KR100285239B1 - Srtio3 based grain boundary barrier layer capacitor - Google Patents

Srtio3 based grain boundary barrier layer capacitor Download PDF

Info

Publication number
KR100285239B1
KR100285239B1 KR1019980019747A KR19980019747A KR100285239B1 KR 100285239 B1 KR100285239 B1 KR 100285239B1 KR 1019980019747 A KR1019980019747 A KR 1019980019747A KR 19980019747 A KR19980019747 A KR 19980019747A KR 100285239 B1 KR100285239 B1 KR 100285239B1
Authority
KR
South Korea
Prior art keywords
dielectric constant
bao
cao
dielectric
grain boundary
Prior art date
Application number
KR1019980019747A
Other languages
Korean (ko)
Other versions
KR19990086647A (en
Inventor
구상윤
김주선
강석중
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019980019747A priority Critical patent/KR100285239B1/en
Priority to JP10183439A priority patent/JP3032819B2/en
Priority to US09/348,625 priority patent/US6292355B1/en
Publication of KR19990086647A publication Critical patent/KR19990086647A/en
Application granted granted Critical
Publication of KR100285239B1 publication Critical patent/KR100285239B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies

Abstract

PURPOSE: Provided is a SrTiO3 based grain boundary barrier layer capacitor(GBBLC) which shows high dielectric constant and low dielectric loss factor, as well as stable temperature property. CONSTITUTION: The capacitor is produced by adding mixture of BaO and CaO to oxide forming secondary phase. In the mixture, the molecular ratio of BaO and CaO is 0.2CaO-0.8BaO to 0.7CaO-0.3BaO. The BaO and CaO are obtained from BaO precursor and CaO precursor, respectively. The SrTiO3 based grain boundary barrier layer capacitor shows high dielectric constant and low dielectric loss factor, as well as stable temperature profile, in which dielectric constant is not substantially changed according to temperature change.

Description

SrTiO₃계 입계절연형 유전체SrTiO₃-based grain insulation dielectric

본 발명은 높은 유전상수와 안정한 온도특성을 나타내는 SrTiO3계 유전체에 관한 것이다. 더욱 구체적으로 설명하자면 SrTiO3계 입계절연형 유전체(Grain Boundary Barrier Layer Capacitor, 이하 GBBLC라 부름)의 제조공정중 SrTiO3의 입계에 액상으로 침투시키는 이차상의 조성을 변화시켜 향상된 유전특성을 갖는 유전체에 관한 것이다.The present invention relates to a SrTiO 3 based dielectric exhibiting high dielectric constant and stable temperature characteristics. More specifically described as gritty SrTiO 3 based mouth season-insulating dielectric (Grain Boundary Barrier Layer Capacitor, below GBBLC la called) by changing the composition on the secondary of injecting in the liquid phase in the grain boundary of the SrTiO 3 during the manufacturing process of the dielectric with an improved dielectric properties of the will be.

GBBLC는 반도성 입자들 사이의 계면에 얇은 유전층을 형성시켜 유전층의 두께, 전극간의 거리를 매우 작게 만들어 높은 유전상수 값을 가지도록 하는 재료이다. 종래의 GBBLC의 제조공정은 반도성 소결체를 만드는 단계와 입계에 유전층을 형성시키는 산화물 침투 단계로 크게 나누어진다고 후지모토(M. Fujimoto and W. D. Kingery, ″Microstructure of SrTiO3Internal Boundary Layer Capacitors During and After Processing and Resultant Electrical Properties,″ J. Am. Ceram. Soc., 68 [4] 169-173 (1985)와 굿맨(G. Goodman, ″Capacitors Based on Ceramic Grain Boundary Barrier Layers - a Review,″ Advances in Ceramics, vol. 1, Grain Boundary Phenomena in Electronic Ceramics, 215-231 (1981)등이 발표한바 있다. 반도성 소결체를 제조하기 위해서는 도너(donor)를 첨가하여 환원분위기에서 소결한 반도성 다결정 시편의 입계에 유전층을 형성시켜야 하는데 여러 가지 방법이 있다. 그 중에서 워니케(R. Wernicke, ″Formation of second-phase layers in SrTiO3Boundary Layer Capacitors,″ Advances in Ceramics, vol. 1, Grain Boundary Phenomena in Electronic Ceramics, 261-271 ,1981)는 환원분위기에서 소결된 시편을 공기중에서 열처리하여 입계만을 선택적으로 산화시켜 만들었으나 이 GBBLC는 손실이 크고 외부 전기장이 걸릴 경우 입계부위에 형성되는 높은 국부전압을 견딜수 없다. 현재 상용되고 있는 GBBLC는 낮은 융점을 갖는 PbO, Bi2O3, CuO 등의 산화물 액상을 소결체의 입계에 침투시켜 입계에 이차상을 형성시키는 방법에 의해 제조된다.GBBLC is a material that forms a thin dielectric layer at the interface between semiconducting particles to make the thickness of the dielectric layer and the distance between the electrodes very small and have a high dielectric constant value. The conventional GBBLC manufacturing process is largely divided into the step of making a semiconducting sintered body and the oxide penetration step of forming a dielectric layer at the grain boundary, M. Fujimoto and WD Kingery, ″ Microstructure of SrTiO 3 Internal Boundary Layer Capacitors During and After Processing and Resultant Electrical Properties, ″ J. Am. Ceram. Soc., 68 [4] 169-173 (1985) and Goodman, ″ Capacitors Based on Ceramic Grain Boundary Barrier Layers-a Review, ″ Advances in Ceramics, vol 1, Grain Boundary Phenomena in Electronic Ceramics, 215-231 (1981), etc. To fabricate a semiconducting sintered body, a dielectric layer is formed at the grain boundaries of semiconducting polycrystalline specimens sintered in a reducing atmosphere by adding a donor. There are several ways to form them, including R. Wernicke, ″ Formation of second-phase layers in SrTiO 3 Boundary Layer Capacitors, ″ Advances in Ceramics, vol. 1, Grain Boundary Phenomena in El ectronic Ceramics, 261-271,1981) was made by heat-treating specimens sintered in the reducing atmosphere in the air to selectively oxidize only the grain boundaries. No. GBBLC, which is currently commercially available, is produced by a method in which oxide liquids such as PbO, Bi 2 O 3 , and CuO having low melting points penetrate into grain boundaries of sintered bodies to form secondary phases at grain boundaries.

본 발명의 기술적과제는 유전상수가 큰 SrTiO3계 입계절연형 유전체조성물의 제조에 있다. 일반적으로 유전상수는 SrTiO3계 입자의 크기가 클수록, 침투된 산화물액상과 액상침투중 산화된 층의 두께가 얇을수록, 침투된 산화물의 유전상수가 높을수록 높다는 것은 워니케(R. Wernicke, ″Two-Layer Model explaining the Properties of SrTiO3Boundary Layer Capacitors,″ Advances in Ceramics, vol. 1, Grain Boundary Phenomena in Electronic Ceramics, 215-231, 1981)가 발표한 바 있다. 본 발명자들은 침투된 액상의 유전상수를 높일 수 있는 방법을 연구하던 중, 입계에 높은 유전률을 가지는 산화물인 BaO나 CaO 혹은 이들 혼합물을 기존의 산화물 침투 액상과 섞어 침투시킴으로써, 높은 유전상수값과 안정한 온도특성을 가지는 SrTiO3계 입계절연형 유전체(GBBLC)를 발명하였다.The technical problem of the present invention is to prepare a SrTiO 3 -based grain boundary dielectric dielectric composition having a high dielectric constant. In general, the higher the dielectric constant of SrTiO 3 -based particles, the thinner the thickness of the permeated oxide liquid and the oxidized layer during liquid permeation, and the higher the dielectric constant of the permeated oxide, R. Wernicke, ″ Two-Layer Model explaining the Properties of SrTiO 3 Boundary Layer Capacitors, '' Advances in Ceramics, vol. 1, Grain Boundary Phenomena in Electronic Ceramics, 215-231, 1981. While the present inventors are studying a method of increasing the dielectric constant of the infiltrated liquid phase, the high dielectric constant and stable property are achieved by infiltrating BaO or CaO, which is an oxide having a high dielectric constant at the grain boundary, with a mixture of the oxide permeation liquid. An SrTiO 3 -based grain boundary dielectric dielectric (GBBLC) with temperature characteristics is invented.

