KR100285737B1 - Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF - Google Patents

Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
KR100285737B1
KR100285737B1 KR1019930031619A KR930031619A KR100285737B1 KR 100285737 B1 KR100285737 B1 KR 100285737B1 KR 1019930031619 A KR1019930031619 A KR 1019930031619A KR 930031619 A KR930031619 A KR 930031619A KR 100285737 B1 KR100285737 B1 KR 100285737B1
Authority
KR
South Korea
Prior art keywords
mol
magnetic material
oxide magnetic
added
weight
Prior art date
Application number
KR1019930031619A
Other languages
Korean (ko)
Other versions
KR950020779A (en
Inventor
강상원
박찬욱
박종학
Original Assignee
박영구
삼성코닝주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영구, 삼성코닝주식회사 filed Critical 박영구
Priority to KR1019930031619A priority Critical patent/KR100285737B1/en
Publication of KR950020779A publication Critical patent/KR950020779A/en
Application granted granted Critical
Publication of KR100285737B1 publication Critical patent/KR100285737B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Abstract

PURPOSE: A Mg-Cu-Zn oxide magnetic material and a manufacturing method thereof are provided to increase mechanical strength and reduce manufacture cost by adding Mg, and enhance high frequency characteristic by adding Li2O. CONSTITUTION: A Mg-Cu-Zn oxide magnetic material is manufactured by mixing Fe2O3 48.0 mol%, MgO 20 mol%, CuO 7.0 mol% and ZnO 25 mol% as main material, and Li2O 0.1, 0.2, 0.3, 0.4 or 0.5 weight%. The mixture is homogeneously mixed by an attritor and calcined at 850 or 900°C to form calcined powder. The calcined powder is grinded by the attritor to have an average particle diameter of 0.5 micrometer. A combining agent Kuraray PVA #217 10% solution is added by 1.5% to form granule powder. Li2O may be added by 0.1 - 0.6 weight%. The calcining temperature may be 800 - 900°C. The added Li2O controls micro structure so as to improve resistivity and inductance of the magnetic material and high frequency characteristic.

Description

Mg-Cu-Zn계 산화물 자성재료 및 그의 제조방법Mg-Cu-Zn-based oxide magnetic material and manufacturing method thereof

제1도는 본발명의 실시예와 비교예에서 제조된 자성재료의 주파수 특성을 비교하여 나타낸 그래프이고,1 is a graph showing a comparison of the frequency characteristics of the magnetic material prepared in Examples and Comparative Examples of the present invention,

제2도는 본발명에서 제조된 Mg-Cu-Zn계 자성체(a)와 종래의 Ni-Cu-Zn계 자성체(b)의 소결체 구조의 현미경 사진을 비교하여 나타낸 것이다.FIG. 2 shows the micrographs of the sintered compact structure of the Mg-Cu-Zn-based magnetic body (a) prepared in the present invention and the conventional Ni-Cu-Zn-based magnetic body (b).

본발명은 로타리 트랜스용 Mg-Cu-Zn계 산화물 자성재료 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 MgO 첨가에 의해 기계적 강도를 높임과 동시에 생산비절감을 꾀하고 LiO2를 첨가하여 고주파 특성을 향상시킨 Mg -Cu-Zn계 산화물 자성재료 및 그의 제조방법에 관한 것이다.The invention of high-frequency characteristics and relates to a rotary transformer Mg-Cu-Zn-based oxide magnetic material for and a method of manufacturing and more particularly to schemes for reducing the production cost while increasing the mechanical strength by the MgO is added, and the addition of LiO 2 The improved Mg-Cu-Zn type oxide magnetic material and its manufacturing method are provided.

종래에는 로타리 트랜스용 코어(core)를 제조하기 위하여, 주성분으로서 Fe2O3, NiO, ZnO, CuO 등을 혼합하고 하소시킨 후에 분쇄하여 건식 성형하여 성형체를 제조하고, 이것을 대기중에서 소결하여 Ni-Cu-Zn계 산화물 자성재료의 소결체로 만들고 이를 연삭 가공하여 로타리 트랜스 등의 고정밀도를 요하는 물품으로 제조하였다.Conventionally, in order to manufacture a core for a rotary transformer, Fe 2 O 3 , NiO, ZnO, CuO, etc. are mixed, calcined, and pulverized and dried to prepare a molded product. Cu-Zn-based oxides were made of a sintered body made of a sintered body, and were ground to produce an article requiring high precision such as a rotary transformer.

그러나 이와같은 종래방법에는 Ni-Cu-Zn계 산화물 자성재료의 고유특성이 금속재료에 비해서 경도가 높기 때문에 연삭 가공 공정에서 제품의 표면에 균열(crack)이나 칩(chip)이 쉽게 발생하는 단점이 있었다.However, this conventional method has a disadvantage in that cracks or chips are easily generated on the surface of the product in the grinding process because the intrinsic properties of the Ni-Cu-Zn oxide magnetic material are higher in hardness than the metal material. there was.

특히, 로타리 트랜스 연삭가공 작업시에는 지름이 20mm 내지 70mm인 크기의 제품에 대해서 가공면의 평행도 5㎛이하, 평면도 10㎛ 이하의 고정밀도가 요구됨으로 인하여, 이와같은 정밀한 칫수를 얻기 위해서는 가공시간이 길어지고 칫수의 규격을 맞추기가 어려워 저가의 코어(core) 제조가 불가능하였다.Particularly, in the case of rotary trans-grinding, high accuracy of 5 μm or less in parallel and 10 μm in flatness is required for a product having a diameter of 20 mm to 70 mm. The length and difficulty of dimensioning dimensions made it impossible to manufacture low-cost cores.

또한, 종래방법에서는 헤드와 VTR의 본체 사이에 연결되어 고속으로 회전하면서 여러종류의 신호를 누설 없이 신호를 증폭하여 전달하는 작용을 하는 로타리 트랜스를 Ni-Cu-Zn계 산화물 자성재료를 사용하여 제조하였으나 조성중 Ni의 단가가 고가이므로 재료비가 제조원가에서 차지하는 비율이 높은 문제가 있었다. 또한, 종래의 Ni-Cu-Zn계 산화물 자성재료에서는 소결체 기계적 강도를 향상하고자 첨가제로서 삼산화 비스무스와 산화마그네슘을 사용하여 곡강도를 증대시켰으나 이 경우 소결체 구조가 입계파괴 구조이어서 기계적 강도가 저하되는 문제가 있다.In addition, in the conventional method, a rotary transformer, which is connected between the head and the main body of the VTR, rotates at high speed and amplifies and transmits various types of signals without leakage, is manufactured using a Ni-Cu-Zn oxide magnetic material. However, since the cost of Ni in the composition is high, there is a problem that the ratio of material cost to manufacturing cost is high. In addition, in the conventional Ni-Cu-Zn-based oxide magnetic material, the bending strength was increased by using bismuth trioxide and magnesium oxide as an additive to improve the mechanical strength of the sintered compact. However, in this case, the sintered compact has a grain boundary fracture structure, resulting in a decrease in mechanical strength. have.

한편 기존 Mg- Cu-Zn계 산화물 자성재료는 재료의 비저항이 낮아 고주파에서 인덕턴스(L)를 저하시키고 재료의 손실이 커서 신호의 전달과 증폭을 목적으로 하는 트랜스용 재질로는 사용이 불가능하였다.On the other hand, the existing Mg-Cu-Zn oxide magnetic materials have low resistivity of materials, which lowers the inductance (L) at high frequencies, and the loss of materials is so large that it cannot be used as a trans material for the purpose of signal transmission and amplification.

따라서, 본 발명자들은 상기와 같은 종래기술의 문제점을 극복하고자 노력한 결과 Mg를 첨가하여 기계적 강도를 높이면서 생산비절감을 꾀하고 Li2O를 첨가함으로써 고주파 특성을 향상시킨 Mg-Cu-Zn계 산화물 자성재료를 제공하는데 그 목적이 있다.Therefore, the present inventors endeavor to overcome the problems of the prior art as described above, Mg-Cu-Zn-based oxide magnetism to improve the high-frequency characteristics by increasing the mechanical strength by adding Mg while reducing the production cost and by adding Li 2 O The purpose is to provide the material.

이하, 본발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본발명은 Mg-Cu-Zn계 산화물 자성재료에 있어서 Fe2O3, 45.0~49.5mol%, MgO 15.0~25.0mol%, CuO 4.2~8.0mol% 및 ZnO 20.0-28.0 mol%로 이루어진 혼합물에 Li2O 0.1~0.6중량%가 첨가되어 이루어진 것을 그 특징으로 한다.The present invention relates to a mixture of Fe 2 O 3 , 45.0-49.5 mol%, MgO 15.0-25.0 mol%, CuO 4.2-8.0 mol% and ZnO 20.0-28.0 mol% in the Mg-Cu-Zn-based oxide magnetic material It is characterized by consisting of 0.1 to 0.6% by weight of 2 O.

또한, 본발명은 Mg-Cu-Zn계 산화물 자성재료를 제조하는데 있어서, Fe2O345.0~49.5 mol%, MgO 15.0~25.0mol%, CuO 4.2~8.0 mol% 및 ZnO 20.0~28.0mol%로 이루어진 혼합물에 Li2O가 0.1~ 0.6 중량% 첨가하되, 각 성분들을 어트리타(Attritor)를 이용하여 습식으로 균일하게 혼합한 다음 대기중에서 하소온도 800~900℃에서 하소한 후 분쇄하여 제조하는 것을 포함한다.In addition, the present invention, in the preparation of Mg-Cu-Zn-based oxide magnetic material, Fe 2 O 3 45.0-49.5 mol%, MgO 15.0-25.0 mol%, CuO 4.2-8.0 mol% and ZnO 20.0-28.0 mol% Li 2 O is added 0.1 ~ 0.6% by weight to the mixture, but each component is uniformly mixed by wet using an Attritor and then calcined at calcination temperature of 800 ~ 900 ℃ in the air and then prepared by grinding Include.

이와같은 본발명을 더욱 상세히 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본발명은 연자성재료중 MgO를 첨가함으로써 Ni2 +를 Mg2+로 치환시켜 기계적강도를 높이고 Li2O를 첨가하여 재료의 비저항을 향상시킨 Mg-Cu-Zn계 산화물 자성재료에 관한 것으로서, 본발명에서 Fe2O3는 자기특성을 실현하기 위해 45.0~49.5 mol% 첨가하는데 Fe2O3가 45.0 mol%미만으로 첨가되면 투자율이 저하되는 문제가 있고, 49.5 mol% 초과하면 고주파 특성이 악화되는 문제가 있어 바람직하지 않다.The present invention increases the mechanical strength by substituting Ni 2 + by the addition of MgO of the soft magnetic material as Mg 2+ on the Mg-Cu-Zn-based oxide magnetic material that improves the specific resistance of the material by the addition of Li 2 O, In the present invention, Fe 2 O 3 is added to 45.0 ~ 49.5 mol% in order to realize the magnetic properties, but when Fe 2 O 3 is added less than 45.0 mol% there is a problem that the permeability is lowered, when exceeding 49.5 mol% high frequency characteristics deteriorate There is a problem that is not preferable.

또한, 본발명에서 MgO는 스핀넬 구조(M2+Fe2O4)를 가지고 있는 연자성 재료의 금속 2가 이온을 Ni2 +에서 Mg2+로 치환시켜 역 스핀넬에서 중간 스핀넬 구조로 변화시켜 자기 스핀이 2개인 Nit2 +와 자기스핀이 0인 Mg2+가 동일 자기 모우먼트를 발휘하게 하여 동일 인덕턴스를 나타내게 하는 것으로서 그 첨가량이 15.0 mol% 미만이면 큐리온도가 급격히 저하되는 문제가 있고, 25.0 mol%를 초과하면 인덕턴스가 저하되어 좋지 않다. 또한, 본발명에서 CuO는 4.2~8.0 mol%, ZnO는 20.0~28.0 mol% 첨가하는데, CuO의 첨가량이 상기 범위를 벗어나면 소결특성 및 손실을 증가시키는 문제가 있고, ZnO가 상기 범위를 벗어나면 큐라온도를 감소시키고 재료의 안정성을 저하시키는 문제가 있게 된다.In addition, in the present invention, MgO is converted from the reverse spinnel to the intermediate spinel structure by substituting the metal divalent ions of the soft magnetic material having the spinnel structure (M 2 + Fe 2 O 4 ) from Ni 2 + to Mg 2+ . Nit 2 + with two magnetic spins and Mg 2+ with zero magnetic spins exhibit the same magnetic moment, resulting in the same inductance. When the addition amount is less than 15.0 mol%, the Curie temperature drops sharply. If it exceeds 25.0 mol%, the inductance is lowered, which is not good. In addition, in the present invention, CuO is added in 4.2 ~ 8.0 mol%, ZnO is added in 20.0 ~ 28.0 mol%, there is a problem to increase the sintering characteristics and loss when the amount of added CuO is out of the above range, if ZnO is out of the above range There is a problem of reducing the cura temperature and lowering the stability of the material.

또한, 본발명에서는 상기와 같은 Mg-Cu-Zn계 산화물 자성재료 혼합물에 스핀넬 구조내부에 개입하여 특성을 개선하는 Li2O를 첨가하여 미세구조를 제어하여 재료의 비저항을 개선함으로써 고주파 특성을 향상시켰는 바, Li2O함량이 0.1 중량% 미만이면 미세구조를 제어할 수 없었고, 0.6 중량%를 초과하면 이상 결정이 사출되어 손실을 증가시키는 문제가 있어 바람직하지 않다. 한편, 상기와 같은 조성으로 이루어진 본발명의 Mg-Cu-Zn계 산화물 자성재료의 제조방법을 간추려 설명하면 다음과 같다.In addition, in the present invention, by adding Li 2 O to the Mg-Cu-Zn-based oxide magnetic material mixture as described above to improve the characteristics by interposing inside the spinel structure, the microstructure is controlled to improve the specific resistance of the material to improve the high frequency characteristics. As a result, when the Li 2 O content is less than 0.1% by weight, the microstructure cannot be controlled. When the content of Li 2 O is more than 0.6% by weight, abnormal crystals are injected to increase the loss. On the other hand, the manufacturing method of the Mg-Cu-Zn-based oxide magnetic material of the present invention having the composition as described above will be described as follows.

위의 주조성 및 첨가물을 어트리타(Attritor)를 이용하여 습식으로 혼합하여 800~900℃에서 하소하여 다시 어트리타를 이용하여 분쇄하여 분무건조기를 이용하여 과립된 산화물 자성재료를 제조한다. 하소온도의 경우 800℃ 미만에서는 반응성이 저하되어 입성장이 일어나지 않으므로서 분쇄 파우더의 입도가 작게 되어 수축이 크게되어 성형시 성형압을 증가시키는 문제가 있고, 900℃를 초과하면 소결체에서 이상결정이 석출되어 손실을 크게 증가시키고 기계적 강도가 저하되는 문제가 있다.The above castability and additives are mixed by wet using an Attritor, calcined at 800-900 ° C., and then pulverized using an Attritor to produce granulated oxide magnetic material using a spray dryer. In the case of calcination temperature, there is a problem that the reactivity decreases below 800 ° C., so that the grain growth does not occur, the particle size of the pulverized powder decreases, and the shrinkage increases, thereby increasing the molding pressure during molding. There is a problem that the loss is greatly increased and the mechanical strength is lowered.

이와같은 본발명의 Mg-Cu-Zn계 산화물 자성재료는 재료의 비저항과 인덕 턴스가 우수하고 고주파 특성이 향상될 뿐만 아니라 종전 Ni -Cu-Zn계와는 달리 첨가제를 사용하지 않음으로 인해 소결체 입체구조도 입내파괴구조로 변화되어 기계적 강도가 향상되며 원가도 40% 이상 절감되어 VTR등 해당분야에 유용하게 사용될 수 있다.The Mg-Cu-Zn oxide magnetic material of the present invention has excellent sintered body due to excellent resistivity and inductance of the material, high frequency characteristics, and no additives, unlike the previous Ni-Cu-Zn system. The structure is also changed to intragranular structure, which improves mechanical strength and reduces cost by more than 40%.

이하, 본발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, but the present invention is not limited by the Examples.

[실시예 1~7, 비교예 1][Examples 1-7, Comparative Example 1]

Fe2O348.0 mol%, MgO 20 mol%, CuO 7.0 mol%, ZnO 25 mol%의 주조성에 Li2O의 원료로 Li2CO3을 사용하여 각각의 함량을 0.05 중량%, 0.1 중량%, 0.2 중량%, 0.3 중량%, 0.4중량%, 0.5 중량%, 0.7 중량%를 첨가하여 어트리타(Attritor)를 이용하여 균질하게 혼합하여 하소온도 900℃에서 하소 파우더를 제조하였다.Fe 2 O 3 48.0 mol%, MgO 20 mol%, CuO 7.0 mol%, ZnO 25 mol%, the content of 0.05% by weight, 0.1% by weight using Li 2 CO 3 as the raw material of Li 2 O , 0.2% by weight, 0.3% by weight, 0.4% by weight, 0.5% by weight, 0.7% by weight were added homogeneously using an Attritor to prepare a calcined powder at the calcination temperature 900 ℃.

이렇게 제조된 파우더를 다시 어트리터에서 분말의 평균입경이 0.5㎛가 되도록 분쇄하였으며, 결합제로 쿠라레이(Kuraray) PVA #217를 10% 용액을 1.5% 첨가하여 과립 파우더를 제조하였다.The powder thus prepared was pulverized so that the average particle size of the powder was 0.5 μm in the attritor, and granule powder was prepared by adding 1.5% of Kuraray PVA # 217 as a binder to a 10% solution.

[실시예 8~9, 비교예 2][Examples 8-9, Comparative Example 2]

상기 실시예 5의 조성을 이용하여 하소 온도를 850℃, 900℃, 950℃로 하여 상기 각 특성을 비교하였다.Using the composition of Example 5, calcination temperature was set at 850 ° C, 900 ° C, and 950 ° C, and the above characteristics were compared.

[비교예 3~5][Comparative Examples 3 ~ 5]

종전의 마그네슘계 페라이트에 사용되었던 삼산화 비스무스 함량을 0.015 중량%, 0.030 중량%, 0.045 중량%를 첨가하여 상기와 동일 평가조건에서 관찰하였다.The bismuth trioxide content, which was used in the conventional magnesium ferrite, was added at 0.015% by weight, 0.030% by weight, and 0.045% by weight, and observed under the same evaluation conditions as described above.

[실험예]Experimental Example

상기 실시예 1~9에서 제조된 과립 파우더를 링코아 금형(30φ × 15φ × 5.0mm)을 사용하여 성형체를 제작하여 소결온도 1080℃에서 소결하였고, 인덕턴스(L), 손실(D) 및 주파수 특성을 HP4194ALCR 메타를 사용하여 측정하였으며, L, D는 1MHIZ, 0.1mA, 주파수 특성은 주파수 100HZ~40MHZ까지 관찰하였다.The granulated powders prepared in Examples 1 to 9 were manufactured using a ring core mold (30φ × 15φ × 5.0mm) and sintered at a sintering temperature of 1080 ° C., inductance (L), loss (D) and frequency characteristics. Was measured using HP4194ALCR meta, L, D was observed 1MHIZ, 0.1mA, frequency characteristics up to the frequency 100HZ ~ 40MHZ.

그리고 다음과 같은 방법으로 초기투자율, 손실계수와 곡강도를 산출하였으며, 그 결과를 다음 표에 나타내었다.The initial permeability, loss factor and bending strength were calculated by the following method, and the results are shown in the following table.

(1) 초기투자율(1) Initial investment rate

초기 투자율은 측정장치(HP 4194A)를 사용하여 1MHZ, 0.1mA에서 측정하여 아래의 계산식에 의해서 산출한 결과를 다음 표에 나타내었으며, 동일 조성에서 Li2O를 침가하여 투자율의 조성이 가능하였고 로타리 트랜스 재질이 요구되는 전자기 특성을 만족할 수 있었다.The initial permeability was measured at 1MHZ and 0.1mA using the measuring device (HP 4194A), and the result calculated by the following formula is shown in the following table.The permeability was formed by adding Li 2 O in the same composition. The trans material could satisfy the required electromagnetic properties.

(2) 입경측정(2) particle size measurement

소결된 시편의 미세구조를 관찰하기 위해 0.05㎛ Al2O3연마제를 이용하여 시편을 연마 후 HCI 35% 용액을 열판 가열기 위에서 10분간 가열하면서 에칭한 후 초음파 세척기로 세정하여 연마제를 제거하여 광학 현미경을 이용하여 사진을 관찰하고 입경을 측정한 결과 Li2O의 함량이 증가할수록 소결체 결정입경이 작게되어 기계적 특성을 향상시켰고 입계를 증가시킴으로 비저항을 높여 주파수 특성을 개선하는 효과를 나타내었다.In order to observe the microstructure of the sintered specimens, the specimens were polished using a 0.05 μm Al 2 O 3 abrasive and then etched while heating HCI 35% solution on a hot plate heater for 10 minutes, and then cleaned with an ultrasonic cleaner to remove the abrasives. As a result of observing the photographs and measuring the particle size, the grain size of the sintered body became smaller as the Li 2 O content was increased, and the mechanical properties were improved, and the specific resistance was increased by increasing the grain boundary.

(3) (3)

(4) 주파수 특성(4) frequency characteristics

측정기(HP4194A)를 사용하여 주파수 범위 100HZ에서 40MHZ 사이의 주파수 특성을 관찰하였으며 Li2CO3를 0.5 중량% 첨가함에 따라서 주파수 곡선이 일정한 인덕턴스 값을 나타내 넓은 범위의 주파수 대역에서 사용되는 로타리 트랜스와 같은 제품의 안정성을 향상시키고 공진점이 고주파로 이동함에 따라 주파수의 사용영역이 넓어졌다(제1도 참조).Using a measuring instrument (HP4194A), the frequency characteristics were observed in the frequency range 100HZ to 40MHZ, and 0.5 wt% of Li 2 CO 3 was added, resulting in a constant inductance value, such as rotary transformers used in a wide range of frequency bands. As the stability of the product was improved and the resonance point moved to high frequency, the range of use of the frequency became wider (see FIG. 1).

(5) 하소온도(5) calcination temperature

하소온도 변화실험결과 900℃ 이상에서는 이상 결정이 석출하여 재료의 손실을 증가시키고 기계적 특성 및 외관불량을 돌출하였다.As a result of the calcination temperature change, abnormal crystals precipitated at over 900 ℃, increasing the loss of materials and protruding mechanical properties and appearance defects.

(6) 곡강도(6) bending strength

종전의 Ni-Cu-Zn계 산화물 자성재료에서는 첨가제를 사용하여 곡강도를 증가시켰으나 Mg-Cu-Zn계 산화물 자성재료에서는 소결체 구조가 종전의 입계 파괴 구조에서 입내 파괴구조로 변화함에 따라서 기계적 강도를 향상시켰고 이를 제2도에 나타내었다.In conventional Ni-Cu-Zn-based oxide magnetic materials, the additive strength was increased by using additives, but in the Mg-Cu-Zn-based oxide magnetic materials, the mechanical strength was improved as the sintered body structure changed from the previous grain boundary fracture structure to the intragranular fracture structure. This is shown in FIG.

[표][table]

Claims (2)

Mg-Cu-Zn계 산화물 자성재료에 있어서, Fe2O345.0~49.5 mol%, MgO 15.0~25.0 mol%, CuO 4.2~8.0 mol% 및 ZnO 20.0~28.0 mol%로 이루어진 혼합물에 Li2O가 0.1~0.6 중량% 첨가되어 이루어진 것을 특징으로 하는 Mg-Cu-Zn계 산화물 자성재료.In the Mg-Cu-Zn-based oxide magnetic material, Li 2 O is added to a mixture consisting of 45.0 to 49.5 mol% of Fe 2 O 3 , 15.0 to 25.0 mol% of MgO, 4.2 to 8.0 mol% of CuO and 20.0 to 28.0 mol% of ZnO. Mg-Cu-Zn-based oxide magnetic material, characterized in that 0.1 to 0.6% by weight is added. Mg-Cu-Zn계 산화물 자성재료를 제조하는데 있어서, Fe2O345.0~49.5 mol%, MgO 15.0~25.0 mol%, CuO 4.2~8.0 mol% 및 ZnO 20.0~28.0 mol%로 이루어진 혼합물에 Li2O가 0.1~0.6 중량% 첨가하되, 각 성분들을 어트리타(Attritor)를 이용하여 습식으로 균일하게 혼합한 다음 대기중에서 하소온도 800~900℃에서 하소한 후 분쇄하여 제조하는 것을 특징으로 하는 Mg-Cu-Zn계 산화물 자성재료의 제조방법.In preparing the Mg-Cu-Zn-based oxide magnetic material, Li 2 in a mixture consisting of 45.0-49.5 mol% Fe 2 O 3, 15.0-25.0 mol% MgO, 4.2-8.0 mol% CuO and 20.0-28.0 mol% ZnO O is added in an amount of 0.1 to 0.6% by weight, and each component is uniformly mixed by wet using an Attritor, followed by calcination at a calcination temperature of 800 to 900 ° C. in air, followed by grinding. Cu-Zn-based oxide magnetic material manufacturing method.
KR1019930031619A 1993-12-30 1993-12-30 Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF KR100285737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031619A KR100285737B1 (en) 1993-12-30 1993-12-30 Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031619A KR100285737B1 (en) 1993-12-30 1993-12-30 Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
KR950020779A KR950020779A (en) 1995-07-24
KR100285737B1 true KR100285737B1 (en) 2001-04-02

Family

ID=37514496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031619A KR100285737B1 (en) 1993-12-30 1993-12-30 Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
KR (1) KR100285737B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970051500A (en) * 1995-12-28 1997-07-29 김익명 Magnesium-Copper-Zinc Oxide Magnetic Materials
KR100485044B1 (en) * 1997-11-04 2005-11-11 삼화전자공업 주식회사 Soft ferrite core manufacturing method

Also Published As

Publication number Publication date
KR950020779A (en) 1995-07-24

Similar Documents

Publication Publication Date Title
US2565111A (en) Ceramic magnetic material with a small temperature coefficient
KR100617494B1 (en) Ferrite Material, Ferrite Sintering Material and Inductor Device
KR100285737B1 (en) Mg-Cu-Zn OXIDE MAGNETIC MATERIAL AND MANUFACTURING METHOD THEREOF
US2565058A (en) Ceramic magnetic materials with high saturation-flux density
JP4183187B2 (en) Ferrite sintered body
JP3550251B2 (en) Ferrite sintered body for high frequency region and signal chip inductor using the same
JP4107667B2 (en) Ferrite material and inductor element
JP2003221232A (en) Ferrite material and its production method
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH08157253A (en) High strength ferrite, ferrite substrate using the same and electromagnetic wave absorbing member
JPH0696930A (en) Transformer using microcrystalline ferrite
KR100222599B1 (en) Ni-cu-zn magnet icoxide material and producing method
US5966065A (en) Core for inductance elements and its production method
US3043777A (en) Methods for preparing improved magnetic bodies
KR0174387B1 (en) Mn-Zn Ferrite Core Composition and its Manufacturing Method
JPH05190315A (en) Polycrystal mn-zn ferrite
JP2802839B2 (en) Oxide soft magnetic material
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JPH1017361A (en) Dielectric porcelain composition for high frequency and dielectric resonator
JP3521467B2 (en) Ferrite resin
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JP2938260B2 (en) Microcrystalline ferrite
JPS61280602A (en) Manufacture of highly concentrated ferrite

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080104

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee