 조사한 후 메틸머캡탄의 농도는 천천히 감소하기 시작하여 1시간이 경과한 후 메틸머캡탄의 농도는 427ppm이었다. 이후 24시간이 경과한 후에 메틸머캡탄의 농도는 318ppm으로 감소하였다.In the same manner as in Example 1, instead of hydrogen sulfide, 503ppm of methylmercaptan was filled in the reaction chamber and then irradiated with an ultraviolet lamp. After irradiation with light, the concentration of methylmercaptan began to decrease slowly, and after 1 hour, the concentration of methylmercaptan was 427 ppm. After 24 hours, the concentration of methylmercaptan decreased to 318 ppm.

실시예 4Example 4

상기 실시예 1과 동일하게 하되, 황화수소 대신에 반응실에 383ppm의 메틸아민을 주입한 후 자외선 램프로 빛을 조사하기 시작하였다. 빛을 조사한 후 메틸아민의 농도는 천천히 감소하기 시작하여 1시간이 경과한 후 메틸아민의 농도는 316ppm이었다. 이후 24시간이 경과한 후에 메틸아민의 농도는 206ppm으로 감소하였다.In the same manner as in Example 1, 383ppm of methylamine was injected into the reaction chamber instead of hydrogen sulfide, and light was irradiated with an ultraviolet lamp. After irradiation with light, the methylamine concentration began to decrease slowly, and after 1 hour, the methylamine concentration was 316 ppm. After 24 hours, the concentration of methylamine was reduced to 206 ppm.

비교예 1Comparative Example 1

상기 실시예 1과 동일하게 하되, 단지 이산화티타늄이 존재하지 않는 활성탄으로 실험을 수행한 결과 황화수소의 농도는 거의 감소하지 않았으며 1시간이 경과한 후 황화수소의 농도는 985ppm이었다. 이후 24시간이 경과한 후에 황화수소의 농도는 959ppm으로 나타났다.In the same manner as in Example 1, but the experiment was performed only with activated carbon in which no titanium dioxide is present, the concentration of hydrogen sulfide was hardly reduced and after 1 hour, the concentration of hydrogen sulfide was 985 ppm. After 24 hours, the concentration of hydrogen sulfide was 959ppm.

비교예 2Comparative Example 2

상기 실시예 2와 동일하게 하되, 단지 이산화티타늄이 존재하지 않는 활성탄으로 실험을 수행한 결과 포름알데히드의 농도는 거의 감소하지 않았으며 1시간이 경과한 후 포름알데히드의 농도는 57ppm이었다. 이후 24시간이 경과한 후에 포름알데히드의 농도는 54ppm으로 나타났다.In the same manner as in Example 2, but the experiment was performed only with activated carbon in the absence of titanium dioxide, the concentration of formaldehyde almost did not decrease and after 1 hour the concentration of formaldehyde was 57ppm. After 24 hours, the concentration of formaldehyde was 54 ppm.

비교예 3Comparative Example 3

상기 실시예 3과 동일하게 하되, 단지 이산화티타늄이 존재하지 않는 활성탄으로 실험을 수행한 결과 메틸머캡탄의 농도는 거의 감소하지 않았으며 1시간이 경과한 후 메틸머캡탄의 농도는 492ppm이었다. 이후 24시간이 경과한 후에 메틸머캡탄의 농도는 488ppm으로 나타났다.In the same manner as in Example 3, but the experiment was performed only with activated carbon in which no titanium dioxide is present, the concentration of methylmercaptan was hardly decreased, and the concentration of methylmercaptan was 492 ppm after 1 hour. After 24 hours, the methylmercaptan concentration was 488 ppm.

비교예 4Comparative Example 4

상기 실시예 4와 동일하게 하되, 단지 이산화티타늄이 존재하지 않는 활성탄으로 실험을 수행한 결과 메틸아민의 농도는 거의 감소하지 않았으며 1시간이 경과한 후에 메틸아민의 농도는 357ppm이었다. 이후 24시간이 경과한 후에 메틸아민의 농도는 331ppm으로 나타났다.In the same manner as in Example 4, but the experiment was performed only with activated carbon without titanium dioxide, the concentration of methylamine was hardly reduced and after 1 hour, the methylamine concentration was 357 ppm. After 24 hours, the concentration of methylamine was 331ppm.

상기 실시예 및 비교예에서 알 수 있는 바와 같이 이산화티타늄을 유리관에 고정시킨 경우,As can be seen in the above examples and comparative examples, when titanium dioxide is fixed to the glass tube,

공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정한 경우에 포름알데히드는 20%이하, 황화수소는 30%이하 및 메틸머캡탄 및 메틸아민은 60%이하만이 존재하게 된다. 따라서, 상기 모든 물질에 대한 탈취 효과를 갖음을 알 수 있다.When titanium dioxide used as an air freshener is immobilized on activated carbon, only 20% or less of formaldehyde, 30% or less of hydrogen sulfide and 60% or less of methylmercaptan and methylamine are present. Thus, it can be seen that it has a deodorizing effect on all the above substances.

상기 결과에서 보듯이 본 발명에 따르는 이산화티타늄이 고정화된 활성탄을 이용한 실시예의 경우와 이산화티타늄이 존재하지 않는 활성탄을 이용한 비교 예를 살펴보면, 이산화티타늄이 존재하지 않는 활성탄의 경우 악취 유발 물질이 활성탄의 흡착 용량이상은 거의 제거되지 않은 반면 이산화티타늄이 고정화된 활성탄에서는 악취 유발 물질이 계속 제거되었다.As shown in the above results, in the case of the embodiment using the activated carbon immobilized titanium dioxide according to the present invention and the comparative example using activated carbon without titanium dioxide, in the case of activated carbon without titanium dioxide, the odor causing substance is Abnormal adsorption capacity was hardly eliminated, while odor-causing substances continued to be removed from titanium dioxide-immobilized activated carbon.

이는 활성탄에 흡착된 악취 유발 물질이 주위에 고정화된 이산화티타늄의 광촉매 반응에 의해 분해되어 제거되고 빈 흡착자리에 악취 유발 물질이 계속 흡착하기 때문이다.This is because the odor causing substance adsorbed on the activated carbon is decomposed and removed by the photocatalytic reaction of titanium dioxide immobilized around the odor causing substance.

상기 결과에 의해 이산화티타늄이 고정화된 활성탄을 광촉매로 사용할 경우 활성탄의 흡착 성능과 이산화티타늄의 광촉매 작용을 동시에 활용하여 실내 공기중의 악취 유발 물질을 효과적으로 제거할 수 있음을 보여준다.The results show that when activated carbon with titanium dioxide immobilized is used as a photocatalyst, odor-causing substances in indoor air can be effectively removed by utilizing the adsorption performance of activated carbon and the photocatalytic action of titanium dioxide.

Claims (1)

활성탄을 80 내지 120。C에서 진공 처리한 후, 온도를 0 내지 20。C로 낮추고, 상기 활성탄 표면에 각각 부피비 0.5 : 1 내지 2 : 1의 티타늄 테트라이소프로퍼옥시드 및 물을 동시에 증착시켜서 됨을 특징으로 하는 공기 청정제로 사용되는 이산화티타늄을 활성탄에 고정시키는 방법.After the activated carbon was vacuumed at 80 to 120 ° C., the temperature was lowered to 0 to 20 ° C. and titanium tetraisopropoxide having a volume ratio of 0.5: 1 to 2: 1 and water were simultaneously deposited on the surface of the activated carbon. A method of fixing titanium dioxide, which is used as an air freshener, to activated carbon.
KR1019980028088A 1998-07-13 1998-07-13 How to fix titanium dioxide, used as an air freshener, on activated carbon KR100290066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980028088A KR100290066B1 (en) 1998-07-13 1998-07-13 How to fix titanium dioxide, used as an air freshener, on activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980028088A KR100290066B1 (en) 1998-07-13 1998-07-13 How to fix titanium dioxide, used as an air freshener, on activated carbon

Publications (2)

Publication Number Publication Date
KR20000008326A KR20000008326A (en) 2000-02-07
KR100290066B1 true KR100290066B1 (en) 2001-05-15

Family

ID=19543918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980028088A KR100290066B1 (en) 1998-07-13 1998-07-13 How to fix titanium dioxide, used as an air freshener, on activated carbon

Country Status (1)

Country Link
KR (1) KR100290066B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509003B1 (en) * 2021-12-28 2023-03-10 퓨리바이드 주식회사 Photocatalytic Adsorbent Manufacturing Method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405375B1 (en) * 2000-02-25 2003-11-12 이종호 Manufactural method of activated carbon as a bactericidal photo-catalyst
KR100615515B1 (en) * 2005-03-17 2006-08-25 이종대 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299789A (en) * 1995-05-02 1996-11-19 Yamagata Pref Gov Technopolis Zaidan Production of fixed titanium dioxide catalyst
JPH09227805A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic hydrophilic coating composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299789A (en) * 1995-05-02 1996-11-19 Yamagata Pref Gov Technopolis Zaidan Production of fixed titanium dioxide catalyst
JPH09227805A (en) * 1995-12-22 1997-09-02 Toto Ltd Photocatalytic hydrophilic coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509003B1 (en) * 2021-12-28 2023-03-10 퓨리바이드 주식회사 Photocatalytic Adsorbent Manufacturing Method

Also Published As

Publication number Publication date
KR20000008326A (en) 2000-02-07

Similar Documents

Publication Publication Date Title
WO2001005441A1 (en) Process and apparatus for purification of oxygen-containing gas
KR101787402B1 (en) Industrial deodorizer
KR20080057808A (en) Odor gas treatment device having biochemical odor gas treatment unit
JPH03106420A (en) Deodorizing method for photo-catalyst
KR100290066B1 (en) How to fix titanium dioxide, used as an air freshener, on activated carbon
KR100442703B1 (en) Catalytic compound for purification of air and water and method for purification of air and water using the same
KR100428965B1 (en) Air purification method
JPH09206558A (en) Device for removing harmful material in gas
CN110694467A (en) A clarification plant for handling waste gas is produced to bio-pharmaceuticals fungus sediment
JPH02169040A (en) Method for regenerating photocatalyst
KR100478803B1 (en) Processing methode for air purification and equipment therefor
KR100475276B1 (en) Air purification method
KR19990055877A (en) Deodorization method using photocatalyst and device
KR100299405B1 (en) Fixing Titanium Film to Teflon Film Used as Air Cleaner
WO2021035237A1 (en) Systems and methods for removing odor from a fluid stream
KR100291604B1 (en) How to Fix Titanium Dioxide Used as Air Freshener in Glass Tubes
KR100290067B1 (en) Method for Fixing Titanium Dioxide used as Air Cleaner to Teflon Film
JP2000246050A (en) Deodorizing apparatus
KR100450227B1 (en) Photocatalytic ethylene removal reactor for maintaining freshness of fruits and vegetables
KR102395082B1 (en) Parallel type adsorption apparatus for odor removal and odor removal device using the same
JPH02169039A (en) Method for regenerating photocatalyst
KR102557943B1 (en) Physical and Chemical Deodorization System and Method using Gaseous Chlorine Dioxide Adsorption on Silica Gel and UV Irradiation as well as Adsorption-Desorption on-Shifts Process
KR20040043149A (en) Apparatus for purification of air and water using catalytic compound for purification of air and water
KR100531080B1 (en) Humidifying and air purifying system
JPH0290924A (en) Deodorizing with photocatalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040825

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee
FPAY Annual fee payment

Payment date: 20160810

Year of fee payment: 20

EXPY Expiration of term