도 1 (a)는 측정온도에 따른 유전상수값의 변화이다.1 (a) is a change in the dielectric constant value according to the measurement temperature.

(b)는 측정온도에 따른 유전손실값의 변화이다.(b) is the change of dielectric loss value according to the measured temperature.

도 2 (a)는 유전상수 측정값을 나타낸 것이다.Figure 2 (a) shows the dielectric constant measurement value.

(b)는 0℃에서의 유전상수값을 기준으로 하여 온도에 따른 유전상수(b) is the dielectric constant with temperature based on the dielectric constant value at 0 ° C.

변화율을 나타낸 것이다.It shows the rate of change.

도 3 (a)는 1300oC에서 8시간 열처리 한 경우 산화물의 침투시간에 따른Figure 3 (a) is according to the penetration time of the oxide when heat-treated at 1300 o C for 8 hours

유전상수 값의 변화를 나타낸 것이다.It shows the change of the dielectric constant value.

(b)는 1300oC에서 12시간 열처리 한 경우 산화물의 침투시간에 따른(b) is the value according to the penetration time of oxide when heat-treated at 1300 o C for 12 hours.

유전상수 값의 변화를 나타낸 것이다.It shows the change of the dielectric constant value.

본 발명은 SrTiO3소결체를 제조하는 제1단계와 BaO와 CaO를 포함하는 혼합 액상 형성 산화물을 제조하는 제2단계 및 소결체에 액상 형성 산화물을 침투시키는 제3단계로 구성된다. 상기에서 SrTiO3소결체를 제조하는 제1단계와 소결체에 액상 형성 산화물을 침투시키는 제3단계는 통상적인 방법과 동일하지만 본 발명의 특징은 소결체에 액상 형성 산화물을 침투시키는 단계에서 BaO와 CaO를 첨가하는데 있다.The present invention consists of a first step of preparing a sintered SrTiO 3, a second step of preparing a mixed liquid forming oxide containing BaO and CaO and a third step of infiltrating the liquid forming oxide into the sintered body. The first step of manufacturing the SrTiO 3 sintered body and the third step of infiltrating the liquid-forming oxide into the sintered body are the same as in the conventional method, but the characteristics of the present invention are the addition of BaO and CaO in the step of infiltrating the liquid-forming oxide into the sintered body. It is.

* 제1단계 : SrTiO3소결체는 SrTiO3에 Nb2O5나 La2O3와 같은 도너(donor)를 일정량 첨가하여 혼합하고 이 분말을 냉간 가압 성형한 후 1,400oC 이상의 온도에서 수시간 동안 95N2-5H2와 같은 환원 분위기에서 소결시킴으로써 제조된다.* Step 1: SrTiO 3 sintered for several hours at SrTiO 3 Nb 2 O 5 or La 2 O after three and mixed with a predetermined amount was added to the donor (donor) such as the shaping of this powder cold pressing than 1,400 o C temperature in It is prepared by sintering in a reducing atmosphere such as 95N 2 -5H 2 .

* 제2단계 : 액상 형성 산화물은 기존의 산화물 액상 형성 혼합물에 고온에서 BaO와 CaO가 될 수 있는 물질, 예를 들어 BaCO3와 CaCO3를 몰비를 다르게하여 정량으로 혼합하여 제조된다.* Second step: The liquid-forming oxide is prepared by mixing quantitatively different molar ratios of materials that can be BaO and CaO, such as BaCO 3 and CaCO 3 at a high temperature in the conventional oxide liquid-forming mixture.

* 제3단계 : 본 발명의 액상 침투 공정은 산화분위기에서 행하며 SrTiO3계 입계절연형 유전체는 침투되는 액상에 BaO와 CaO로 될 수 있는 물질을 첨가하여 동시에 침투시킴으로써 높은 유전상수값을 가지도록 한 것으로 다음과 같은 장점이 있다.* Step 3: The liquid phase penetration process of the present invention is carried out in an oxidizing atmosphere, and the SrTiO 3 intergranular dielectric dielectric has a high dielectric constant value by simultaneously injecting a substance capable of BaO and CaO into the liquid phase to be penetrated. It has the following advantages.

첫째로, 액상침투 산화물에 첨가된 BaO는 입계에 존재하는 TiO2과잉산과의 반응을 통하여 입계에 높은 유전상수값을 가지는 BaTiO3상의 형성을 기대할 수 있다.First, BaO added to the liquid-penetrating oxide can be expected to form a BaTiO 3 phase having a high dielectric constant at the grain boundary through reaction with TiO 2 excess acid present at the grain boundary.

둘째로, 상온에서 강유전성(ferroelectric)으로 온도 증가에 따라 유전상수가 증가하는 BaTiO3가 입계에 존재하여, 상온에서 상유전성(paraelectric)으로 온도 증가에 따라 유전상수가 감소하는 SrTiO3의 온도특성을 보완하는 역할을 하므로 전체 GBBLC는 온도변화에 따른 유전상수 변화가 적은, 안정한 온도특성을 기대할 수 있다.Second, BaTiO 3 is present at the grain boundary, which increases with increasing ferroelectric temperature at room temperature, so that the temperature characteristic of SrTiO 3 decreases with increasing temperature from paraelectric to room temperature. As a supplementary role, the entire GBBLC can expect stable temperature characteristics with little change in dielectric constant due to temperature changes.

셋째로, 액상침투 산화물에 첨가된 CaO는 BaO에 의한 미세조직 변화를 완화시킬 수 있다. 본 발명에서는 BaO나 CaO, BaO와 CaO의 혼합물이 될 수 있는 물질이 일반 침투액상에 첨가될 경우 상기에 설명한 이유에 의하여 유전상수와 온도특성이 크게 향상될 수 있다는 것을 확인하기 위하여 BaO와 CaO 제공물질로 BaCO3와 CaCO3를 택하고 침투액상으로서 Bi2O3를 택하였다. 그러나 일반 SrTiO3계 GBBLC의 제조에 사용되는 침투산화물인 PbO, PbO-Bi2O3-B2O3등과 그 혼합물 어느것에나 액상침투온도에서 BaO와 CaO가 될 수 있는 물질을 첨가할 수 있다. 따라서 다음에 설명되고 구체적으로 기술되는 실시예는 예시적인 것에 지나지 않으며, 본 발명의 범위를 한정하는 것은 아니다.Third, CaO added to the liquid-penetrating oxide can mitigate the microstructure change caused by BaO. The present invention provides BaO and CaO to confirm that the dielectric constant and temperature characteristics can be greatly improved due to the reasons described above when a substance capable of mixing BaO or CaO, a mixture of BaO and CaO is added to the general penetration liquid phase. BaCO 3 and CaCO 3 were selected as materials and Bi 2 O 3 was selected as the penetration liquid phase. However, any of permeable oxides PbO, PbO-Bi 2 O 3 -B 2 O 3 and the like, which are used in the preparation of general SrTiO 3 based GBBLC, may be added with a substance capable of BaO and CaO at a liquid permeation temperature. Accordingly, the following described and specifically described embodiments are merely exemplary and are not intended to limit the scope of the present invention.

< 실시예 1 ><Example 1>

SrTiO3에 0.2mol% Nb2O5도너를 첨가하여 혼합하고 이를 1,480oC에서 5시간동안 소결하였다. 액상 형성 산화물인 Bi2O3에 BaCO3와 CaCO3를 첨가하여 산화물 조성식을 표 1과 같이하여 침투 산화물의 혼합분말을 제조하였다. 실시예1 에서는 Bi2O3를 기본으로 하여 BaO, CaO의 몰비를 변화시킨 액상 형성 산화물을 반도성 소결 시편에 산화분위기에서 침투시켰을때에 나타나는 유전특성과 유전상수의 온도의존성을 관찰하였다.0.2 mol% Nb 2 O 5 donor was added to SrTiO 3 , mixed, and sintered at 1,480 ° C. for 5 hours. BaCO 3 and CaCO 3 were added to Bi 2 O 3 , which is a liquid-forming oxide, to prepare a mixed powder of a penetrating oxide, as shown in Table 1, in terms of an oxide composition formula. In Example 1, the temperature dependence of dielectric properties and dielectric constants was observed when a liquid-forming oxide having a change in the molar ratio of BaO and CaO based on Bi 2 O 3 was penetrated into the semiconductive sintered specimen in an oxidizing atmosphere.

표 1Table 1

XX CaO : BaO (mol 비)CaO: BaO (mol ratio) 조성 (mol 비)Composition (mol ratio) 0 : 00: 0 100Bi2O3 100Bi 2 O 3 00 0 : 10: 1 0.8Bi2O3-0.2BaO0.8Bi 2 O 3 -0.2BaO 0.20.2 0.2 : 0.80.2: 0.8 0.8Bi2O3-0.04CaO-0.16BaO0.8Bi 2 O 3 -0.04CaO-0.16BaO 0.50.5 0.5 : 0.50.5: 0.5 0.8Bi2O3-0.1CaO-0.1BaO0.8Bi 2 O 3 -0.1CaO-0.1BaO 0.70.7 0.3 : 0.70.3: 0.7 0.8Bi2O3-0.14CaO-0.06BaO0.8Bi 2 O 3 -0.14CaO-0.06BaO 1.01.0 1 : 01: 0 0.8Bi2O3-0.2CaO0.8Bi 2 O 3 -0.2CaO

상기의 혼합분말을 슬러리 상태로 만들어 미세하게 연마한 소결 시편의 표면에 균일한 두께로 고르게 바른후, 산화 분위기에서 혼합물이 액상으로 되는 온도 이상인 1,300oC에서 4시간동안 침투시켰다. 액상이 침투된 시편은 최종두께가 500 ㎛가 되도록 양면을 미세 연마한 후 시편 양면에 은을 얇게 바르고 600oC에서 10분간 전극 열처리 하였다. 이와 같이 제조된 시편은 액체질소로 온도를 냉각한 후 다시 가열하면서 유전상수값와 유전상수값의 온도의존성을 측정하였다. 도 1의 (a)는 측정온도에 따른 유전상수값 변화이고, (b)는 측정온도에 따른 유전손실값의 변화이다.The mixture powder was made into a slurry and evenly applied to the surface of the finely ground sintered specimen with a uniform thickness, and then infiltrated at 1,300 ° C. for 4 hours at a temperature above which the mixture became liquid in an oxidizing atmosphere. The liquid-penetrated specimen was finely polished on both sides so that the final thickness was 500 μm, and then silver was applied on both sides of the specimen and subjected to electrode heat treatment at 600 o C for 10 minutes. The specimen prepared as described above measured the temperature dependence of the dielectric constant value and the dielectric constant value while cooling the temperature with liquid nitrogen and heating again. Figure 1 (a) is a change in the dielectric constant value according to the measurement temperature, (b) is a change in the dielectric loss value according to the measurement temperature.

도 1의 유전특성을 살펴보면, 액상형성 산화물내의 BaO와 CaO의 몰비가 1:1인 경우(X=0.5) 가장 높은 유전상수값과 낮은 유전손실값을 나타낸다. 반면 산화물 조성이 X=0, 1.0인 경우 낮은 유전상수값과 높은 유전손실값을 나타낸다. 즉 X=0.5인 경우 상온에서 2.8 x 104의 유전상수값을 가지나, X=0, 1.0인 경우에는 상온에서 약 1.0 x 104의 유전상수값을 나타낸다. 또한 유전손실은 X=0.5인 경우 상온에서 1% 이하의 값을 나타내어 3-5% 값을 보이는 X=0, 1.0인 경우보다 낮은 값을 나타낸다.Referring to the dielectric properties of FIG. 1, when the molar ratio of BaO and CaO in the liquid-forming oxide is 1: 1 (X = 0.5), the highest dielectric constant and low dielectric loss are shown. On the other hand, when the oxide composition is X = 0, 1.0, low dielectric constant and high dielectric loss are shown. That is, when X = 0.5, the dielectric constant value is 2.8 × 10 4 at room temperature, but when X = 0 and 1.0, the dielectric constant value is about 1.0 × 10 4 at room temperature. In addition, the dielectric loss is less than 1% at room temperature when X = 0.5, which is lower than that of X = 0 and 1.0, which shows 3-5%.

도 2는 유전상수의 온도의존성을 관찰하기 위하여 Bi2O3만 침투시킨경우와 액상없이 산화만시킨 시편의 유전상수값과 온도에 따른 변화량을 산화물 조성이 X=0.5인 경우와 비교하여 나타낸 것이다.FIG. 2 shows the dielectric constant values and the temperature-dependent changes of the specimens in which only Bi 2 O 3 was penetrated to observe the temperature dependence of the dielectric constant and that were oxidized without liquid phase, compared with the case where the oxide composition was X = 0.5. .

Bi2O3만 침투시킨 경우에 비하여 BaO와 CaO를 침투시킨 경우 더 높은 유전상수값을 나타내었다. 또한 입계에 BaO와 CaO가 존재하는 경우 온도변화에 따른 유전상수 변화가 적고 안정함을 보인다. 액상산화물의 조성이 X=0.5인 경우 온도변화에 따른 유전상수값 변화율은 ±10% 이내로 온도에 따른 변화가 적음을 알 수 있다.When BaO and CaO were infiltrated, the dielectric constant was higher than that of only Bi 2 O 3 . In addition, when BaO and CaO are present at the grain boundaries, the change of dielectric constant with temperature changes is small and stable. When the composition of the liquid oxide is X = 0.5, it can be seen that the change rate of the dielectric constant value with the temperature change is less than ± 10%.

< 실시예 2 ><Example 2>

도 3은 실시예1에서와 같은 소결체와 액상침투 산화물을 사용하여 제조된 GBBLC의 액상형성 산화물의 침투시간에 따른 유전상수값의 변화를 보여준다. 도 3의 (a)는 1,300oC에서 8시간 열처리 한 경우, (b)는 1,300oC에서 12시간 열처리 한 경우이다.Figure 3 shows the change in dielectric constant value with the penetration time of the liquid-forming oxide of GBBLC prepared using the sintered body and the liquid penetrating oxide as in Example 1. Figure 3 (a) is a case of heat treatment at 1,300 o C 8 hours, (b) is a case of heat treatment at 1,300 o C 12 hours.

열처리 시간이 증가하여도 액상으로 침투시킨 산화물의 조성이 X=0.5인 경우 가장 높은 유전상수값을 가지고 있다. 열처리 시간이 8시간인 경우에는 2.2 x 104의 유전상수값을 나타내고, 12시간인 경우 1.8 x 104의 유전상수값을 나타낸다.Even if the heat treatment time is increased, the highest dielectric constant is obtained when the composition of oxide penetrated into the liquid phase is X = 0.5. When the heat treatment time is 8 hours, the dielectric constant value is 2.2 × 10 4 , and when 12 hours, the dielectric constant value is 1.8 × 10 4 .

SrTiO3계 입계절연형 유전체 제조에 있어, 본 발명자들에 의해 개발된 BaO와 CaO가 첨가된 액상 산화물을 입계 이차상 형성 산화물로 사용할 경우 높은 유전상수값과 안정한 온도특성을 가지는 입계절연형 유전체의 제조가 가능하다. 이와 같이 제조된 입계절연형 유전체는 전자부품산업에 폭넓게 사용가능할 것이다.In the fabrication of SrTiO 3 -based intergranular dielectric dielectric, when the liquid oxide added BaO and CaO developed by the present inventors is used as the grain-boundary secondary phase forming oxide, it has a high dielectric constant and stable temperature characteristics. Manufacturing is possible. The grain boundary insulating dielectric thus manufactured may be widely used in the electronic component industry.

Claims (2)

고유전상수의 SrTiO3계 입계절연형 유전체에 있어서, 2차상을 형성하는 산화물의 조성에 BaO와 CaO의 물비가 0.2CaO-O.8BaO~0.7CaO-O.3BaO인 혼합물을 첨가하는 것을 특징으로 하는 SrTiO3계 입계절연형 유전체.A high dielectric constant SrTiO 3 grain boundary dielectric dielectric, characterized in that a mixture of BaO and CaO with a water ratio of 0.2CaO-O.8BaO to 0.7CaO-O.3BaO is added to the composition of the oxide forming the secondary phase. SrTiO 3 based grain insulation dielectric. 제 1 항에 있어서, BaO와 CaO의 BaO의 전구체와 CaO의 전구체로부터 제공하는 것을 특징으로 하는 SrTiO3계 입계절연형 유전체.The SrTiO 3 -based intergranular dielectric dielectric according to claim 1, which is provided from a BaO precursor and a CaO precursor.
KR1019980019747A 1998-05-29 1998-05-29 Srtio3 based grain boundary barrier layer capacitor KR100285239B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019980019747A KR100285239B1 (en) 1998-05-29 1998-05-29 Srtio3 based grain boundary barrier layer capacitor
JP10183439A JP3032819B2 (en) 1998-05-29 1998-06-30 SrTiO3 based grain boundary insulating dielectric
US09/348,625 US6292355B1 (en) 1998-05-29 1999-07-06 SrTiO3-based grain boundary barrier layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980019747A KR100285239B1 (en) 1998-05-29 1998-05-29 Srtio3 based grain boundary barrier layer capacitor

Publications (2)

Publication Number Publication Date
KR19990086647A KR19990086647A (en) 1999-12-15
KR100285239B1 true KR100285239B1 (en) 2001-04-02

Family

ID=37514260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980019747A KR100285239B1 (en) 1998-05-29 1998-05-29 Srtio3 based grain boundary barrier layer capacitor

Country Status (1)

Country Link
KR (1) KR100285239B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119056A (en) 2019-04-09 2020-10-19 주식회사 아이지티 Plasma Reactor of Dielectric Barrier Discharge and Gas Treatment Equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222127A (en) * 1989-02-22 1990-09-04 Murata Mfg Co Ltd Laminated ceramic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222127A (en) * 1989-02-22 1990-09-04 Murata Mfg Co Ltd Laminated ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119056A (en) 2019-04-09 2020-10-19 주식회사 아이지티 Plasma Reactor of Dielectric Barrier Discharge and Gas Treatment Equipment

Also Published As

Publication number Publication date
KR19990086647A (en) 1999-12-15

Similar Documents

Publication Publication Date Title
KR100206479B1 (en) Ceramic capacitor and method for the preparation thereof
KR100278417B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
KR100326950B1 (en) Dielectric ceramic composition and laminated ceramic parts
CA1098303A (en) Method of producing a dielectric with perowskite structure
JPH0123434B2 (en)
CN106348753B (en) Ceramic capacitor dielectric material
US5672378A (en) Method for making a BaTiO3 powder mixture the powder mixture and method for making a Y5V ceramic body therefrom
KR20050092438A (en) Composition for thin film capacitance element, insulating film of high dielectric constant, thin film capacitance element, thin film laminated capacitor and method for manufacturing thin film capacitance element
US4700269A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
US6292355B1 (en) SrTiO3-based grain boundary barrier layer capacitor
US4367265A (en) Intergranular insulation type semiconductive ceramic and method of producing same
US4700265A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
KR100285239B1 (en) Srtio3 based grain boundary barrier layer capacitor
US7060144B2 (en) Ceramic capacitor and method for the manufacture thereof
US4700264A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
CA1296880C (en) Method for making a bismuth doped neodymium barium titanate
KR970003341B1 (en) Dielectric capacitor making method
Laurent et al. Sintering of strontium titanate in the presence of lithium salts in a reducing atmosphere
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
KR940011059B1 (en) Semiconductor condenser
Kim et al. Grain‐Boundary Migration and Dielectric Properties of Semiconducting SrTiO3 in the SrTiO3‐BaTiO3‐CaTiO3 System
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR890002808B1 (en) Manufacture method of condenser material
KR960001657B1 (en) Preparation for strontium titanates of grain boundary layer
Komornicki et al. The influence of cationic ratio on dielectric properties of yttrium doped SrTiO3 based ceramics

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081218

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee