KR100280997B1 - Anode active material for lithium ion battery and manufacturing method thereof - Google Patents

Anode active material for lithium ion battery and manufacturing method thereof Download PDF

Info

Publication number
KR100280997B1
KR100280997B1 KR1019980050653A KR19980050653A KR100280997B1 KR 100280997 B1 KR100280997 B1 KR 100280997B1 KR 1019980050653 A KR1019980050653 A KR 1019980050653A KR 19980050653 A KR19980050653 A KR 19980050653A KR 100280997 B1 KR100280997 B1 KR 100280997B1
Authority
KR
South Korea
Prior art keywords
group
elements
carbon
active material
metals
Prior art date
Application number
KR1019980050653A
Other languages
Korean (ko)
Other versions
KR20000033684A (en
Inventor
최완욱
심규윤
윤상영
Original Assignee
김순택
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이주식회사 filed Critical 김순택
Priority to KR1019980050653A priority Critical patent/KR100280997B1/en
Priority to US09/448,315 priority patent/US6391495B1/en
Priority to JP33304499A priority patent/JP3723391B2/en
Priority to CNB991263251A priority patent/CN1162927C/en
Publication of KR20000033684A publication Critical patent/KR20000033684A/en
Application granted granted Critical
Publication of KR100280997B1 publication Critical patent/KR100280997B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

방전 용량이 크고, 충방전 효율이 높은 리튬 이온 전지용 음극 활물질을 제공하기 위한 것으로서, Ni, Co, Fe, Mo, Cr 등의 전이 금속, Na, K 등의 알칼리 금속, Mg, Ca 등의 알칼리 토금속, B, Al, Ga, Ge, Si, Sn, P 또는 이들의 화합물을 포함하는 물질을 물 또는 유기 용매에 용해시켜 용액을 제조한 후, 이 용액으로 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon) 또는 난흑연화성 탄소(hard carbon)를 침적 또는 교반시킨 후 건조시켜 Ni, Co, Fe, Mo, Cr 등의 전이 금속, Na, K 등의 알칼리 금속, Mg, Ca 등의 알칼리 토금속, B, Al, Ga, Ge, Si, Sn, P 또는 이들의 화합물을 탄소 물질 표면에 석출시킨다. 이어서, 이것을 열처리함으로써 결정성 흑연 코어(core), 및 Ni, Co, Fe, Mo, Cr 등의 전이 금속, Na, K 등의 알칼리 금속, Mg, Ca 등의 알칼리 토금속, B, Al, Ga, Ge, Si, Sn 또는 P이 첨가된 터보스트래틱(turbostratic) 구조 또는 코어 부분과는 물성이 다른 결정성 흑연 구조 또는 비정질 구조의 탄소 쉘(shell)을 포함하는 리튬 이온 전지용 음극 활물질을 제공한다.In order to provide a negative electrode active material for lithium ion batteries having a large discharge capacity and high charge and discharge efficiency, transition metals such as Ni, Co, Fe, Mo, Cr, alkali metals such as Na and K, alkaline earth metals such as Mg and Ca , A solution containing B, Al, Ga, Ge, Si, Sn, P, or a compound thereof in water or an organic solvent to prepare a solution, and then the solution is made of natural graphite, artificial graphite, cokes, Soft carbon or hard carbon is deposited or stirred, followed by drying, followed by drying of transition metals such as Ni, Co, Fe, Mo, Cr, alkali metals such as Na and K, Mg and Ca Alkaline earth metals such as B, Al, Ga, Ge, Si, Sn, P or compounds thereof are deposited on the surface of the carbon material. Subsequently, by heat-treating this, a crystalline graphite core, transition metals such as Ni, Co, Fe, Mo, Cr, alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, B, Al, Ga, Provided is a negative electrode active material for a lithium ion battery including a carbon shell of a crystalline graphite structure or an amorphous structure having different physical properties from a turbostratic structure or a core portion to which Ge, Si, Sn, or P is added. .

Description

리튬 이온 전지용 음극 활물질 및 그 제조 방법Anode active material for lithium ion battery and manufacturing method thereof

산업상 이용 분야Industrial use field

본 발명은 리튬 이온 전지용 음극 활물질 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는 방전 용량이 크고, 충방전 효율이 우수한 리튬 이온 전지용 음극 활물질 및 그 제조 방법에 관한 것이다.The present invention relates to a negative electrode active material for a lithium ion battery and a method for manufacturing the same, and more particularly, to a negative electrode active material for a lithium ion battery having a large discharge capacity and excellent charge and discharge efficiency and a method for manufacturing the same.

