KR100281016B1 - High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same - Google Patents

High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same Download PDF

Info

Publication number
KR100281016B1
KR100281016B1 KR1019980022492A KR19980022492A KR100281016B1 KR 100281016 B1 KR100281016 B1 KR 100281016B1 KR 1019980022492 A KR1019980022492 A KR 1019980022492A KR 19980022492 A KR19980022492 A KR 19980022492A KR 100281016 B1 KR100281016 B1 KR 100281016B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
carbon
boric acid
friction material
friction
Prior art date
Application number
KR1019980022492A
Other languages
Korean (ko)
Other versions
KR20000001971A (en
Inventor
신현규
이홍범
김광수
Original Assignee
임인택
한국항공우주산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임인택, 한국항공우주산업주식회사 filed Critical 임인택
Priority to KR1019980022492A priority Critical patent/KR100281016B1/en
Publication of KR20000001971A publication Critical patent/KR20000001971A/en
Application granted granted Critical
Publication of KR100281016B1 publication Critical patent/KR100281016B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Abstract

본 발명은 고강성 탄소섬유 및 이를 이용한 마찰재용 탄소-탄소 복합재 제조 방법에 관한 것으로, 특히 탄소섬유에 일정농도의 붕산용액을 함침하고, 이 붕산용액이 함침된 탄소섬유를 열풍건조기에서 적당한 온도로 일정시간동안 건조시킨 후, 상기 건조된 탄소섬유를 열처리로에 넣고 일정온도로 열처리하여 고강성 저강도 탄소섬유를 제조하고, 이 탄소섬유를 일정한 길이로 절단하여 핏치와 함께 혼합하고, 이 혼합체를 탄소직물과 적층하여 프리폼을 만든 후, 이 프리폼을 몰드에 장입하고 나서 프레스로 가압성형하여 그린바디를 제조한 다음, 이 그린바디를 고온에서 열처리한 후 핏치로 함침시킴과 아울러 탄화공정 및 열처리공정을 거쳐 마찰재용 탄소-탄소 복합제를 제조한다.The present invention relates to a high rigid carbon fiber and a method for producing a carbon-carbon composite for friction materials using the same, in particular, impregnated carbon fiber with a certain concentration of boric acid solution, the carbon fiber impregnated with the boric acid solution at a suitable temperature in a hot air dryer After drying for a certain time, the dried carbon fiber is placed in a heat treatment furnace and heat-treated at a constant temperature to produce a high-strength low-strength carbon fiber, the carbon fiber is cut to a predetermined length and mixed with a pitch, and the mixture is mixed After laminating with a carbon fabric to form a preform, the preform is charged into a mold and press-molded into a press to produce a green body. The green body is heat-treated at high temperature, impregnated with a pitch, and carbonized and heat-treated. To prepare a carbon-carbon composite for friction materials.

이와 같은 방법으로 제조된 마찰재는 종래 고온에서 열처리하여 제조된 탄소 섬유를 이용하여 만든 마찰재보다 마모량이 적은 등 내마모성이 우수하면서도 제조 경비를 줄일 수 있다.The friction material produced in this manner is less wear than the friction material made by using a carbon fiber manufactured by heat treatment at a high temperature, such as excellent wear resistance and can reduce the manufacturing cost.

Description

고강성 탄소섬유 및 이를 이용한 마찰재용 탄소-탄소 복합재 제조방법High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same

본 발명은 고강성 탄소섬유 및 이를 이용한 탄소-탄소복합재 제조방법에 관한 것으로, 특히 고강성 및 저강도를 갖는 탄소섬유를 이용하여 항공기나 고속전철등에 사용되는 마찰성능이 우수한 마찰재용 탄소-탄소 복합재를 효율적으로 제조할 수 있도록 한 것이다.The present invention relates to a high rigid carbon fiber and a carbon-carbon composite material manufacturing method using the same, in particular, carbon-carbon composite material for friction materials having excellent friction performance used in aircraft, high-speed trains, etc. using a carbon fiber having a high rigidity and low strength It is to be able to manufacture efficiently.

