KR100288270B1 - Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet - Google Patents

Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet Download PDF

Info

Publication number
KR100288270B1
KR100288270B1 KR1019980043157A KR19980043157A KR100288270B1 KR 100288270 B1 KR100288270 B1 KR 100288270B1 KR 1019980043157 A KR1019980043157 A KR 1019980043157A KR 19980043157 A KR19980043157 A KR 19980043157A KR 100288270 B1 KR100288270 B1 KR 100288270B1
Authority
KR
South Korea
Prior art keywords
titanium
intermetallic compound
plate
tial
hot rolling
Prior art date
Application number
KR1019980043157A
Other languages
Korean (ko)
Other versions
KR20000025883A (en
Inventor
이원철
오진근
고향진
김낙준
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019980043157A priority Critical patent/KR100288270B1/en
Publication of KR20000025883A publication Critical patent/KR20000025883A/en
Application granted granted Critical
Publication of KR100288270B1 publication Critical patent/KR100288270B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B47/00Auxiliary arrangements, devices or methods in connection with rolling of multi-layer sheets of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 다층의 티타늄-알루미나이드 금속간 화합물 판재의 제조방법에 관한 것으로서, 상기 제조방법은 티타늄 판재와 알루미늄 판재를 교대로 적층한 다음, 예비 열간압연하는 단계, 예비 열간압연된 결과물을 캔닝하는 단계, 캔닝된 결과물을 700 내지 1200℃에서 열간압연하는 단계 및 열간압연된 결과물을 열처리하는 단계를 포함한다. 본 발명에 따르면, TiAl3/TiAl로 구성되어 있으며, 내부에 균열이 거의 없는 치밀화된 조직 상태를 갖는 티타늄-알루미나이드 금속간 화합물 다층 판재를 얻을수 있다. 또한, 이러한 다층 판재는 규격에 제한없이 연속적으로 제조할 수 있기 때문에 그 적용범위가 매우 넓고 대량생산이 가능하다.The present invention relates to a method for producing a multi-layer titanium-aluminate intermetallic plate, wherein the manufacturing method alternately stacks a titanium plate and an aluminum plate, followed by preliminary hot rolling, and canning the preliminary hot rolled product. The method includes hot rolling the canned product at 700 to 1200 ° C. and heat treating the hot rolled product. According to the present invention, it is possible to obtain a titanium-aluminate intermetallic compound multilayer board composed of TiAl 3 / TiAl and having a densified structure state with little cracking therein. In addition, since the multilayer board can be continuously manufactured without any limitation on the specification, its application range is very wide and mass production is possible.

Description

다층의 티타늄-알루미나이드 금속간 화합물 판재의 제조방법{Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet}Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet

본 발명은 티타늄-알루미나이드(aluminide) 금속간 화합물로 된 다층 판재의 제조방법에 관한 것으로서, 보다 상세하기로는 조직 상태가 치밀화된 티타늄-알루미나이드 금속간 화합물 다층 판재를 규격에 제한없이 연속적으로 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing a multilayer plate made of a titanium-aluminide intermetallic compound, and more particularly, to continuously manufacturing a titanium-aluminate intermetallic compound multilayer plate having a densified tissue state without limitation to specifications. It's about how you can do it.

티타늄-알루미나이드 금속간 화합물은 고강도, 높은 열적 안정성, 내산화성 및 낮은 비중의 특징을 가지고 있어서, 항공기 날개, 동체, 구조 부품 등의 재료에 폭넓게 적용가능하다.Titanium-aluminate intermetallic compounds are characterized by high strength, high thermal stability, oxidation resistance and low specific gravity, and are widely applicable to materials such as aircraft wings, fuselage and structural parts.

티타늄-알루미나이드 금속간 화합물중, 특히 서로 다른 특성을 갖는 금속간 화합물이 여러층을 이루고 있고, 상기 금속간 화합물이 특정 방향으로 배열되어 있는 경우는, 동일한 특성을 갖는 금속간 화합물이 여러층을 이루고 있는 경우에 비하여 강도, 열적 안정성, 비중 등의 특성이 보다 우수하다. 이와 같이 티타늄-알루미나이드 금속간 화합물은 그 자체가 가지고 있는 특성으로 인하여 응용범위가 매우 넓은 반면, 이러한 금속간 화합물 제조시 고온의 용해로와 티타늄의 높은 산화성에 따른 고진공장치가 요구되고 제조단가가 높아서 그 응용이 제한되어 왔다.Among the titanium-aluminate intermetallic compounds, in particular, when the intermetallic compound having different properties forms a plurality of layers, and the intermetallic compound is arranged in a specific direction, the intermetallic compound having the same properties may be formed in several layers. Compared to the case, the strength, thermal stability, specific gravity and the like are more excellent. As such, the titanium-aluminate intermetallic compound has a very wide range of application due to its own characteristics. However, when the intermetallic compound is manufactured, a high-temperature melting furnace and a high vacuum device according to the high oxidative property of titanium are required and the manufacturing cost is high. Its application has been limited.