종래 기술Prior art

리튬 이차 전지의 음극 활물질로서 리튬 금속이 처음 사용되었으나, 충방전 과정에서 용량이 급격히 감소되고, 리튬이 석출되어 덴드라이트 상을 형성함에 따라 세퍼레이터가 파괴되므로 전지의 수명이 단축되는 문제점이 있었다. 이를 해결하기 위해 리튬 금속 대신 리튬 합금이 사용되었으나 리튬 금속을 사용할 때의 문제점을 크게 개선하지는 못하였다.Lithium metal was first used as a negative electrode active material of a lithium secondary battery, but the capacity of the lithium secondary battery was rapidly decreased, and the separator was destroyed as lithium precipitates to form a dendrite phase, thereby reducing the battery life. To solve this problem, a lithium alloy was used instead of lithium metal, but it did not significantly improve the problem of using lithium metal.

이후, 음극 활물질로서 리튬 이온을 인터칼레이션하고 디인터칼레이션할 수 있는 탄소재를 사용하게 되었다. 탄소재 중에서 공정이 비교적 간단한 코크스를 사용하는 경우, 전해액의 종류에 따라 전지의 전기화학적 성능이 크게 달라진다는 단점이 있다. 비교적 가격이 저렴한 천연 흑연을 사용하는 경우, 충방전 효율이 낮고 극판 가공성이 저하되는 문제점이 있다. 상기 탄소재 음극 활물질은 일반적으로 구상 또는 섬유상으로 제조되어 사용되는데, 제조 비용이 높다는 단점 외에도 방전 용량 및 충방전 효율이 충분하지 않다는 문제점이 있다.Thereafter, a carbon material capable of intercalating and deintercalating lithium ions was used as a negative electrode active material. In the case of using a relatively simple process of coke among the carbon materials, there is a disadvantage that the electrochemical performance of the battery greatly varies depending on the type of electrolyte. In the case of using natural graphite which is relatively inexpensive, there is a problem in that the charge and discharge efficiency is low and the electrode workability is lowered. The carbonaceous negative electrode active material is generally manufactured in spherical or fibrous form and is used. In addition to the disadvantage of high manufacturing cost, there is a problem in that the discharge capacity and the charge / discharge efficiency are not sufficient.

상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 방전 용량이 크고, 충방전 효율이 높은 리튬 이온 전지용 음극 활물질 및 그 제조 방법을 제공하는 것이다.In order to solve the above problems, an object of the present invention is to provide a negative electrode active material for a lithium ion battery having a large discharge capacity and high charge and discharge efficiency, and a method of manufacturing the same.

상기 본 발명의 목적을 달성하기 위하여, 본 발명은 결정성 흑연 코어(core), 및 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 첨가된 탄소 쉘(shell)을 포함하는 리튬 이온 전지용 음극 활물질로서, 상기 탄소 쉘은 터보스트래틱(turbostratic) 탄소층 또는 상기 코어와는 다른 물성의 결정성 흑연층 또는 비정질 탄소층인 리튬 이온 전지용 음극 활물질을 제공한다.In order to achieve the above object of the present invention, the present invention is in the group consisting of crystalline graphite core and transition metal, alkali metal, alkaline earth metal, group 3B element, group 4B element, group 5B element and mixtures thereof A negative electrode active material for a lithium ion battery including a carbon shell to which an element selected is added, wherein the carbon shell is a turbostratic carbon layer or a crystalline graphite layer or an amorphous carbon layer having a physical property different from that of the core. The negative electrode active material for phosphorus lithium ion batteries is provided.

또한, 본 발명은 상기 음극 활물질의 제조 방법으로서, 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 포함하는 물질을 물 또는 유기 용매에 녹여서 용액을 제조하는 공정과, 상기 용액으로 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon), 난흑연화성 탄소(hard carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 탄소 물질을 침적 또는 교반시키는 공정과, 상기 용액으로 침적 또는 교반시킨 탄소 물질을 건조시켜서 상기 탄소 물질 표면에 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 석출시키는 공정, 및 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 표면에 석출된 탄소 물질을 열처리하는 공정을 포함하는 리튬 이온 전지용 음극 활물질 제조 방법을 제공한다.In addition, the present invention provides a method for producing the negative electrode active material, water containing a material selected from the group consisting of transition metals, alkali metals, alkaline earth metals, Group 3B elements, Group 4B elements, Group 5B elements and mixtures thereof Or a process of preparing a solution by dissolving in an organic solvent, the solution comprising natural graphite, artificial graphite, cokes, soft carbon, hard carbon, and mixtures thereof Depositing or stirring a carbon material selected from the group; and drying the carbon material deposited or stirred with the solution to form a transition metal, an alkali metal, an alkaline earth metal, a Group 3B element, a Group 4B element, or a Group 5B element on the surface of the carbon material. And a process for depositing an element selected from the group consisting of mixtures thereof, and transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, and group 5B elements. And it provides a method for producing a negative electrode active material for a lithium ion battery comprising a step of heat-treating a carbon material in which an element selected from the group consisting of a mixture thereof is deposited on the surface.

또한, 본 발명은 상기 음극 활물질의 다른 제조 방법으로서, 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 포함하는 물질을 물 또는 유기 용매에 녹여서 용액을 제조하는 공정과, 상기 용액에 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon), 난흑연화성 탄소(hard carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 탄소 물질을 혼합하는 공정과, 상기 혼합물을 분무 건조시켜 상기 탄소 물질 표면에 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 석출시키는 공정, 및 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 표면에 석출된 탄소 물질을 열처리하는 공정을 포함하는 리튬 이온 전지용 음극 활물질 제조 방법을 제공한다.In addition, the present invention is a method for producing the negative electrode active material, a material containing an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, Group 3B elements, Group 4B elements, Group 5B elements and mixtures thereof A process for preparing a solution by dissolving in water or an organic solvent, the solution comprising natural graphite, artificial graphite, cokes, soft carbon, hard carbon, and mixtures thereof Mixing the carbon material selected from the group, and spray-drying the mixture to form a transition metal, alkali metal, alkaline earth metal, group 3B element, group 4B element, group 5B element, and mixtures thereof on the surface of the carbon material. A process for depositing an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof It provides a method for producing a negative electrode active material for a lithium ion battery comprising a step of heat-treating the carbon material in which the selected element is deposited on the surface.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

Ni, Co, Fe, Mo, Cr 등의 전이 금속, Na, K 등의 알칼리 금속, Mg, Ca 등의 알칼리 토금속, B, Al, Ga, Ge, Si, Sn, P 등을 포함하는 물질의 용액을 제조한다. 이때, 용매로는 물 또는 유기 용매를 사용할 수 있다. B을 포함하는 물질로는 보론산, 산화보론 등을 사용할 수 있으며, Ni을 포함하는 물질로는 니켈 나이트레이트, 니켈 설페이트, 니켈 아세테이트 등을 사용할 수 있으며, Si을 포함하는 물질로는 실리케이트 등을 사용할 수 있다. 상기 전이 금속, 알칼리 금속, 알칼리 토금속 등을 포함하는 물질의 사용량은 탄소 물질의 0.1-20중량%인 것이 바람직하며, 유기 용매로는 에탄올, 이소프로필 알콜, 톨루엔, 벤젠, 헥산, 테트라하이드로퓨란 등을 사용할 수 있다.Solution of a substance containing transition metals such as Ni, Co, Fe, Mo, Cr, alkali metals such as Na and K, alkaline earth metals such as Mg and Ca, B, Al, Ga, Ge, Si, Sn, P and the like To prepare. In this case, water or an organic solvent may be used as the solvent. Boron acid, boron oxide, etc. may be used as a material including B. Nickel nitrate, nickel sulfate, nickel acetate, and the like may be used as a material containing Ni, and silicates may be used as a material containing Si. Can be used. The amount of the material containing the transition metal, alkali metal, alkaline earth metal, etc. is preferably 0.1-20% by weight of the carbon material, and as an organic solvent, ethanol, isopropyl alcohol, toluene, benzene, hexane, tetrahydrofuran, etc. Can be used.

이 용액에 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon), 난흑연화성 탄소(hard carbon) 또는 이들의 혼합물을 침적 또는 교반시킨 후 건조시켜 상기 원소들을 탄소 물질 표면에 석출시키거나, 상기 혼합 용액에 탄소 물질을 혼합한 후 분무 건조시켜 탄소 물질 표면에 상기 원소들을 석출 또는 흡착시킨다. 이때, 상기 표면에 석출 또는 흡착된 원소들의 입자 크기는 5㎛ 이하인 것이 바람직하며, 2㎛ 이하인 것이 더욱 바람직하다.In this solution, natural graphite, artificial graphite, cokes, soft carbon, hard carbon, or mixtures thereof are deposited or stirred and then dried to dry the elements on the surface of the carbon material. Precipitating or mixing the carbon material in the mixed solution and spray-dried to precipitate or adsorb the elements on the surface of the carbon material. In this case, the particle size of the elements precipitated or adsorbed on the surface is preferably 5 μm or less, more preferably 2 μm or less.

이어서, 상기 물질을 비활성 분위기하 열처리 공정에 투입하면 이들 표면에 석출된 원소들과 탄소 물질의 상호 작용에 의해 탄소 물질 표면에 터보스트래틱 구조, 비정질 구조, 또는 코어 부분과는 다른 물성을 가진 결정성 흑연 구조의 탄소층이 형성된다. 여기서, 터보스트래틱 구조란 극단적으로 낮은 결정도 및 작은 결정 크기를 나타내어 비정질 구조와 유사하며 다소 무질서한 방향성(orientation)을 나타내는 구조를 의미한다. 코어 부분과는 다른 물성을 가진 결정성 흑연 구조의 탄소층은 코어 부분과는 다른 결정도를 나타낸다거나 다른 형태의 결정 구조를 가지는 결정성 흑연 구조의 탄소층을 의미한다.Subsequently, when the material is added to the heat treatment process under an inert atmosphere, the carbon material surface may have different physical properties from those of the turbotastic structure, the amorphous structure, or the core part due to the interaction between the elements deposited on these surfaces and the carbon material. A carbon layer of crystalline graphite structure is formed. Here, the turbostatic structure refers to a structure that exhibits extremely low crystallinity and small crystal size, similar to the amorphous structure, and exhibits a somewhat disordered orientation. The carbon layer of the crystalline graphite structure having physical properties different from that of the core portion refers to the carbon layer of the crystalline graphite structure having a crystallinity different from that of the core portion or having a different crystal structure.

탄소 물질로서 천연 흑연 또는 인조 흑연을 사용하는 경우에는 열처리 온도를 700-3000℃로 하는 것이 바람직하며, 코크스, 이흑연화성 탄소 또는 난흑연화성 탄소를 사용하는 경우에는 열처리 온도를 2000-3000℃로 하는 것이 결정성 흑연 코어의 형성을 더욱 용이하게 할 수 있다.When using natural graphite or artificial graphite as the carbon material, the heat treatment temperature is preferably 700-3000 ° C., and when using coke, digraphitizable carbon or non-graphitizable carbon, the heat treatment temperature is 2000-3000 ° C. Can further facilitate the formation of the crystalline graphite core.

최종 제조된 활물질에서 결정성 흑연 코어는 50-99중량%이며, 터보스트래틱 구조 또는 코어 부분과는 다른 물성을 나타내는 결정성 흑연 구조 또는 비정질 구조의 탄소 쉘은 1-50중량%인 것이 바람직하다. 탄소 쉘이 1중량% 미만인 경우에는 방전 용량 및 충방전 효율이 저하될 우려가 있으며, 탄소 쉘이 50중량% 초과일 경우에는 전압평탄성이 불량해질 수 있다.In the final prepared active material, the crystalline graphite core is 50-99% by weight, and the carbon shell of the crystalline graphite structure or amorphous structure exhibiting physical properties different from that of the turbostatic structure or the core portion is preferably 1-50% by weight. Do. If the carbon shell is less than 1% by weight, the discharge capacity and the charge and discharge efficiency may be lowered. If the carbon shell is more than 50% by weight, the voltage flatness may be poor.

또한, 본 발명에 따른 음극 활물질은 X-선 회절 분석시 (002)면과 (110)면에 의한 회절 강도비인 I(110)/I(002)가 0.04 이하의 값을 나타내었다.In addition, in the negative electrode active material according to the present invention, the value of I (110) / I (002), which is a diffraction intensity ratio between the (002) plane and the (110) plane, was less than 0.04 in X-ray diffraction analysis.

또한, 본 발명에 따른 음극 활물질의 결정성 흑연 코어의 라만 스펙트로스코피(Raman spectroscopy) 강도비인 I(1360)/I(1580)은 0.3 이하이고, 상기 탄소 쉘의 라만 스펙트로스코피 강도비인 I(1360)/I(1580)은 0.2 이상을 나타내었다.In addition, the Raman spectroscopy strength ratio I (1360) / I (1580) of the crystalline graphite core of the negative electrode active material according to the present invention is 0.3 or less, and the Raman spectroscopy strength ratio of the carbon shell I (1360). / I (1580) showed at least 0.2.

본 기술 분야의 당업자는 상기 본 발명의 음극 활물질을 사용하여 공지된 전지 제조 방법에 따라 용이하게 리튬 이온 전지를 제조할 수 있을 것이다.Those skilled in the art will be able to easily manufacture a lithium ion battery according to a known battery manufacturing method using the negative electrode active material of the present invention.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1Example 1

증류수에 보론산(boric acid)을 용해시킨 후 천연 흑연을 섞었다. 증류수를 건조시켜 천연 흑연 입자 표면에 5㎛ 이하의 보론산 미립자가 석출되게 하였다. 이렇게 하여 얻어진 분말을 비활성 분위기하 2600℃로 열처리하여 활물질을 제조하였다.Boric acid was dissolved in distilled water and natural graphite was mixed. Distilled water was dried to deposit 5 micrometers or less of boronic acid fine particles on the surface of natural graphite particles. The powder thus obtained was heat-treated at 2600 ° C. under inert atmosphere to prepare an active material.

상기 활물질 및 결합제로서 폴리비닐리덴 플루오라이드을 N-메틸 피롤리돈에 혼합하여 슬러리를 제조한 후, 이를 구리 호일에 캐스팅, 건조시켜 극판을 제조하였다. 이에 대한 대극으로서 리튬 메탈을 사용하고, 전해질로서 1몰의 LiPF6를 포함하는 프로필렌 카보네이트를 사용하여 전지를 제조하였다.Polyvinylidene fluoride was mixed with N-methyl pyrrolidone as the active material and the binder to prepare a slurry, and then cast on a copper foil and dried to prepare an electrode plate. A battery was produced using lithium metal as a counter electrode and propylene carbonate containing 1 mol of LiPF 6 as an electrolyte.

실시예 2Example 2

상기 실시예 1에서 천연 흑연 대신 인조 흑연을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using artificial graphite instead of natural graphite in Example 1 was carried out in the same manner as in Example 1.

실시예 3Example 3

상기 실시예 2에서 보론산 대신 니켈 나이트레이트(nickel nitrate)를 사용한 것을 제외하고는 실시예 2와 동일하게 실시하였다.Example 2 was carried out in the same manner as in Example 2, except that nickel nitrate was used instead of boronic acid.

실시예 4Example 4

상기 실시예 2에서 보론산 대신 실리케이트(silicate)를 사용하고, 열처리 공정의 온도를 2600℃ 대신 1700℃로 한 것을 제외하고는 실시예 2와 동일하게 실시하였다.In Example 2, a silicate was used instead of boronic acid, and the heat treatment process was performed in the same manner as in Example 2 except that the temperature of the heat treatment process was 1700 ° C instead of 2600 ° C.

실시예 5Example 5

상기 실시예 1에서 천연 흑연 대신 코크스를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using coke instead of natural graphite in Example 1 was carried out in the same manner as in Example 1.

실시예 6Example 6

상기 실시예 5에서 보론산 대신 니켈 나이트레이트(nickel nitrate)를 사용한 것을 제외하고는 실시예 5와 동일하게 실시하였다.Example 5 was carried out in the same manner as in Example 5, except that nickel nitrate was used instead of boronic acid.

실시예 7Example 7

상기 실시예 5에서 보론산 대신 실리케이트(silicate)를 사용한 것을 제외하고는 실시예 5와 동일하게 실시하였다.Example 5 was carried out in the same manner as in Example 5, except that silicate was used instead of boronic acid.

비교예 1Comparative Example 1

천연 흑연 분말을 활물질로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.Except for using the natural graphite powder as the active material it was carried out in the same manner as in Example 1.

비교예 2Comparative Example 2

인조 흑연 분말을 활물질로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having used the artificial graphite powder as an active material.

비교예 3Comparative Example 3

코크스 분말을 활물질로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that the coke powder was used as the active material.

상기 실시예 1-7 및 비교예 1-3에 따른 전지의 전기화학적 특성을 측정하여 표 1에 나타내었다.Table 1 shows the electrochemical characteristics of the battery according to Examples 1-7 and Comparative Examples 1-3.

방전 용량(㎃h/g)Discharge capacity (h / g) 실시예 1Example 1 352352 실시예 2Example 2 320320 실시예 3Example 3 335335 실시예 4Example 4 313313 실시예 5Example 5 338338 실시예 6Example 6 316316 실시예 7Example 7 290290 비교예 1Comparative Example 1 347347 비교예 2Comparative Example 2 303303 비교예 3Comparative Example 3 280280

상기 표 1의 결과에서 보이는 바와 같이, 실시예 1-7이 비교예 1-3에 비해 큰 방전 용량을 나타냄을 알 수 있다. 실시예 1-7의 활물질은 코어 부분이 결정성 흑연이고 쉘 부분이 터보스트래틱 구조, 코어 부분과는 물성이 다른 결정성 흑연 구조 또는 비정질 구조의 탄소층이므로 충방전 효율 또한 높다.As shown in the results of Table 1, it can be seen that Example 1-7 shows a larger discharge capacity than Comparative Examples 1-3. The active material of Example 1-7 has a high charge and discharge efficiency, since the core portion is crystalline graphite and the shell portion is a carbon layer of a crystalline graphite structure or an amorphous structure having different physical properties from the turbostrast structure and the core portion.

상기한 바와 같이, 본 발명은 방전 용량이 크고, 충방전 효율이 높은 리튬 이온 전지용 음극 활물질을 제공한다. 아울러, 상기 활물질은 터보스트래틱 구조, 코어 부분과는 다른 물성을 가진 결정성 흑연 구조, 또는 비정질 탄소 구조의 표면을 가지므로 전해액으로 프로필렌 카보네이트를 사용할 수 있으며, 다른 전해액에서도 전기화학적 특성이 우수한 활물질을 제공한다.As described above, the present invention provides a negative electrode active material for a lithium ion battery having a large discharge capacity and high charge and discharge efficiency. In addition, since the active material has a surface of a turbostratic structure, a crystalline graphite structure having a different physical property from that of the core portion, or an amorphous carbon structure, propylene carbonate may be used as an electrolyte, and other electrolytic solutions may have excellent electrochemical properties. It provides an active material.

Claims (12)

결정성 흑연 코어(core); 및Crystalline graphite cores; And 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 첨가된 탄소 쉘(shell)을 포함하는 리튬 이온 전지용 음극 활물질로서, 상기 탄소 쉘은 터보스트래틱(turbostratic) 탄소층 또는 상기 코어와는 다른 물성의 결정성 흑연층 또는 비정질 탄소층인 리튬 이온 전지용 음극 활물질.A negative electrode active material for a lithium ion battery comprising a carbon shell to which an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof is added. The carbon shell is a turbostratic carbon layer or a crystalline graphite layer or amorphous carbon layer having a different physical property from the core. 제 1항에 있어서, 상기 전이 금속은 Ni, Co, Fe, Mo 및 Cr으로 이루어진 군에서 선택되는 것이고, 상기 알칼리 금속은 Na 또는 K이고, 상기 알칼리 토금속은 Mg 또는 Ca이고, 상기 3B족 원소는 B, Al 및 Ga으로 이루어진 군에서 선택되는 원소이고, 상기 4B족 원소는 Si, Ge 및 Sn으로 이루어진 군에서 선택되는 원소이고, 상기 5B족 원소는 P인 것을 특징으로 하는 리튬 이온 전지용 음극 활물질.The method of claim 1, wherein the transition metal is selected from the group consisting of Ni, Co, Fe, Mo and Cr, the alkali metal is Na or K, the alkaline earth metal is Mg or Ca, the Group 3B element is An element selected from the group consisting of B, Al and Ga, the Group 4B element is an element selected from the group consisting of Si, Ge and Sn, the Group 5B element is P, characterized in that the lithium ion battery negative electrode active material. 제 1항에 있어서, 상기 활물질은 50-99중량%의 결정성 흑연 코어와 1-50중량%의 탄소 쉘을 포함하는 리튬 이온 전지용 음극 활물질.The negative active material of claim 1, wherein the active material comprises 50-99 wt% crystalline graphite core and 1-50 wt% carbon shell. 제 1항에 있어서, 상기 활물질은 (002)면과 (110)면에 의한 X-선 회절 강도비인 I(110)/I(002)가 0.04 이하인 리튬 이온 전지용 음극 활물질.The negative active material of claim 1, wherein the active material has an I-110 (I) / I (002) of 0.04 or less, which is an X-ray diffraction intensity ratio between the (002) plane and the (110) plane. 제 1항에 있어서, 상기 결정성 흑연 코어의 라만 스펙트로스코피(Raman spectroscopy) 강도비인 I(1360)/I(1580)은 0.3 이하이고, 상기 탄소 쉘의 라만 스펙트로스코피 강도비인 I(1360)/I(1580)은 0.2 이상인 리튬 이온 전지용 음극 활물질.2. The Raman spectroscopy strength ratio I (1360) / I (1580) of the crystalline graphite core is 0.3 or less, and the Raman spectroscopy strength ratio of the carbon shell is I (1360) / I. 1580 is a lithium ion battery negative electrode active material of 0.2 or more. 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 포함하는 물질을 물 또는 유기 용매에 녹여서 용액을 제조하는 공정과;Preparing a solution by dissolving a material comprising an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof in water or an organic solvent; 상기 용액으로 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon), 난흑연화성 탄소(hard carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 탄소 물질을 침적 또는 교반시키는 공정과;Depositing or stirring the carbon material selected from the group consisting of natural graphite, artificial graphite, cokes, soft carbon, hard carbon, and mixtures thereof; ; 상기 용액으로 침적 또는 교반시킨 탄소 물질을 건조시켜서 상기 탄소 물질 표면에 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 석출시키는 공정; 및Drying the carbon material deposited or stirred with the solution to precipitate an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof on the surface of the carbon material; Making process; And 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 표면에 석출된 탄소 물질을 열처리하는 공정을 포함하는 리튬 이온 전지용 음극 활물질 제조 방법.An anode active material for a lithium ion battery comprising a step of heat-treating a carbon material in which an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof is deposited on the surface thereof. Manufacturing method. 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 포함하는 물질을 물 또는 유기 용매에 녹여서 용액을 제조하는 공정과;Preparing a solution by dissolving a material comprising an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof in water or an organic solvent; 상기 용액에 천연 흑연, 인조 흑연, 코크스(cokes), 이흑연화성 탄소(soft carbon), 난흑연화성 탄소(hard carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 탄소 물질을 혼합하는 공정과;Mixing a carbon material selected from the group consisting of natural graphite, artificial graphite, cokes, soft carbon, hard carbon, and mixtures thereof; 상기 혼합물을 분무 건조시켜 상기 탄소 물질 표면에 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소를 석출시키는 공정; 및Spray drying the mixture to precipitate an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements and mixtures thereof on the surface of the carbon material; And 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소가 표면에 석출된 탄소 물질을 열처리하는 공정을 포함하는 리튬 이온 전지용 음극 활물질 제조 방법.An anode active material for a lithium ion battery comprising a step of heat-treating a carbon material in which an element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, group 3B elements, group 4B elements, group 5B elements, and mixtures thereof is deposited on the surface thereof. Manufacturing method. 제 6항 또는 제 7항에 있어서, 상기 전이 금속은 Ni, Co, Fe, Mo 및 Cr으로 이루어진 군에서 선택되는 것이고, 상기 알칼리 금속은 Na 또는 K이고, 상기 알칼리 토금속은 Mg 또는 Ca이고, 상기 3B족 원소는 B, Al 및 Ga으로 이루어진 군에서 선택되는 원소이고, 상기 4B족 원소는 Si, Ge 및 Sn으로 이루어진 군에서 선택되는 원소이고, 상기 5B족 원소는 P인 것을 특징으로 하는 리튬 이온 전지용 음극 활물질 제조 방법.The method of claim 6 or 7, wherein the transition metal is selected from the group consisting of Ni, Co, Fe, Mo and Cr, the alkali metal is Na or K, the alkaline earth metal is Mg or Ca, Group 3B element is an element selected from the group consisting of B, Al and Ga, the Group 4B element is an element selected from the group consisting of Si, Ge and Sn, the Group 5B element is a lithium ion, characterized in that P Method for producing a negative electrode active material for a battery. 제 6항 또는 제 7항에 있어서, 상기 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소의 사용량은 상기 탄소 물질의 0.1-20중량%인 리튬 이온 전지용 음극 활물질 제조 방법.The amount of the element selected from the group consisting of the transition metal, the alkali metal, the alkaline earth metal, the Group 3B element, the Group 4B element, the Group 5B element, and mixtures thereof is 0.1% of the carbon material. The negative electrode active material manufacturing method for lithium ion batteries which is -20 weight%. 제 6항 또는 제 7항에 있어서, 상기 탄소 물질 표면에 석출된 상기 전이 금속, 알칼리 금속, 알칼리 토금속, 3B족 원소, 4B족 원소, 5B족 원소 및 이들의 혼합물로 이루어진 군에서 선택되는 원소의 입자 크기는 5㎛ 이하인 리튬 이온 전지용 음극 활물질 제조 방법.The method of claim 6 or 7, wherein the element selected from the group consisting of the transition metal, alkali metal, alkaline earth metal, Group 3B element, Group 4B element, Group 5B element and mixtures thereof deposited on the surface of the carbon material. A particle size is 5 micrometers or less manufacturing method of the negative electrode active material for lithium ion batteries. 제 6항 또는 제 7항에 있어서, 상기 탄소 물질이 천연 흑연 또는 인조 흑연인 경우 열처리 공정의 온도는 700-3000℃인 리튬 이온 전지용 음극 활물질 제조 방법.The method of claim 6, wherein the temperature of the heat treatment process is 700-3000 ° C. when the carbon material is natural graphite or artificial graphite. 제 6항 또는 제 7항에 있어서, 상기 탄소 물질이 코크스, 이흑연화성 탄소 및 난흑연화성 탄소로 이루어진 군에서 선택되는 경우 열처리 공정의 온도는 2000-3000℃인 리튬 이온 전지용 음극 활물질 제조 방법.The method of claim 6, wherein the temperature of the heat treatment process is 2000-3000 ° C. when the carbon material is selected from the group consisting of coke, digraphitizable carbon, and nongraphitizable carbon.
KR1019980050653A 1998-11-25 1998-11-25 Anode active material for lithium ion battery and manufacturing method thereof KR100280997B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019980050653A KR100280997B1 (en) 1998-11-25 1998-11-25 Anode active material for lithium ion battery and manufacturing method thereof
US09/448,315 US6391495B1 (en) 1998-11-25 1999-11-23 Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
JP33304499A JP3723391B2 (en) 1998-11-25 1999-11-24 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CNB991263251A CN1162927C (en) 1998-11-25 1999-11-25 Active material of negative electrode for lithium accumulator, its preparing process and lithium accumulator containg said material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980050653A KR100280997B1 (en) 1998-11-25 1998-11-25 Anode active material for lithium ion battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20000033684A KR20000033684A (en) 2000-06-15
KR100280997B1 true KR100280997B1 (en) 2001-03-02

Family

ID=19559630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980050653A KR100280997B1 (en) 1998-11-25 1998-11-25 Anode active material for lithium ion battery and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100280997B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873578B1 (en) 2005-12-06 2008-12-12 주식회사 엘지화학 Anode active material for secondary battery with high capacity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529069B1 (en) * 1999-12-08 2005-11-16 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
KR100814816B1 (en) * 2006-11-27 2008-03-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR100869796B1 (en) 2007-04-05 2008-11-21 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
KR101030041B1 (en) 2009-05-07 2011-04-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
CN116632233B (en) * 2023-07-19 2023-09-29 成都锂能科技有限公司 High-performance sodium ion battery doped hard carbon negative electrode material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873578B1 (en) 2005-12-06 2008-12-12 주식회사 엘지화학 Anode active material for secondary battery with high capacity

Also Published As

Publication number Publication date
KR20000033684A (en) 2000-06-15

Similar Documents

Publication Publication Date Title
US6391495B1 (en) Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
KR101439427B1 (en) Recycling method of olivine-based cathode material for lithium secondary battery, cathode material fabricated therefrom, and cathode and lithium secondary battery having the same
US7781100B2 (en) Cathode material for manufacturing rechargeable battery
JP5039423B2 (en) Cathode material for rechargeable battery manufacturing
KR101642007B1 (en) Hydrothermal process for the production of lifepo4 powder
JP5552360B2 (en) Method for producing composite positive electrode active material, method for producing all-solid battery, and composite positive electrode active material
KR20170074030A (en) Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
KR20190066596A (en) Negative active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
JP2007294461A5 (en)
KR20050013841A (en) A negative active material for lithium secondary battery and a method for preparing same
US20020012845A1 (en) Negative active material for rechargeable lithium battery and method of preparing the same
KR20040100058A (en) Negative active material for lithium secondary battery and method of preparing same
KR20120137357A (en) Lithium batteries containing lithium-bearing iron phosphate and carbon
US20120308896A1 (en) Positive-electrode material for secondary battery and secondary battery using the same
KR20220155344A (en) Silicon oxide composite negative electrode material and manufacturing method thereof, lithium ion battery
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JP6001095B2 (en) Glass of V2O5-LiBO2, V2O5-NiO-LiBO2 obtained by mixing nitrogen doped as cathode active material and reduced graphite oxide, and composites thereof
KR101528333B1 (en) Sodium Vanadium Oxide Anode Material for Sodium Ion Secondary Battery, Preparation Method Thereof and Sodium Ion Secondary Battery Having the same
WO2017221693A1 (en) Negative electrode material for electricity storage devices
WO2013069083A1 (en) All-solid-state battery
KR100280997B1 (en) Anode active material for lithium ion battery and manufacturing method thereof
KR100318377B1 (en) Lithium ion secondary battery
KR101981242B1 (en) COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME
JP2017016794A (en) Cathode mixture and all-solid lithium battery
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141023

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20151020

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 19

EXPY Expiration of term