일반적으로 탄소/탄소 복합재료는 지속적으로 고온 내열성이 요구되는 첨단 산업분야의 필수적인 신소재로서 그에 관한 제조 및 응용기술은 일찌기 1960년대 말부터 미 공군과 미국 항공우주국이 공동으로 우주개발용 내열재료로 개발에 착수한 이래 우주, 항공, 및 방위산업계에서 활발한 응용 및 연구가 진행중이다.In general, carbon / carbon composites are essential new materials in the high-tech industry where continuous high temperature and heat resistance are required. Manufacturing and application technologies related to them are first developed by the US Air Force and NASA as heat-resisting materials for space development since the late 1960s. Since its inception, active applications and research are underway in the aerospace, aviation, and defense industries.

특히 이 탄소-탄소 복합재와 같은 신소재는 마찰 및 마모특성과 열충격 저항성이 탁월하여 이미 70년대부터 전투기 및 대형 여객기 등의 탄소 브레이크에 사용되고 있을 뿐아니라. 발사체분야의 로켓 노즐, 우주선의 고온 구조물 및, 제트 엔진 부품 등에 널리 응용되고 있는 것이다.In particular, new materials such as carbon-carbon composites have excellent friction, abrasion and thermal shock resistance, and have been used in carbon brakes for fighters and large passenger planes since the 1970s. It is widely applied to rocket nozzles in a projectile field, high-temperature structures of spacecraft, and jet engine parts.

탄소-탄소 복합재료를 이용한 브레이크디스크는 기존의 금속계 브레이크 디스크보다 가볍고, 내산화성, 고온에서의 강도, 내마모성이 우수하여 브레이크 재료로서 가장 중요한 특성인 마찰, 마모특성이 우수하다는 장점을 가지고 있다.Brake discs using carbon-carbon composite materials are lighter than conventional metal brake discs, and have the advantage of excellent friction and wear characteristics, which are the most important characteristics as brake materials due to excellent oxidation resistance, high strength and wear resistance.

이와같이 탄소-탄소 복합재료가 브레이크 디스크의 재료로서 사용되기 위해서는 기계적 특성, 내식성, 열전도성, 내마모성 및 적절한 마찰계수가 필수적으로 요구된다.As such, the carbon-carbon composite material is required to have mechanical properties, corrosion resistance, thermal conductivity, abrasion resistance, and an appropriate coefficient of friction in order to be used as a material of the brake disc.

그런데 상기 탄소-탄소 복합재의 프리폼은 통상 탄소 프리프레그를 적층하거나 탄소섬유를 잘게 절단하여 적층하거나, 혹은 상기 프리프레그와 탄소섬유를 혼합 적층하거나, 탄소섬유나 직물을 직조하여 만든 펠트(felt) 등을 사용하여 제조 해왔다.However, the preform of the carbon-carbon composite material is usually laminated with carbon prepreg or finely cut carbon fiber, or mixed with the prepreg and carbon fiber, or a felt made by weaving carbon fiber or fabric. Has been prepared using.

그러나 상기와 같은 종래의 제조방법으로 제조된 마찰재용 탄소-탄소 복합재브레이크 디스크에 있어서 마찰/마모특성에 가장 영향을 미치는 요소는 원재료인 탄소섬유의 강성인 데, 이 탄소섬유의 강성은 재료에 마찰이 발생하였을 때 마찰재에 부가되는 하중을 견디게 하는 역할을 하며, 마찰에 있어서 가장 중요한 마찰필름(friction film)의 형성을 용이하게 하여 마찰재의 안정성과 제동성능을 향상시키는 역할을 한다.However, in the carbon-carbon composite brake disc for friction materials manufactured by the conventional manufacturing method as described above, the most influential factor on the friction / wear characteristics is the stiffness of carbon fiber, which is a raw material. When it occurs, it serves to withstand the load added to the friction material, and facilitates the formation of a friction film that is most important in friction, thereby improving the stability and braking performance of the friction material.

상기한 바와 같이, 탄소-탄소 복합재료의 원료로 사용되는 탄소섬유의 강성이 마찰계수 및 마모량에 미치는 영향을 그래프로 도시하면 도 3에 도시한 바와 같다.As described above, the effect of the stiffness of the carbon fiber used as a raw material of the carbon-carbon composite material on the friction coefficient and the wear amount is shown in a graph as shown in FIG.

도 3에 도시한 바와 같이, 탄소섬유의 강성이 증가할수록 그 탄소섬유로 만들어진 마찰재의 마찰계수 및 마모량은 감소함을 알 수 있다. 특히 마모량은 사용되는 부분의 수명을 결정하는 중요한 요소이다.As shown in FIG. 3, it can be seen that as the rigidity of the carbon fiber increases, the friction coefficient and the wear amount of the friction material made of the carbon fiber decrease. In particular, the amount of wear is an important factor in determining the life of the part used.

이와 같이 탄소섬유의 강성이 마찰재의 성능을 좌우하는 중요한 요소이므로 종래에는 도 4에 도시한 바와 같이, 탄소섬유의 강성을 높이기 위하여 단순히 열 처리온도만을 높이는 방법을 고려해왔다. 그러나 이 경우 열처리온도를 높일 수 있는 고온열처리로가 필요하며, 많은 시간과 비용이 소요된다. 뿐만아니라 종래의 방법에 따라 열처리온도만을 높여서 탄소섬유의 강성을 높이면 그 탄소섬유의 강성(modulus)은 증가하지만, 비례하여 강도(strength)도 증가하게 되므로 탄소섬유를 일정길이로 절단하여 사용하는 경우에 고강도의 특성 때문에 그 가공이 어려운 단점이 있었다.Since the rigidity of the carbon fiber is an important factor that determines the performance of the friction material as described above, in the related art, in order to increase the rigidity of the carbon fiber, a method of simply increasing the heat treatment temperature has been considered. However, in this case, a high temperature heat treatment furnace capable of increasing the heat treatment temperature is required, which takes a lot of time and money. In addition, if the stiffness of the carbon fiber is increased by increasing only the heat treatment temperature according to the conventional method, the stiffness (modulus) of the carbon fiber is increased, but the strength is also increased proportionally, and thus the carbon fiber is cut to a certain length. Due to its high strength, its processing was difficult.

또한, 고강도의 탄소섬유를 이용하여 제작된 탄소-탄소 브레이크 디스크는 마찰계수 및 마모량도 증가하게 되므로 인해 마찰재의 수명을 단축시키는 치명적인 단점을 갖고 있었다.In addition, carbon-carbon brake discs made of high-strength carbon fibers have a fatal disadvantage of shortening the life of the friction material due to an increase in friction coefficient and wear.

따라서, 본 발명은 상기한 바와 같이 종래 고강성· 고강도의 탄소섬유로 마찰재를 만드는 방법이 갖는 문제점을 해소하기 위해 안출한 것으로서, 고강성 및 저강도가 구비된 탄소섬유를 사용하여 마찰성능이 우수한 고강성 탄소섬유를 이용한 마찰재용 탄소-탄소 복합재 제조방법을 제공하는 데 그 목적이 있다.Therefore, the present invention has been made to solve the problem of the method of making a friction material from the conventional high rigidity and high strength carbon fiber as described above, and excellent friction performance using the carbon fiber provided with high rigidity and low strength An object of the present invention is to provide a carbon-carbon composite manufacturing method for friction materials using high rigid carbon fibers.

상기한 목적을 달성하기 위해 본 발명은 붕산분말과 증류수를 혼합하여 만든 붕산용액을 교반시키면서 30∼60℃온도로 유지하여 탄소섬유를 담궈서 함침시키고, 이 과정을 거쳐 상기 붕산이 함침된 탄소섬유를 건조시켜 탄소섬유에 포함된 수분을 제거하며, 상기 수분이 제거된 탄소섬유를 열처리로에 넣어 1500∼2500℃온도로 가열하여 탄소섬유를 제조하기 위한 통상적인 탄소섬유 제조방법에 있어서, 상기한 과정을 거쳐 제조된 탄소섬유를 일정한 길이로 절단하여 핏치와 함께 혼합하고, 상기 탄소섬유 혼합체를 탄소직물과 교대로 적층하여 프리폼을 만들며, 상기 프리폼을 몰드에 넣어 프레스로 가압하여 성형체를 제작한 후, 붕산용액 함침/탄화 공정을 반복하여 마찰재를 제조하는 것을 특징으로 하는 고강성 탄소섬유를 이용한 마찰재용 탄소-탄소 복합재 제조방법이 제공된다.In order to achieve the above object, the present invention is maintained at a temperature of 30 ~ 60 ℃ while stirring the boric acid solution made by mixing the boric acid powder and distilled water to impregnate carbon fiber impregnated, through this process the carbon fiber impregnated with boric acid In the conventional carbon fiber manufacturing method for manufacturing the carbon fiber by drying the water to remove the water contained in the carbon fiber, the carbon fiber from which the water is removed in a heat treatment furnace to heat to 1500 ~ 2500 ℃ temperature, the process described above After cutting the carbon fiber prepared through a predetermined length and mixed with a pitch, and laminated the carbon fiber mixture alternately with a carbon fabric to make a preform, and put the preform into a mold to press the press to produce a molded body, Carbon-carbon for friction material using high-strength carbon fiber, characterized in that to produce a friction material by repeating the boric acid solution impregnation / carbonization process The composite material production method is provided.

상기한 본 발명에 따르면 붕산으로 탄소섬유를 강화처리한 후 열처리하게 되어 있어 고온으로 열처리하는 종래에 비하여 낮은 온도로 고강성의 탄소섬유를 제작할 수 있다.According to the present invention described above, the carbon fiber is reinforced with boric acid and then heat treated, so that the carbon fiber can be manufactured at a lower temperature than the conventional heat treated at high temperature.

제1도는 본 발명에 따른 고강성 탄소섬유의 제조공정 순서도,1 is a flow chart of the manufacturing process of the high rigid carbon fiber according to the present invention,

제2도는 본 발명에 따른 마찰재용 탄소-탄소 복합재 제조방법의 순서도,2 is a flow chart of the carbon-carbon composite manufacturing method for a friction material according to the present invention,

제3도는 탄소섬유의 강성 변화에 따른 마찰재 마찰성능을 도시한 그래프,3 is a graph showing the friction material friction performance according to the stiffness of the carbon fiber,

제4도는 종래 탄소섬유의 제조공정 순서도이다.4 is a flow chart of a conventional carbon fiber manufacturing process.

이하 본 발명을 첨부된 예시도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 탄소섬유 제조공정을 도시한 순서도이다. 본 발명에 따른 탄소섬유는, 도 1에 도시한 바와 같이, 5∼30중량%의 농도를 가진 붕산수용액을 30∼60℃로 유지시키고, 그 안에 탄소섬유를 24시간 내지 36시간동안 담궈서 함침시키는 단계와, 상기 함침된 탄소섬유를 열풍건조기에 넣고 80∼150℃의 온도로 20∼30시간동안 건조열풍시켜 함침된 탄소섬유에서 수분을 완전히 제거하는 열풍건조단계와, 상기 열풍건조단계에서 건조된 탄소섬유를 열처리로에 넣고 아르곤 분위기에서 1500∼2800℃온도로 1시간이상 유지시켜 열처리하는 단계를 거쳐 제조된다.1 is a flowchart illustrating a carbon fiber manufacturing process according to the present invention. In the carbon fiber according to the present invention, as shown in Figure 1, to maintain a boric acid solution having a concentration of 5 to 30% by weight at 30 to 60 ℃, the carbon fiber is impregnated by soaking for 24 to 36 hours And the hot air drying step of placing the impregnated carbon fiber in a hot air dryer for 20 to 30 hours at a temperature of 80 to 150 ° C. to completely remove moisture from the impregnated carbon fiber, and drying the hot air drying step. The carbon fiber is put into a heat treatment furnace and manufactured by maintaining the heat treatment at an temperature of 1500 to 2800 ° C. for 1 hour or more in an argon atmosphere.

그리고나서 상기한 과정을 거쳐 제조된 탄소섬유를, 도 2에 도시한 바와 같이, 일정한 길이로 절단하고, 이 절단된 탄소섬유를 핏치와 함께 혼합하고 이 혼합물과 탄소직물을 교대로 적층하여 프리폼을 만든 후, 이 프리폼을 몰드에 장입하고 프레스로 가압하여 그린바디를 성형한 다음, 이 그린바디를 열처리 및 밀도화공정을 거쳐 탄소-탄소 복합재 브레이크 디스크를 제조한다.Then, the carbon fiber produced through the above process, as shown in Figure 2, is cut to a certain length, the cut carbon fiber is mixed with a pitch, and the mixture and the carbon fabric are alternately laminated to the preform After forming, the preform is charged into a mold and pressurized to form a green body, and then the green body is subjected to a heat treatment and densification process to produce a carbon-carbon composite brake disc.

[실시예]EXAMPLE

순도 99% 이상의 붕산분말과 증류수를 각각 5∼30중량%와 70∼95중량%로 혼합하여 붕산용액을 만든다. 이 붕산용액을 30∼60℃로 유지하면서 그 안에 탄소섬유를 24∼36시간 동안 담궈서 초음파 함침시킨다.A boric acid solution is prepared by mixing boric acid powder having a purity of 99% or more and distilled water at 5 to 30% by weight and 70 to 95% by weight, respectively. While maintaining this boric acid solution at 30-60 degreeC, carbon fiber is soaked for 24 to 36 hours in ultrasonic impregnation.

상기 과정을 거쳐 붕산이 함침된 탄소섬유를 꺼내어 열풍건조기에 넣고 80∼150℃온도로 20∼30시간동안 열풍건조시켜 탄소섬유에 포함된 수분을 제거한다.The carbon fiber impregnated with boric acid through the above process is taken out into a hot air dryer to dry the hot air at a temperature of 80 to 150 ° C. for 20 to 30 hours to remove moisture contained in the carbon fiber.

상기 단계에서 건조된 탄소섬유를 열처리로에 넣어 1500∼2500℃온도로 가열하여 열처리를 한다.The carbon fiber dried in the above step is put into a heat treatment furnace and heated to a temperature of 1500 to 2500 ° C. for heat treatment.

이와 같이 열처리한 탄소섬유에 핏치를 습식으로 혼합한 후, 절단기에 넣어 절단한다. 이렇게 절단된 탄소섬유를 균일하게 혼합하여 탄소직물과 교대로 적층하여 1차 성형체를 성형한다.The pitch is wet mixed with the carbon fiber heat-treated in this way, and then cut into a cutting machine. The carbon fibers thus cut are uniformly mixed and alternately stacked with the carbon fabric to form a primary molded body.

이 1차 성형체를 몰드에 넣고 프레스로 가압하여 그린바디를 제조한 다음, 이 그리바디를 1000℃의 온도에서 열처리한 후, 붕산용액 함침·탄화 공정을 거쳐 고밀도의 탄소-탄소 브레이크 디스크를 제조한다.The primary molded body is placed in a mold and pressurized to produce a green body, and the green body is heat-treated at a temperature of 1000 ° C., followed by a boric acid solution impregnation and carbonization process to produce a high-density carbon-carbon brake disc. .