상술한 바와 같은 문제점을 해결하기 위하여 자가촉진반응(Self-propagating High-Temperature Synthesis: SHS)이 개발되었다. 이 자가촉진반응은 알루미늄의 용융점 이상의 온도에서 알루미늄을 티타늄과 반응시켜 티타늄-알루미나이드 금속간 화합물을 생성하고, 이러한 반응 과정에서 생성된 반응열로 인하여 주위의 알루미늄과 티타늄간의 반응을 촉진시킨다. 이러한 자가촉진반응을 이용하면, 값비싼 고진공장비를 사용하지 않고서도 티타늄-알루미나이드 금속간 화합물을 제조할 수 있다.In order to solve the above problems, a self-propagating High-Temperature Synthesis (SHS) has been developed. This self-promoting reaction reacts aluminum with titanium at a temperature above the melting point of aluminum to produce a titanium-aluminate intermetallic compound and promotes the reaction between the surrounding aluminum and titanium due to the heat of reaction generated during this reaction. Using this self-promoting reaction, it is possible to produce titanium-aluminate intermetallic compounds without the use of expensive high vacuum equipment.

현재, 자가촉진반응에 대한 연구는 대부분 알루미늄 분말과 티타늄 분말을 혼합한 다음, 이를 알루미늄 용융점 이상의 온도에서 열처리하는 것을 그 주요한 특징으로 개시하고 있다.Currently, studies on self-promoting reactions mainly disclose that aluminum powder and titanium powder are mixed and then heat treated at a temperature above the aluminum melting point.

한편, 티타늄-알루미나이드 금속간 화합물을 이용하여 두께 1㎜ 이하의 판재로 만드는 경우, 항공기 날개의 하니콤 구조, 샌드위치 형상 등의 형태로 제조하기가 용이할 뿐만 아니라 항공기 동체 표면, 구조용 부품 등에 적용가능하다.On the other hand, in the case of making a plate having a thickness of 1 mm or less using a titanium-aluminate intermetallic compound, it is not only easy to manufacture in the form of honeycomb structure, sandwich shape, etc. of the aircraft wing, but also applied to the surface of the aircraft body, structural parts, etc. It is possible.

그런데, 상술한 자가촉진반응에 의하여 금속간 화합물을 제조하면, 분말의 소결과정 등과 같은 후속 공정을 반드시 거쳐야 하는 단점이 있다. 또한, 금속간 화합물은 상온에서의 가공성이 불량하여 소결과정 등과 공정을 거친 후, 금속간 화합물의 후속 가공에 많은 어려움이 있어서 판재로 가공하기가 매우 어렵다는 문제점이 있다.However, when the intermetallic compound is prepared by the above-described self-promoting reaction, there is a disadvantage in that a subsequent process such as sintering of the powder must be performed. In addition, the intermetallic compound is poor in workability at room temperature, and after undergoing a sintering process or the like, there are many difficulties in subsequent processing of the intermetallic compound.

상기한 바와 같은 문제점을 해결하기 위하여, 다음의 3가지 방법들이 제안되었다.In order to solve the problem as described above, the following three methods have been proposed.

첫번째 방법은, 미국 특허 제4917858호에 개시된 방법으로서, 티타늄 및 알루미늄 분말의 혼합물을 700℃에서 열간압연하여 정해진 두께의 판재를 제조한 다음, 이 판재를 소결하고 고온압축함으로써 TiAl과 Ti3Al 판재를 제조하는 방법이다. 이렇게 제조된 판재는 Ti3Al과 TiAl의 혼합물로 구성되어 있다. 여기에서 열간압연(hot rolling)은 강의 A3변태점 이상의 온도에서 하는 압연을 말한다.The first method is a method disclosed in US Pat. No. 4917858, in which a mixture of titanium and aluminum powder is hot rolled at 700 ° C. to produce a plate having a predetermined thickness, and then the plate is sintered and hot pressed to form a TiAl and Ti 3 Al plate. It is a method of manufacturing. The plate thus produced is composed of a mixture of Ti 3 Al and TiAl. Here, hot rolling refers to rolling at a temperature above the A 3 transformation point of the steel.

두번째 방법은, 미국 특허 제5564620호에 개시된 방법으로서, 알루미늄-티타늄 판재를 교대로 적층한 다음, 고온에서 진공 공온 등방 압축(hot isostatic press) 또는 진공 고온 압축(vacuum hot press)의 가압 방법에 따라 다층의 금속간 화합물 판재를 제조하는 방법이다.The second method is a method disclosed in US Pat. No. 55,646,20, in which aluminum-titanium plates are alternately laminated, and then pressurized by vacuum hot isostatic press or vacuum hot press at high temperature. It is a method of manufacturing a multilayer intermetallic compound board | plate material.

세번째 방법은, 미국 특허 제5256202호에 개시된 방법으로서, 이 방법을 구체적으로 설명하면 다음과 같다.The third method, which is disclosed in US Pat. No. 5,526,02, is described in detail as follows.

먼저, 불활성 가스 분위기하에서, 트윈-드럼(twin-drum) 연속 주조기를 사용하여 Al(40-53 at.%), Ti(0.1-3 at.%), Cr, Mn, V 및 Fe를 함유한 Ti-Al 금속간 화합물 용탕으로부터 0.25 내지 2.5㎜ 두께의 판재를 주조한 다음, 1000℃와 1000 기압의 조건하에서 고온 등방 압축을 행한다.First, in an inert gas atmosphere, using a twin-drum continuous casting machine containing Al (40-53 at.%), Ti (0.1-3 at.%), Cr, Mn, V and Fe A sheet of 0.25 to 2.5 mm thickness is cast from the molten Ti-Al intermetallic compound, and then hot isotropically compressed under conditions of 1000 ° C and 1000 atmospheres.

이후, 5×10-4/초 이하의 속도로 1200∼1400℃의 열간가공을 행하여 Ti-Al 금속간 화합물로 된 판재를 제조한다. 여기에서 열간가공(hot working)은 재료의 재결정 온도 이상에서 하는 소성가공을 말한다.Subsequently, hot working at 1200 to 1400 ° C. is performed at a rate of 5 × 10 −4 / sec or less to prepare a plate of Ti-Al intermetallic compound. Here, hot working refers to plastic working above the recrystallization temperature of the material.

그런데, 상기 방법들에 따라 제조된 Ti-Al 금속간 화합물 판재들은 그 규격이 매우 제한적이다. 따라서 항공기 날개, 기타 구조 부품 등에 적용이 불가능하다. 또한 판재 내부에 기공이 많아서 조직이 치밀하지 못하고, 연속적인 제조가 불가능하여 양산성이 불량하다는 문제점이 있다.By the way, the Ti-Al intermetallic plate produced in accordance with the above method is very limited in its specification. Therefore, it is not applicable to aircraft wings and other structural parts. In addition, there are a lot of pores inside the plate, the tissue is not dense, there is a problem that the production is poor because the continuous manufacturing is impossible.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 조직이 치밀화된 티타늄-알루미나이드 금속간 화합물 다층 판재를 규격에 제한없이 연속적으로 제조할 수 있는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to solve the above problems and to provide a method for continuously manufacturing a densified titanium-aluminate intermetallic compound multilayer board having no limitation on specifications.

도 1A-D는 실시예 1-4에 따른 다층 판재에 있어서, 열간압연후 열처리하기 이전의 티타늄-알루미나이드 금속간 화합물의 전자주사현미경 사진을 나타낸 도면들이고,1A-D are electron scanning micrographs of a titanium-aluminate intermetallic compound before heat treatment after hot rolling in a multilayer sheet according to Examples 1-4,

도 2는 실시예 1-4에 따른 다층 판재에 있어서, 열처리후의 티타늄-알루미나이드 금속간 화합물의 전자주사현미경 사진을 나타낸 도면이다.FIG. 2 is a view showing electron scanning micrographs of the titanium-aluminate intermetallic compound after heat treatment in the multilayer board according to Example 1-4. FIG.

상기 과제를 이루기 위하여 본 발명에서는, (a) 티타늄 판재와 알루미늄 판재를 교대로 적층한 다음, 예비 열간압연하는 단계;In order to achieve the above object, in the present invention, (a) alternately laminating the titanium plate and aluminum plate, and then preliminary hot rolling;

(b) 예비 열간압연된 결과물을 캔닝하는 단계;(b) canning the pre-hot rolled product;

(c) 캔닝된 결과물을 700 내지 1200℃에서 열간압연하는 단계; 및(c) hot rolling the canned product at 700 to 1200 ° C; And

(d) 열간압연된 결과물을 열처리하는 단계를 포함하는 것을 특징으로 하는 다층의 알루미늄-티타나이드 금속간 화합물 판재의 제조방법을 제공한다.(d) providing a method of manufacturing a multilayer aluminum-titanium intermetallic compound sheet comprising the step of heat-treating the hot-rolled product.

본 발명은 자가촉진반응과 열간압연을 이용하여 조직이 치밀화된 티타늄-알루미나이드 판재를 제조하고, 후속의 열처리를 통하여 원하는 성분 즉, TiAl3/TiAl의 금속간 화합물로 된 다층 판재를 제조하는데 그 특징이 있다.The present invention is to prepare a titanium-aluminate plate densified tissue using a self-promoting reaction and hot rolling, and to produce a multi-layer plate of the desired component, that is, TiAl 3 / TiAl intermetallic compound through the subsequent heat treatment There is a characteristic.

이를 보다 구체적으로 설명하면, 티타늄판과 알루미늄판을 교대로 적층하고, 이 적층물을 티타늄-알루미나이드 금속간 화합물의 자가촉진반응이 일어나는 온도(650℃ 이상)에서 열간압연함으로써 기공이 효율적으로 제어된 다층의 티타늄-알루미나이드 금속간 화합물 판재를 제조하고, 후속의 열처리과정을 거쳐 다층 티타늄-알루미나이드 금속간 화합물 판재를 제조하는 것이다. 이러한 특징과 관련한 본 발명의 원리는 다음과 같이 설명할 수 있다.In more detail, the pores are efficiently controlled by alternately stacking a titanium plate and an aluminum plate, and hot-rolling the laminate at a temperature (650 ° C. or higher) at which a self-promoting reaction of the titanium-aluminate intermetallic compound occurs. To prepare a multi-layered titanium-aluminate intermetallic compound sheet, and through a subsequent heat treatment to produce a multi-layer titanium-aluminate intermetallic compound sheet. The principle of the present invention with respect to this feature can be explained as follows.

자가촉진반응이 일어나는 온도에서, 알루미늄 용탕과 티타늄을 반응시켜 티타늄-알루미나이드 금속간 화합물(TiAl3)을 생성시킨다. 이 반응에서 발생된 반응열에 의하여 티타늄-알루미늄의 반응이 가속화되어 티타늄-알루미나이드 금속간 화합물(TiAl3)이 빠른 시간내에 생성된다.At the temperature at which the self-promoting reaction occurs, titanium-aluminate intermetallic compound (TiAl 3 ) is produced by reacting aluminum molten metal with titanium. Reaction of titanium-aluminum is accelerated by the reaction heat generated in this reaction, and a titanium-aluminate intermetallic compound (TiAl 3 ) is produced in a short time.

그런데, 이러한 과정에서 주조 결함인 기공이 많이 생성된다. 이러한 기공을 없애기 위하여 종래에는 가압방법을 사용하였다. 그러나, 이 가압방법은 연속적인 제조가 불가능할 뿐만 아니라 얻어진 판재의 규격이 제한되는 문제점이 있다. 이를 해결하기 위하여 본발명에서는 열간압연을 이용하여 자가촉진반응에서 생성되는 기공을 치밀화시키고, 이와 동시에 티타늄판과 알루미늄판을 연속적으로 공급함으로써 티타늄-알루미나이드 판재를 연속적으로 제조할 수 있을 뿐만 아니라 얻어진 판재의 규격이 비제한적이다.However, in this process, many pores which are casting defects are generated. In order to eliminate such pores, a conventional pressurization method was used. However, this pressing method has a problem that not only the continuous manufacturing is impossible but also the specification of the obtained plate material is limited. In order to solve this problem, in the present invention, hot rolling is used to densify the pores generated in the self-promoting reaction, and at the same time, it is possible to continuously manufacture titanium-aluminate plates by continuously supplying titanium and aluminum plates. The specification of the plate is not limited.

열간압연의 후속공정인 열처리과정으로부터 얻어지는 효과에 대하여 부연설명하면 다음과 같다.The effects obtained from the heat treatment process, which is a subsequent process of hot rolling, are described in detail.

자가촉진반응에 의하여 생성되는 티타늄-알루미나이드 금속간 화합물은 결정구조가 복잡한 TiAl3로서, 이 금속간 화합물에서는 알루미늄과 티타늄 계면이 존재한다. 자가촉진반응후에 고온의 열간압연을 반복하면, TiAl3의 확산반응이 진행됨으로써 TiAl3/TiAl2/TiAl/Ti3Al/Ti 등으로 구성된 다층 판재가 얻어진다. 그러나, 항공기 부품 등에 적용하기 위해서는 TiAl3/TiAl 판재가 요구된다. 이를 위해서 열간압연과 열간압연중의 자가촉진반응에 의하여 생성된 다층의 금속간 화합물을 800∼1200℃의 온도에서 열처리하면, 확산반응에 의하여 TiAl3/TiAl로 구성된 금속간 화합물 판재를 얻을 수 있게 된다.The titanium-aluminate intermetallic compound produced by the self-promoting reaction is TiAl 3 having a complicated crystal structure, and the intermetallic compound has an aluminum and titanium interface. The self repeating the hot rolling a high temperature, whereby diffusion of the reaction is in progress TiAl 3 multi-layer sheet consisting of a TiAl 3 / TiAl 2 / TiAl / Ti 3 Al / Ti , etc. is obtained after the reaction promotion. However, TiAl 3 / TiAl sheet is required for application to aircraft parts and the like. To this end, when the multi-layered intermetallic compound produced by hot-rolling and self-promoting reaction during hot rolling is heat-treated at a temperature of 800 to 1200 ° C., an intermetallic compound sheet composed of TiAl 3 / TiAl can be obtained by diffusion reaction. do.

이하, 본 발명의 티타늄-알루미나이드 금속간 화합물 판재의 제조방법을 구체적으로 살펴보기로 한다.Hereinafter, a method of manufacturing the titanium-aluminate intermetallic compound sheet of the present invention will be described in detail.

먼저, 티타늄판과 알루미늄판을 교대로 적층한다음, 이를 예비 열간압연하여 각 금속판이 서로 잘 접합되도록 한다. 이러한 예비 열간압연공정은 400∼600℃의 온도에서 실시하는 것이 바람직한데, 400℃ 미만인 경우에는 금속판들의 접합성이 불량하고, 600℃를 초과하는 경우에는 알루미늄판이 일부 용해되고 티타늄 판재가 산화되는 문제점이 있어서 바람직하지 못하다.First, the titanium plate and the aluminum plate are alternately stacked, and then preliminarily hot rolled so that each metal plate is well bonded to each other. It is preferable to perform such a preliminary hot rolling process at a temperature of 400 to 600 ° C. If the temperature is below 400 ° C, the bondability of the metal plates is poor. If the temperature exceeds 600 ° C, the aluminum plate is partially dissolved and the titanium plate is oxidized. It is not desirable.

이어서, 예비 열간압연된 결과물을 1㎜ 정도의 스틸 판재를 이용하여 캔닝한다. 이 캔닝공정은 후속공정인 열간압연공정에서 판재가 롤에 의하여 급냉되거나 산화되어 깨지는 것을 방지하기 위하여 실시하는 것이다.Subsequently, the pre-hot rolled resultant is canned using a steel plate of about 1 mm. This canning step is carried out in order to prevent the plate material from being quenched or oxidized and broken by the roll in the subsequent hot rolling step.

그 후, 캐닝된 결과물을 티타늄-알루미나이드 금속간 화합물의 자가촉진반응이 일어나는 온도 이상 즉, 700∼1200℃에서 열간압연한다. 이러한 열간압연과정에서는 자가촉진반응에 의하여 다층의 티타늄-알루미나이드 금속간 화합물이 생성되며, 각 층 계면의 기공들이 치밀화된다.The canned product is then hot rolled at a temperature above the temperature at which the self-promoting reaction of the titanium-aluminate intermetallic compound occurs, ie, 700 to 1200 ° C. In this hot rolling process, a multi-layered titanium-aluminate intermetallic compound is produced by the self-promoting reaction, and the pores at each layer interface are densified.

상기 열간압연시, 압하율은 각 회당 30% 이상이며, 열간압연 횟수는 2회 이상 실시하는 것이 바람직하다. 압하율과 열간압연 횟수가 상기 범위를 벗어나는 경우에는 판재의 조직이 치밀화되지 못하게 되어 바람직하지 못하다.In the hot rolling, the reduction ratio is 30% or more each time, and the number of hot rolling is preferably performed two or more times. If the reduction ratio and the number of hot rolling are out of the above ranges, the structure of the plate may not be compacted, which is undesirable.

그 후, 열간압연된 판재를 800 내지 1200℃의 온도에서 열처리한다. 여기에서 열처리온도가 800℃ 미만이면, 확산반응이 느리게 진행되어 열처리 시간이 길어지게 되고, 1200℃를 초과하면 금속간 화합물의 입경이 급격히 조대화되므로 바람직하지 못하다.Thereafter, the hot rolled sheet is heat treated at a temperature of 800 to 1200 ° C. If the heat treatment temperature is lower than 800 ° C., the diffusion reaction proceeds slowly to increase the heat treatment time, and if it exceeds 1200 ° C., the particle diameter of the intermetallic compound is rapidly coarsened, which is not preferable.

이하, 본 발명을 하기 실시예를 들어 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the present invention is not limited only to the following examples.

〈실시예 1-4〉<Example 1-4>

10장의 Ti(0.1㎜) 금속판과 9장의 Al(0.1㎜) 금속판을 교대로 적층하였다. 이어서, 500℃에서 3분동안 가열후 예비 열간 압연을 실시한 다음, 1㎜ 스틸 판재를 이용 캔닝하였다.Ten Ti (0.1 mm) metal plates and nine Al (0.1 mm) metal plates were alternately laminated. Subsequently, preheating was performed after heating at 500 ° C. for 3 minutes, and then canned using a 1 mm steel sheet.

상기 캔닝된 결과물을 1000℃에서 일정 시간동안 유지한 다음, 하기 표 1에서와 같이 열간압연 조건, 롤 간격 및 총압하율을 변화시키면서 열간압연하였다. 여기에서 압하율(壓下率)은 압연시에 롤을 통과하기 이전과 후의 두께 차이를 최초의 시편 두께로 나누어서 100을 곱한 것이다.The canned product was maintained at 1000 ° C. for a period of time, and then hot rolled while changing hot rolling conditions, roll intervals, and total reduction rates as shown in Table 1 below. Here, the reduction ratio is obtained by dividing the difference in thickness before and after passing through the roll at the time of rolling by dividing by the original specimen thickness and multiplying by 100.

그 후, 열간압연된 결과물을 1000℃에서 10시간동안 열처리하여 다층의 티타늄-알루미나이드 금속간 화합물 판재를 제조하였다.Thereafter, the hot rolled result was heat-treated at 1000 ° C. for 10 hours to prepare a multilayer titanium-aluminate intermetallic compound sheet.

구분division 열간압연 조건Hot Rolling Condition 롤 간격Roll spacing 총압하율(%)Total Pressure Drop (%) 실시예 1Example 1 1000℃-8분(1회)/1000℃-10분(3회)1000 degrees Celsius-eight minutes (once) / 1000 degrees Celsius-ten minutes (three times) 시편 두께의 30%30% of specimen thickness 50%50% 실시예 2Example 2 1000℃-8분(1회)/1000℃-10분(1회)1000 degrees Celsius-eight minutes (once) / 1000 degrees Celsius-ten minutes (once) 시편 두께의 30%30% of specimen thickness 29%29% 실시예 3Example 3 1000℃-8분(1회)/1000℃-10분(3회)1000 degrees Celsius-eight minutes (once) / 1000 degrees Celsius-ten minutes (three times) 시편 두께의 50%50% of specimen thickness 74%74% 실시예 4Example 4 1000℃-8분(1회)/1000℃-10분(1회)1000 degrees Celsius-eight minutes (once) / 1000 degrees Celsius-ten minutes (once) 시편 두께의 50%50% of specimen thickness 57%57%

상기 실시예 1-4에 따라 제조된 티타늄-알루미나이드 금속간 화합물 판재에 있어서, 열간압연후의 상태를 전자주사현미경을 이용하여 조사하였고, 그 결과를 첨부된 도 1A-D에 나타내었다.In the titanium-aluminate intermetallic compound sheet prepared according to Example 1-4, the state after hot rolling was investigated using an electron scanning microscope, and the results are shown in the attached FIGS. 1A-D.

도 1A-B을 참조하면, 실시예 1 및 2의 전자주사현미경 사진을 비교분석해보면, 실시예 3 및 4의 경우보다 작은 압하율에서 압연 횟수 변화에 따른 판재의 상태 변화를 알 수 있는데, 압연 횟수가 보다 많은 실시예 1의 판재가 실시예 2의 경우에 비하여 보다 치밀한 조직 상태를 나타내었다. 이로부터 압연 횟수의 증가에 따라 보다 치밀한 조직 상태를 나타낸다는 것을 알 수 있었다.Referring to FIGS. 1A-B, when comparing the electron scanning micrographs of Examples 1 and 2, it can be seen that the state of the plate according to the number of rolling changes at a lower rolling rate than that of Examples 3 and 4, The plate of Example 1, which had a greater number of times, exhibited a more dense tissue state than that of Example 2. From this, it turned out that the denser structure | tissue state is shown with the increase of rolling count.

그리고 도 1C-D를 참조하여 실시예 3 및 4의 전자주사현미경 사진을 비교분석해보면, 실시예 1 및 2의 경우보다 높은 압하율에서 압연 횟수 변화에 따른 판재의 상태 변화를 알 수 있는데, 실시예 3 및 4의 판재는 실시예 1 및 2의 경우에 비하여 압하율이 높기 때문에 기공의 제어가 보다 효율적으로 이루어지며, 압연횟수가 보다 작은 실시예 4의 경우는 실시예 3의 경우에 비하여 내부 균열이 크게 발생하였다. 이로부터, 열간압연시 적정한 압하율과 열간압연 횟수가 필요하다는 사실을 확인할 수 있었다.In addition, when comparing the electron scanning micrographs of Examples 3 and 4 with reference to Figure 1C-D, it can be seen that the state of the plate material changes according to the number of times of rolling at a higher reduction ratio than in the case of Examples 1 and 2, The plate materials of Examples 3 and 4 have a higher reduction ratio than those of Examples 1 and 2, so that pore control is more efficient, and Example 4, which has a smaller number of rolls, has an inner diameter than that of Example 3. Cracks occurred greatly. From this, it was confirmed that an appropriate reduction ratio and the number of times of hot rolling are required for hot rolling.

한편, 도 2에는 상기 표 1에 나타난 바와 같은 조건에서 열간압연하여 형성된 TiAl3/TiAl2/TiAl/Ti3Al/Ti 판재를 1000℃에서 10시간동안 열처리하여 제조된 판재의 주사현미경 사진을 나타낸 것이다.On the other hand, Figure 2 shows a scanning microscope picture of a plate prepared by heat-treating the TiAl 3 / TiAl 2 / TiAl / Ti 3 Al / Ti plate formed by hot rolling under the conditions shown in Table 1 for 10 hours will be.

도 5를 참조하면, 열간압연에 의하여 형성된 TiAl3/TiAl2/TiAl/Ti3Al/Ti 판재가 열처리후 TiAl3/TiAl의 다층 금속간 화합물 판재로 변화된 것을 알 수 있었다.Referring to FIG. 5, it was found that the TiAl 3 / TiAl 2 / TiAl / Ti 3 Al / Ti sheet formed by hot rolling was changed to a multi-layer intermetallic compound sheet of TiAl 3 / TiAl after heat treatment.

본 발명에 따르면, TiAl3/TiAl로 구성되어 있으며, 내부에 균열이 거의 없는 치밀화된 조직 상태를 갖는 티타늄-알루미나이드 금속간 화합물 다층 판재를 얻을수 있다. 또한, 이러한 다층 판재는 규격에 제한없이 연속적으로 제조할 수 있기 때문에 그 적용범위가 매우 넓고 대량생산이 가능하다.According to the present invention, it is possible to obtain a titanium-aluminate intermetallic compound multilayer board composed of TiAl 3 / TiAl and having a densified structure state with little cracking therein. In addition, since the multilayer board can be continuously manufactured without any limitation on the specification, its application range is very wide and mass production is possible.

Claims (3)

(a) 티타늄 판재와 알루미늄 판재를 교대로 적층한 다음, 400 내지 600℃에서 예비 열간압연하는 단계;(a) alternately laminating the titanium sheet and the aluminum sheet, and then preliminarily hot rolling at 400 to 600 ° C .; (b) 예비 열간압연된 결과물을 캔닝하는 단계;(b) canning the pre-hot rolled product; (c) 캔닝된 결과물을 700 내지 1200℃에서 열간압연하는 단계; 및(c) hot rolling the canned product at 700 to 1200 ° C; And (d) 열간압연된 결과물을 800 내지 1200℃에서 열처리하는 단계를 포함하는 것을 특징으로 하는 다층의 알루미늄-티타나이드 금속간 화합물 판재의 제조방법.(d) heat-treating the resultant hot rolled product at 800 to 1200 ° C. 제1항에 있어서, 상기 (c)단계의 열간압연을 2회 이상 반복하는 것을 특징으로 하는 다층의 알루미늄-티타나이드 금속간 화합물 판재의 제조방법.The method of claim 1, wherein the hot rolling of step (c) is repeated two or more times. 제1항에 있어서, 상기 (c)단계의 열간압연의 압하율이 각 회당 30% 이상인 것을 특징으로 하는 다층의 알루미늄-티타나이드 금속간 화합물 판재의 제조방법.The method of manufacturing a multilayer aluminum-titanium intermetallic compound sheet according to claim 1, wherein the reduction ratio of the hot rolling in the step (c) is 30% or more per time.
KR1019980043157A 1998-10-15 1998-10-15 Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet KR100288270B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980043157A KR100288270B1 (en) 1998-10-15 1998-10-15 Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980043157A KR100288270B1 (en) 1998-10-15 1998-10-15 Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet

Publications (2)

Publication Number Publication Date
KR20000025883A KR20000025883A (en) 2000-05-06
KR100288270B1 true KR100288270B1 (en) 2001-05-02

Family

ID=19554147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980043157A KR100288270B1 (en) 1998-10-15 1998-10-15 Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet

Country Status (1)

Country Link
KR (1) KR100288270B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470146B1 (en) * 2002-10-24 2005-02-05 한국과학기술연구원 Fabrication of titanium/steel clad plate
KR101679414B1 (en) 2015-04-22 2016-11-25 (주)현대하이텍 Applicationing device for adhesive sealer
CN113083895B (en) * 2021-03-16 2023-05-02 西北工业大学 Method for realizing heterostructure
CN115816933A (en) * 2022-12-09 2023-03-21 西部金属材料股份有限公司 Multilayer titanium alloy composite titanium alloy plate

Also Published As

Publication number Publication date
KR20000025883A (en) 2000-05-06

Similar Documents

Publication Publication Date Title
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US7566415B2 (en) Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders
EP1165276B1 (en) Method of manufacturing metallic products such as sheet by cold working and flash annealing
US7767138B2 (en) Process for the production of a molybdenum alloy
JP2004526863A (en) Refractory metal plate having uniform texture and method for producing the plate
US7311873B2 (en) Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides
EP0846521A2 (en) Material for use in the manufacture of a catalytic converter
KR100288270B1 (en) Manufacturing method for multi-layered titanium-aluminide intermetallic compound sheet
EP1257414B1 (en) Use of a dimensionally stable iron-chrome-aluminum film
CN101352787B (en) Titanium based solder and method for preparing titanium based solder
US5768679A (en) Article made of a Ti-Al intermetallic compound
EP0383103A1 (en) Process for the production of a high-strength and tough metal composite material
US5863670A (en) Joints of Ti-Al intermetallic compounds and a manufacturing method therefor
JP2001271127A (en) Ti-Al INTERMETALLIC COMPOUND SHEET AND ITS PRODUCING METHOD
WO2003097557A1 (en) Method for producing a ceramic-copper composite substrate
KR20210030640A (en) Rolling method of titanium sheet
JPH04160126A (en) Tial intermetallic compound plate material and its manufacture
DE102017121513A1 (en) Process for foaming metal in the liquid bath
KR101782611B1 (en) Clad plate and method for manufaturing the same
JP2002069545A (en) METHOD FOR PRODUCING TiAl BASED INTERMETALLIC COMPOUND BY LAMINATE ROLLING
CN105478520B (en) Method for manufacturing nanoscale multilayer metal matrix composite with combination of magnetic field heat treatment
CN106591614A (en) Manufacturing technology of arc-shaped molybdenum plate for long-service-life heat shield
DE102016216456A1 (en) Method for connecting sheets of a sheet stack by means of nanoscale metal oxide powder
JPS62247007A (en) Production of sintered aluminum alloy parts
JPS6050521B2 (en) Manufacturing method of alloy thin plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee