KR100287124B1 - Nickel-zinc secondary battery - Google Patents

Nickel-zinc secondary battery Download PDF

Info

Publication number
KR100287124B1
KR100287124B1 KR1019940018140A KR19940018140A KR100287124B1 KR 100287124 B1 KR100287124 B1 KR 100287124B1 KR 1019940018140 A KR1019940018140 A KR 1019940018140A KR 19940018140 A KR19940018140 A KR 19940018140A KR 100287124 B1 KR100287124 B1 KR 100287124B1
Authority
KR
South Korea
Prior art keywords
electrolyte
battery
zinc
nickel
secondary battery
Prior art date
Application number
KR1019940018140A
Other languages
Korean (ko)
Other versions
KR960006115A (en
Inventor
편영범
정복환
엘.비.라이크헬슨
Original Assignee
윤종용
삼성전자 주식회사
자코프레프비아체슬라프게르마노비치
리겔배터리즈리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사, 자코프레프비아체슬라프게르마노비치, 리겔배터리즈리미티드 filed Critical 윤종용
Priority to KR1019940018140A priority Critical patent/KR100287124B1/en
Publication of KR960006115A publication Critical patent/KR960006115A/en
Application granted granted Critical
Publication of KR100287124B1 publication Critical patent/KR100287124B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: Provided is a nickel-zinc secondary battery used as power for electric cars, which optimizes the amount of electrolyte in the balance of a battery lifetime and a discharging performance, therefore, the lifetime of the battery can be extended. CONSTITUTION: The nickel-zinc secondary battery contains a nickel anode(1) covered with a polypropylene nonwoven fabric(4) and a zinc cathode(2) covered with a cotton fabric(3) and the polypropylene nonwoven fabric(4), which are covered with a polypropylene microcellular film(5). The ratio of the electrolyte amount impregnated into a separator and the total electrolyte amount of the battery is 0.15-0.28. And the volume of the electrolyte per 1Ah of the zinc cathode(2) is 1.03-1.33ml.

Description

니켈-아연 2차전지Nickel-Zinc Secondary Battery

제1도는 본 발명에 의한 전지의 개략적인 단면도.1 is a schematic cross-sectional view of a battery according to the present invention.

제2도는 각 전지의 방전용량을 비교도시한 그래프.2 is a graph comparing the discharge capacity of each battery.

제3도는 각 전지의 충방전 횟수에 따른 용량비교를 도시한 그래프이다.3 is a graph showing capacity comparison according to the number of charge and discharge cycles of each battery.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : Ni양극 2 : Zn음극1: Ni anode 2: Zn cathode

3 : 면부직포 4 : 폴리프로필렌 부직포3: cotton nonwoven fabric 4: polypropylene nonwoven fabric

5 : 폴리프로필렌 미공성 필름5: polypropylene microporous film

본 발명은 니켈-아연 2차전지에 관한 것으로, 더욱 상세하게는 미공성 필름과 부직포로 이루어진 세퍼레이터와 전해액을 사용한 전기자동차등의 동력원으로 사용되는 니켈-아연 2차 전지에서 전지수명과 방전성능의 균형에서 최적 전해액량으로 규제함으로서 아연음극의 이용률을 증대시켜 전지의 수명을 연장시킬수 있도록 한 것에 관한 것이다.The present invention relates to a nickel-zinc secondary battery, and more particularly, to the battery life and discharge performance of a nickel-zinc secondary battery used as a power source for an electric vehicle using a separator made of a microporous film and a nonwoven fabric and an electrolyte solution. By regulating the optimum amount of electrolyte in the balance, it is possible to increase the utilization rate of the zinc cathode to extend the life of the battery.

최근들어 지구촌 환경 보호운동에 부응하여 출현되어지는 전기자동차 또는 대형설비나 건물등에 자체적으로 전력을 공급하는 전력공급장치의 주동력원으로서 사용되는 Ni-Zn 2차 전지에서 전지의 사용수명은 사용한 전해액의 양과 그의 분포특성에 좌우되며, 전해질의 분포는 극의 분리 및 전해질의 함습, 보유의 기능을 하는 세퍼레이터의 성질에 의해 크게 영향을 받는다.In the Ni-Zn rechargeable battery, which is used as a main power source for electric vehicles or large-scale facilities or buildings that are emerging in response to the global environmental protection movement in recent years, the service life of the battery is Depending on the amount and its distribution characteristics, the distribution of the electrolyte is greatly influenced by the properties of the separator, which functions as separation of the poles, moisture in the electrolyte, and retention.

그리고 지금까지 사용되는 Ni-Zn 2차 전지는 극판근방보다는 구성전지내부에 유리 전해액을 비교시 다량으로 보유토록 하여 충전시의 반응효율을 고려하여 아연 음극의 이용율을 높이려 하였으나, 충전반응에서 용출한 아연산이온이 유리 전해액층을 이동하여 충전시에 원래의 용출한 위치로 전기석출하지 않고, 불균일한 석출로 되어 극판의 변형과 탈락의 주원인이 되고 있다. 또한 충전말기에 격렬한 수소발생과 함께 아연 결정이 발달하여, 세퍼레이터를 통과하여 내부단락을 야기하는 최대의 원인이 되었다. 상기 문제를 해결하기 위해서 충전기를 정전압방식으로 하여 아연의 수소발생 전압에 도달한 싯점에서 충전전류를 극소화시켜 아연의 결정성장을 억제하는 방법이 있으나, 코스트면에서 높게 되는 불리한 점과 함께 유리전해액이 많은 것은 아연의 용출이 많고, 정전압 충전기에서는 용출을 방지할 수 없다.In addition, Ni-Zn secondary batteries used up to now have higher amounts of zinc anodes in consideration of reaction efficiency during charging by retaining a large amount of glass electrolytes in the component cells rather than near the electrode plate. One zinc acid ion moves the glass electrolyte layer and does not electroprecipitate to the original eluted position at the time of filling, resulting in uneven deposition, which is a major cause of deformation and dropout of the electrode plate. In addition, zinc crystals developed with vigorous hydrogen evolution at the end of charge, which caused the internal short circuit through the separator. In order to solve the above problem, there is a method of suppressing the crystal growth of zinc by minimizing the charging current at the point of reaching the hydrogen generation voltage of zinc by using the charger as a constant voltage method. Many elute zinc, and the constant voltage charger cannot prevent it.

전해액이 과다한 구성에서는, 단단한 세퍼레이터를 사용해서 아연의 결정발달을 방지하는 것 외에는 Ni-Zn 2차전지의 충방전 싸이클수명을 비약적으로 늘릴수는 없었다.In a configuration with excessive electrolyte, it was not possible to dramatically increase the charge / discharge cycle life of Ni-Zn secondary batteries except to prevent the crystal development of zinc by using a solid separator.

따라서 이 문제의 해결수단으로서 유리 전해액을 감소시켜 아연의 용해를 극히 억제함으로써 극판의 변형과 충전시의 결정발달을 방지하고, 사이클 수명의 증대를 겨냥한 것은 효과적이긴 하였지만 규제치의 정도에 문제가 있었다.Therefore, as a means to solve the problem, it was effective to reduce the dissolution of zinc by reducing the glass electrolyte solution and to prevent the crystal development during the deformation of the plate and to increase the cycle life, but there was a problem in the degree of regulation value.

즉, 액량을 지나치게 규제하면 전지의 내부저항이 높게 되고 방전특성이 현저히 나빠질 우려가 있으며, 또 Ni-Zn 2차전지처럼 아연극을 사용할 경우는 방치중 자기방전에 의한 수소발생도 회피할 수 없는 것이라는 것을 충분히 고려해야 되는 것이었다.In other words, if the amount of liquid is excessively regulated, the internal resistance of the battery may be high and the discharge characteristics may be significantly degraded. In addition, when a zinc electrode is used, such as a Ni-Zn secondary battery, hydrogen generation due to self-discharge may not be avoided. It was to be considered enough.

그리고 알칼리 용액에선 Zn 전극의 활물질이 과량으로 용해하기 때문에 전지의 수명을 늘리는 것이 무척 어려웠다. 이와 관련된 선행 특허인 JP50-09725호와 JP50-09727호에서는 전지의 수명을 크게 늘리기 위해서 다공성의 폴리에틸렌필름과 셀룰로오스필름으로 이루어져 조합 세퍼레이터를 사용하였다. 이들은 전해질 량이 음극의 이론용량 1Ah당 1.9~2ml 당량이며 160cycle의 전지수명을 갖고 있다. 그러나 셀룰로오스계 세퍼레이터는 알칼리 전해액 내에서 충방전을 거듭할수록 산화되어 그 기능이 저하되는 단점을 갖고 있다. 또한 USP4378414특허에서는 기공도와 흡습도가 다른 미공성물질로 이루어진 조합 세퍼레이터를 사용하여 니켈 양극에 인접한 층은 적어도 11mg/cm2의 전해질 흡습도를 가지도록 하였으며, 아연 음극에 인접한 층은 1∼10mg/cm2의 흡습도를 갖도록 하였으나, 전지수명에 대한 전해액의 총량에 관한 문제는 언급되지 않았다.In the alkaline solution, it is very difficult to extend the life of the battery because the active material of the Zn electrode is excessively dissolved. In the related patents JP50-09725 and JP50-09727, a combination separator consisting of porous polyethylene film and cellulose film was used to greatly increase the battery life. These electrolytes amount to 1.9 ~ 2ml equivalent per 1Ah of theoretical capacity of negative electrode and have 160cycle of battery life. However, the cellulose separator has a disadvantage in that it is oxidized as charging and discharging is repeated in the alkaline electrolyte solution and its function is reduced. In addition, the USP4378414 patent uses a combination separator composed of microporous materials having different porosities and hygroscopicities so that the layer adjacent to the nickel anode has an electrolyte hygroscopicity of at least 11 mg / cm 2 , and the layer adjacent to the zinc cathode is 1-10 mg /. It was intended to have a hygroscopicity of cm 2 , but the problem regarding the total amount of the electrolyte with respect to the battery life was not mentioned.

본 발명은 상기와 같은 종래기술의 문제점을 감안하여 안출한 것으로서, 본 발명의 목적은 미공성필름과 부직포 및 전해액으로 구성되는 Ni-Zn 2차전지에서 전지내의 전해액량과 세퍼레이터가 함습한 전해액량의 비율을 최적화하므로써 정전류충전으로 과충전시에도 아연의 결정발달에 의한 단락현상을 방지하고, 전지수명이 연장된 높은 에너지 밀도를 갖는 Ni-Zn 2차전지를 제공하는데 있는 것이다.The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is the amount of electrolyte in a battery and the amount of electrolyte in which a separator is impregnated in a Ni-Zn secondary battery including a microporous film, a nonwoven fabric, and an electrolyte. The present invention provides a Ni-Zn secondary battery having a high energy density that prevents short circuiting due to the development of zinc even when overcharged by constant current charging by optimizing the ratio thereof.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은 폴리프로필렌 부직포(4)로 감싼 Ni양극(1)과, 면부직포(3) 및 폴리프로필렌 부직포(4)로 감싼 Zn음극(2)을 다시 폴리프로필렌 미공성 필름(5)으로 감싼 Ni-Zn 2차전지에 있어서, 세퍼레이터에 함습되는 전해질량(Vsep)과의 상기 전지내의 전해질의 총량(Vtot)의 비율(Vsap/Vtot)을 0.15~0.28범위로 조절하는 것을 특징으로 하는 니켈-아연 2차 전지인 것이다.A feature of the present invention for achieving the above object is a poly-Poly Ni anode (1) wrapped with a polypropylene nonwoven fabric (4), and a Zn anode (2) wrapped with a cotton nonwoven fabric (3) and a polypropylene nonwoven fabric (4) again. In a Ni-Zn secondary battery wrapped with a propylene microporous film (5), a ratio (Vsap / Vtot) of the amount of electrolyte (Vsep) to be impregnated in the separator and the total amount of electrolyte (Vtot) in the battery is in the range of 0.15 to 0.28. It is a nickel-zinc secondary battery characterized by adjusting to.

이하, 본 발명에 의한 Ni-Zn 2차전지를 첨부도면을 참조하여 구체적으로 설명하면 다음과 같다.Hereinafter, the Ni-Zn secondary battery according to the present invention will be described in detail with reference to the accompanying drawings.

제1도는 본 발명에 의한 전지의 정단면도로서, 미공성 필름과 부직포로 이루어진 세퍼레이터의 전해액을 사용한 Ni-Zn 2차전지를 형성함에 있어서, Ni양극(1)을 폴리프로필렌 부직포(4)로 감싸 전해액을 함습하고, Zn음극(2)은 Ni양극(1)보다 전해액을 많이 함습, 보유되도록 PVA가 도포된 면부직포(3) 및 폴리프로필렌부직포(4)로 감싸며, 상기 양극판(1)(2)은 각각의 니켈리드선(도시되어 있지 않음)으로 외부부하에 연결하였다.FIG. 1 is a cross sectional front view of a battery according to the present invention. In forming a Ni-Zn secondary battery using an electrolyte of a separator composed of a microporous film and a nonwoven fabric, the Ni anode 1 is wrapped with a polypropylene nonwoven fabric 4. The Zn cathode 2 is wrapped with a cotton nonwoven fabric 3 coated with PVA and a polypropylene nonwoven fabric 4 so as to impregnate and retain more electrolyte solution than the Ni anode 1, and the cathode plates 1 and 2 Is connected to the external load with each nickel lead wire (not shown).

그리고 Ni양극(1)을 중앙에 Zn음극(2)을 양 가장자리에 위치하게 하였으며, Zn극은 폴리프로필렌 미공성필름(5)으로 감싸 전지를 구성하되, 상기에서 세퍼레이터에 함습되는 전해질량(Vsep)과 전지내의 전해질 총량(Vtot)의 비율을 0.15∼0.28 범위로 조정하며, Zn음극(2)의 이론용량 1Ah당 전해질의 부피를 1.03∼1.33ml의 범위로 한정한다.In addition, the Ni anode (1) was positioned at both edges of the Zn cathode (2) at the center, and the Zn electrode was surrounded by the polypropylene microporous film (5) to form a battery, but the amount of electrolyte (Vsep) impregnated in the separator above. ) And the ratio of the total amount of electrolyte Vtot in the battery is adjusted to the range of 0.15 to 0.28, and the volume of electrolyte per 1 Ah of the theoretical capacity of the Zn cathode 2 is limited to the range of 1.03 to 1.33 ml.

이하 본 발명에 의한 Mi-Zn 2차전지와 일실시예를 설명하며 이는 본 발명에 의한 전지의 기술내용의 이해를 돕기 위한 것이지 이로인해 본 발명의 기술적인 범주가 한정되는 것은 물론 아니다.Hereinafter, a description will be given of the Mi-Zn secondary battery according to the present invention and one embodiment, which is intended to help the understanding of the technical content of the battery according to the present invention, and thus the technical scope of the present invention is not limited.

[실시예 1-11][Example 1-11]

본 실험에 사용된 세퍼레이터는 필름으로 이루어진 미공성막(5)과 전해질을 흡수하는 부직포(3,4)로 이루어져 있으며, Ni양극(1)은 소결식 Ni기판에 Ni산화물을 충전시킨 극판으로 복수매(doub1e cathode)로 하여 5 × 5cm 크기로 형성하고, 여기에 폴리프로필렌 부직포(4)를 이용도포하여 전해액을 함습되게 하였으며, Zn음극(2)은 구리위에 카드뮴을 도금시킨 메쉬(mesh)형의 5 × 5cm 크기의 기판위에 산화아연 80%, 금속아연 10%, 기타 산화납등이 포함된 활물질에 접착제 PTFE를 첨가하여 활물질이 탈락하지 않고 메쉬기판 위에 잘 붙도록 하였으며, 전해액을 많이 함유하도록 PVA가 도포된 면부직포를 녹말풀을 사용하여 부착하였으며, 양 극판은 니켈 리드선을 사용하여 외부부하에 연결시켰고, 두께 25㎛의 폴리프로필렌 미공성필름(5)을 사용하여 Zn음극(2)을 양쪽에 위치시켜 말아서 3겹이 되도록 감은 다음 마주보게 접어 U자형으로 만든 다음 가운데에 니켈양극(1)을 끼워 전지를 구성하였으며, 음극(2)과 양극(1)의 용량비는 3 : 1 정도이다.The separator used in this experiment consists of a microporous film 5 made of a film and nonwoven fabrics 3 and 4 absorbing electrolyte, and the Ni anode 1 is a plural sheet of electrode plate filled with Ni oxide in a sintered Ni substrate. (doub1e cathode) was formed into 5 × 5cm size, and the polypropylene nonwoven fabric (4) was applied to the electrolyte solution to moisturize, Zn cathode (2) is a mesh type of cadmium plated on copper Adhesive PTFE was added to an active material containing 80% zinc oxide, 10% metal zinc, and other lead oxides on a 5 × 5 cm sized substrate so that the active material would adhere well to the mesh substrate without falling off. Was applied to the cotton nonwoven fabric using starch paste, and the anode plate was connected to an external load using a nickel lead wire, and both the Zn cathodes (2) were attached using a polypropylene microporous film (5) having a thickness of 25 μm. Above To volume ratio of the wound roll so that the three layers were then configure the cell into the nickel positive electrode (1) after the middle made of folded U-shape facing each other, the negative electrode 2 and the positive electrode (1) is 3: 1 or so.

그리고 세퍼레이터가 함습하고 있는 전해질량(Vsep)과 전지 내의 전해질 총량(Vtot) 비율을 변화시켜 가면서 실험하였으며 그 비율은 Vsep/Vtot = 0.15~0.28 범위인 것이며, 니켈양극(1)의 충전효율을 고려해서 8M-KOH 수용액에 15g의 수산화리튬을 용해시킨 것을 사용하며, 전해액을 아연전극(2)의 충전용량 1Ah당 1.03∼1.33ml의 범위로 주입하여 다음의 표 1과 같은 방전특성, 충전전압, 수명시험등을 시험하였다.The experiment was performed by varying the proportion of electrolyte (Vsep) and the total amount of electrolyte (Vtot) in the separator, and the ratio was in the range of Vsep / Vtot = 0.15 to 0.28, considering the charging efficiency of the nickel anode (1). 15 g of lithium hydroxide was dissolved in an 8 M-KOH aqueous solution, and the electrolyte solution was injected in the range of 1.03 to 1.33 ml per 1 Ah of the charging capacity of the zinc electrode 2 to discharge characteristics, charging voltage, The life test was tested.

[비교예 1]Comparative Example 1

전해액을 아연전극(2)의 충전용량 1Ah당 0.99ml로 주입한 것을 제외하고는 상기 실시예와 동일하게 실시하였으며 그 결과를 다음의 표 1에 나타내었다.Except that the electrolyte was injected at 0.99ml per 1Ah of the charging capacity of the zinc electrode (2) was carried out in the same manner as in the above Example and the results are shown in Table 1 below.

[비교예 2~3][Comparative Examples 2 ~ 3]

세퍼레이터가 함습하고 있는 전해질량(Vsep)과 전지내의 전해질 총량(Vtot)의 비율을 각각 0.09와 0.092로 변화시킨 것을 제외하고는 상기 실시예와 동일하게 실시하였으며 그 결과를 다음의 표 1에 나타내었다.Except for changing the ratio of the amount of electrolyte (Vsep) and the total amount of electrolyte in the battery (Vtot) in the separator to 0.09 and 0.092, respectively, the procedure was carried out in the same manner as in the above Example, and the results are shown in Table 1 below. .

[표 1]TABLE 1

상기와 같은 실험결과 제2도에서와 같이 본 발명에 따른 전지의 방전용량은 No.4와 No.8을 비교할때 거의 동일함을 나타내고 있으며, 제3도에서는 충방전 횟수에 따른 용량 비교를 나타낸 것이며, 본 실험에서는 3단계로 충전하여 정격용량의 90%까지 충전시킨 다음 3시간 방전율로 충방전을 실시하였으며 80% DOD로 처음용량의 60%까지를 Cycle로 인정하였다. 이때 본 발명에 의한 전해액 비율 밖에 있는 전지의 용량이 현저하게 감소한다는 것을 확인할 수 있었다.As shown in FIG. 2, the discharge capacity of the battery according to the present invention is almost the same when comparing Nos. 4 and 8, and FIG. 3 shows the capacity comparison according to the number of charge and discharge cycles. In this experiment, the battery was charged in three stages, charged to 90% of the rated capacity, and then discharged and discharged at a discharge rate of 3 hours. Up to 60% of the initial capacity was recognized as a cycle with 80% DOD. At this time, it was confirmed that the capacity of the battery outside the proportion of the electrolyte according to the present invention was significantly reduced.

이상에서와 같이 본 발명에 의한 Ni-Zn 2차전지는 전지 내의 전해액량과 세퍼레이터가 함습한 전해역의 비율을 아연활물질의 이용률을 최대로 높이기 위해 전지수명과 방전 성능의 균형에서 최적화하므로서 충전반응중에 성장하는 수지상 결정에 의해 세퍼레이터가 파손됨을 방지하여 전지의 수명을 1.5~2배 정도 연장시키며, 방전 반응 중에 아연극의 용출됨을 억제하여 아연산 이온의 생성을 억제시킬수가 있는 것이다.As described above, the Ni-Zn secondary battery according to the present invention optimizes the ratio of the amount of electrolyte in the battery and the electrolyte region in which the separator is impregnated in the balance of the battery life and the discharge performance in order to maximize the utilization of the zinc active material. By preventing the breakage of the separator by growing dendritic crystals, the battery life can be extended by 1.5 to 2 times, and the zinc electrode can be prevented from being eluted during the discharge reaction to suppress the production of zinc acid ions.

Claims (2)

폴리프로필렌부직포(4)로 감싼 Ni양극(1)과, 면분직포(3) 및 폴리프로필렌 부직포(4)로 감싼 Zn음극(2)을 폴리프로필렌 미공성필름(5)으로 감싼 Ni-Zn 2차전지에 있어서, 세퍼레이터에 함습되는 전해질의 량(Vsep)과 상기 전지내의 전해질의 총량(Vtot)의 비율(Vsep/Vtot)을 0.15~0.28 범위로 조절하는 것을 특징으로 하는 니켈-아연 2차 전지.Ni-Zn secondary wrapped with Ni anode (1) wrapped with polypropylene nonwoven fabric (4), and Zn anode (2) wrapped with cotton powder fabric (3) and polypropylene nonwoven fabric (4) A battery comprising: a nickel-zinc secondary battery, characterized in that the ratio (Vsep / Vtot) of the amount of electrolyte (Vsep) impregnated in the separator and the total amount (Vtot) of the electrolyte in the battery is adjusted in the range of 0.15 to 0.28. 제1항에 있어서, 상기 아연극(2)의 이론용량 1Ah당 전해질의 부피를 1.03~1.33 ml 범위로 조절하는 것을 특징으로 히는 니켈-아연 2차 전지.The nickel-zinc secondary battery according to claim 1, wherein the volume of the electrolyte per 1 Ah of the theoretical capacity of the zinc electrode (2) is adjusted to be in the range of 1.03 to 1.33 ml.
KR1019940018140A 1994-07-26 1994-07-26 Nickel-zinc secondary battery KR100287124B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940018140A KR100287124B1 (en) 1994-07-26 1994-07-26 Nickel-zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940018140A KR100287124B1 (en) 1994-07-26 1994-07-26 Nickel-zinc secondary battery

Publications (2)

Publication Number Publication Date
KR960006115A KR960006115A (en) 1996-02-23
KR100287124B1 true KR100287124B1 (en) 2001-12-01

Family

ID=37514934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940018140A KR100287124B1 (en) 1994-07-26 1994-07-26 Nickel-zinc secondary battery

Country Status (1)

Country Link
KR (1) KR100287124B1 (en)

Also Published As

Publication number Publication date
KR960006115A (en) 1996-02-23

Similar Documents

Publication Publication Date Title
US5863676A (en) Calcium-zincate electrode for alkaline batteries and method for making same
US8663842B2 (en) Silver positive electrode for alkaline storage batteries
Jindra Progress in sealed Ni-Zn cells, 1991–1995
CN110707371B (en) Alkaline zinc-manganese rechargeable battery
KR20020053807A (en) Rechargeable nickel-zinc cells
US5498496A (en) Lead acid battery
US6673490B2 (en) Nickel-hydrogen storage battery and method of producing the same
WO2013110097A1 (en) Electrically rechargeable metal-air alkaline battery, and method for manufacturing said battery
CA1209200A (en) Sealed nickel-zinc battery
US20050287438A1 (en) Alkaline electrochemical cell with improved lifetime
KR100287124B1 (en) Nickel-zinc secondary battery
US5840442A (en) Method for activating an alkaline rechargeable battery
US20030077512A1 (en) Electrolyte for alkaline rechargeable batteries
KR100471971B1 (en) A method for charging lithium-sulfur batteries
JP7256175B2 (en) Electrodes with multiple current collector arrays
JP2819201B2 (en) Lithium secondary battery
JP2001283902A (en) Alkaline battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP2755634B2 (en) Alkaline zinc storage battery
KR100300327B1 (en) A composition for a positive electrode of a nickel-metal hydride battery, a positive electrode using the same and a nickel-metal hydride battery using the same
JPH0560220B2 (en)
CN114651346A (en) Lead-acid battery with fibrous electrode having lead-calcium strip
JP3211087B2 (en) Lead storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH0719617B2 (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 14

EXPY Expiration of term