상기 실시예에 따라 제작된 탄소-탄소 브레이크 디스크와, 붕산처리하지 않고 종래 고온열처리장비로 열처리한 탄소섬유를 사용하여 제작된 브레이크 디스크의 특성을 비교하여 아래 표 1 에 도시하였다.Table 1 below compares the characteristics of the carbon-carbon brake disc manufactured according to the above embodiment and the brake disc manufactured using carbon fiber heat treated by conventional high temperature heat treatment equipment without boric acid treatment.

상기 표 1 에서 보이는 바와 같이 본 발명의 실시예에 따른 탄소-탄소 복합재 브레이크 디스크는 종래 고온열처리한 탄소섬유를 사용한 브레이크 디스크의 경우보다 마찰계수 및 마모량이 2∼3배 정도 적음을 알 수 있다.As shown in Table 1, it can be seen that the carbon-carbon composite brake disc according to the embodiment of the present invention has a friction coefficient and abrasion of about 2 to 3 times less than the case of the brake disc using the conventional high temperature heat-treated carbon fiber.

이상에서 상술한 바와 같이, 본 발명은 탄소섬유를 고온열처리없이 붕산으로 열처리함으로써 종래 고온 열처리를 거쳐 제조된 탄소섬유에 비하여 강성은 유지하면서 강도는 낮으므로, 이를 이용하여 제조된 탄소-탄소 마찰재는 마모량이 줄어드는 효과가 있고, 열처리장비와 같은 고가의 설비가 필요하지 않아 제조원가를 절감 시킬 수 있으며, 열처리시간을 단축시킬 수 있으므로 인해 생산성을 향상시킬 수 있는 등의 많은 장점이 구비된 매우 유용한 발명이다.As described above, in the present invention, the carbon fiber is heat treated with boric acid without high temperature heat treatment, and thus the carbon-carbon friction material manufactured by using the carbon-carbon friction material is low because the strength is low while maintaining the stiffness as compared with the carbon fiber produced through the conventional high temperature heat treatment. It is a very useful invention that has many advantages such as reducing the amount of wear, reducing the manufacturing cost by not requiring expensive equipment such as heat treatment equipment, and improving the productivity due to shortening the heat treatment time. .

Claims (2)

붕산분말과 증류수를 혼합하여 만든 붕산용액을 교반시키면서 30∼60℃온도로 유지하여 탄소섬유를 담궈서 함침시키고, 이 과정을 거쳐 상기 붕산이 함침된 탄소섬유를 건조시켜 탄소섬유에 포함된 수분을 제거하며, 상기 수분이 제거된 탄소섬유를 열처리로에 넣어 1500∼2500℃온도로 가열하여 탄소섬유를 제조하기 위한 통상적인 탄소섬유 제조방법에 있어서, 상기한 과정을 거쳐 제조된 탄소섬유를 일정한 길이로 절단하여 핏치와 함께 혼합하고, 상기 탄소섬유 혼합체를 탄소직물과 교대로 적층하여 프리폼을 만들며, 상기 프리폼을 몰드에 넣어 프레스로 가압하여 성형체를 제작한 후, 붕산용액 함침 /탄화 공정을 반복하여 마찰재를 제조하는 것을 특징으로 하는 고강성 탄소섬유를 이용한 마찰재용 탄소-탄소 복합재 제조방법.The boric acid solution prepared by mixing the boric acid powder and distilled water is kept at a temperature of 30-60 ° C. while stirring to soak the carbon fiber to impregnate it, and through this process, the carbon fiber impregnated with boric acid is dried to remove moisture contained in the carbon fiber. In the conventional carbon fiber manufacturing method for producing a carbon fiber by heating the carbon fiber from which moisture is removed into a heat treatment furnace at a temperature of 1500 to 2500 ° C., the carbon fiber manufactured through the above process is made to have a constant length. After cutting and mixing with pitch, laminating the carbon fiber mixture alternately with a carbon fabric to make a preform, press the preform into a mold and press to produce a molded body, and then repeat the boric acid solution impregnation / carbonization process to repeat the friction material. Method for producing a carbon-carbon composite for friction material using a high rigid carbon fiber, characterized in that for producing a. 제1항에 있어서, 상기 탄소섬유는 pitch,rayon,PAN 및 Oxi-PAN계 탄소섬유 또는 PAN felt 중의 어느 하나 인 것을 특징으로 하는 고강성 탄소섬유를 이용한 마찰재용 탄소-탄소 복합재 제조방법.The method of claim 1, wherein the carbon fiber is pitch, rayon, PAN and Oxi-PAN-based carbon fiber or PAN felt, characterized in that the carbon-carbon composite material manufacturing method for friction materials using high-strength carbon fiber.
KR1019980022492A 1998-06-16 1998-06-16 High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same KR100281016B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980022492A KR100281016B1 (en) 1998-06-16 1998-06-16 High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980022492A KR100281016B1 (en) 1998-06-16 1998-06-16 High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same

Publications (2)

Publication Number Publication Date
KR20000001971A KR20000001971A (en) 2000-01-15
KR100281016B1 true KR100281016B1 (en) 2001-03-02

Family

ID=19539607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980022492A KR100281016B1 (en) 1998-06-16 1998-06-16 High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same

Country Status (1)

Country Link
KR (1) KR100281016B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000046407A (en) * 1998-12-31 2000-07-25 추호석 Process for producing c/c composite material
KR100547189B1 (en) * 2003-04-23 2006-01-31 스타전자(주) Manufacturing method of carbon heating device using graphite felt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570076C1 (en) * 2014-07-31 2015-12-10 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Method to manufacture items from composite material with carbon-ceramic matrix
CN113336565B (en) * 2021-07-21 2023-07-11 西南交通大学 Mesophase carbon microsphere reinforced carbon-based pantograph slide plate and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Proceedings of the International Symposium on Carbon Science and Technology, p462-463 (1998.6.1) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000046407A (en) * 1998-12-31 2000-07-25 추호석 Process for producing c/c composite material
KR100547189B1 (en) * 2003-04-23 2006-01-31 스타전자(주) Manufacturing method of carbon heating device using graphite felt

Also Published As

Publication number Publication date
KR20000001971A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
KR100447840B1 (en) Manufacturing method for carbon-carbon composites
US20080090064A1 (en) Carbon-carbon friction material with improved wear life
US4119189A (en) Reinforced carbon and graphite articles
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
US6093482A (en) Carbon-carbon composite for friction products and method of making same
US10336655B2 (en) Process for producing shaped bodies of carbon fiber reinforced carbon
KR100281016B1 (en) High rigid carbon fiber and manufacturing method of carbon-carbon composite for friction material using same
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
Sharma et al. Advanced Carbon–Carbon Composites: Processing Properties and Applications
小谷政規 et al. Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites
CN110041089A (en) A kind of carbon/ceramic friction material and preparation method thereof
JPH08156110A (en) Manufacture of carbon fiber reinforced carbon composite material
Chang et al. Effects of processing methods and parameters on the mechanical properties and microstructure of carbon/carbon composites
Raunija et al. Preparation and process optimization of randomly oriented C/C composites by a novel method
KR100242963B1 (en) Carbon-carbon composites for friction product and manufacturing method thereof
RU2170220C1 (en) Method of preparing carbon-carbon composite material
CN112096764A (en) Multi-dimensional nano carbon reinforced friction material and preparation method thereof
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
KR20000046407A (en) Process for producing c/c composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
KR20000046412A (en) Manufacture method of braking disc of carbon/carbon compounds
WO2023085080A1 (en) Screw component formed of two-dimensional carbon/carbon composite material that is obtained by stacking anisotropic nonwoven fabrics
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
KR970042376A (en) Manufacturing Method of High Thermal Conductivity Carbon / Carbon Composites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121017

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130813

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 16

EXPY Expiration of term