KR100274235B1 - Cathode active material for lithium ion secondary battery - Google Patents

Cathode active material for lithium ion secondary battery Download PDF

Info

Publication number
KR100274235B1
KR100274235B1 KR1019980018318A KR19980018318A KR100274235B1 KR 100274235 B1 KR100274235 B1 KR 100274235B1 KR 1019980018318 A KR1019980018318 A KR 1019980018318A KR 19980018318 A KR19980018318 A KR 19980018318A KR 100274235 B1 KR100274235 B1 KR 100274235B1
Authority
KR
South Korea
Prior art keywords
active material
lithium ion
ion secondary
secondary battery
cathode active
Prior art date
Application number
KR1019980018318A
Other languages
Korean (ko)
Other versions
KR19990085724A (en
Inventor
조재필
박용철
Original Assignee
김순택
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이주식회사 filed Critical 김순택
Priority to KR1019980018318A priority Critical patent/KR100274235B1/en
Publication of KR19990085724A publication Critical patent/KR19990085724A/en
Application granted granted Critical
Publication of KR100274235B1 publication Critical patent/KR100274235B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: Provided is a cathode active material for lithium ion secondary battery, which has a low irreversible capacity, and low reduction of capacity in continuous charging/discharging. CONSTITUTION: The cathode active material for lithium ion secondary battery, is represented by formula LiwNi1-x-y-zCoxM'yM"zO2(wherein, M' is selected from the group consisting of Al, B, Mn and Mg, M" is selected from the group consisting of Al, B, Mn and Mg, 0.97 <= w <= 1.05, 0.80 <= 1-x-y-z <= 0.85, 0.11 <= x <= 0.18, 0.02 <= y+z <= 0.04). The cathode active material has an average diameter of 0.5-50 micron, specific surface area of 0.2-5 g/m¬2, and tap density of 1.7-3 g/cc.

Description

리튬 이온 이차 전지용 양극 활물질Cathode active material for lithium ion secondary battery

산업상 이용 분야Industrial use field

본 발명은 리튬 이온 이차 전지용 양극 활물질에 관한 것으로서, 더욱 상세하게는 니켈계 리튬 이온 이차 전지용 양극 활물질에 관한 것이다.The present invention relates to a cathode active material for lithium ion secondary batteries, and more particularly to a cathode active material for nickel-based lithium ion secondary batteries.

종래 기술Prior art

대표적인 리튬 이온 이차 전지용 양극 활물질로는 코발트계 양극 활물질인 LiCoO2를 들 수 있으며, 이는 상온에서 우수한 전도도를 가지며, 수명 특성이 우수하지만, 용량이 작다는 단점이 있다.Representative lithium ion secondary battery positive electrode active material may include a cobalt-based positive electrode active material LiCoO 2 , which has excellent conductivity at room temperature, excellent life characteristics, but has the disadvantage of small capacity.

이를 해결하기 위해 전지(cell) 디자인의 변형을 통해 용량을 향상시키려는 시도가 있었으며, 이와는 다른 방법으로 고용량의 새로운 양극 활물질을 개발하려는 시도가 있었다. 이러한 활물질로는 코발트계 양극 활물질인 LiCoO2에 비해 약 20% 정도 용량이 큰 LiNiO2등의 니켈계 양극 활물질을 예로 들 수 있다. 그러나, LiNiO2는 180㎃h/g의 초기 용량을 나타내지만, 비가역 용량이 크고, 연속적인 충방전시 활물질의 구조가 붕괴되어 용량이 급격하게 감소한다.In order to solve this problem, there have been attempts to improve capacity through a modification of a cell design, and alternatively, there has been an attempt to develop a new high capacity cathode active material. Examples of such active materials include nickel-based cathode active materials such as LiNiO 2 having a capacity of about 20% larger than that of LiCoO 2 , which is a cobalt-based cathode active material. However, LiNiO 2 exhibits an initial capacity of 180 mAh / g, but has a large irreversible capacity, and the capacity of the active material collapses during continuous charging and discharging, thereby rapidly decreasing the capacity.

이를 해결하기 위한 것으로서, 미국 특허 제 5,631,105호는 LiNiO2에서 니켈 또는 리튬의 일부를 마그네슘, 칼슘, 스트론튬, 바륨, 알루미늄, 크롬, 보론 또는 코발트로 치환시킨 활물질을 개시하고 있으며, 미국 특허 제 5,626,635호에서는 LiNiO2에서 니켈의 일부를 코발트 또는 망간으로 치환시킨 활물질을 개시하고 있으나 그 효과는 충분하지 않았다.To solve this problem, US Patent No. 5,631,105 discloses an active material in which a part of nickel or lithium in LiNiO 2 is replaced with magnesium, calcium, strontium, barium, aluminum, chromium, boron or cobalt, and US Patent No. 5,626,635 Discloses an active material in which a part of nickel is substituted with cobalt or manganese in LiNiO 2 , but its effect is not sufficient.

상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 비가역 용량이 작고, 연속적인 충방전시에도 용량 감소가 작은 니켈계 활물질을 제공하는 것이다.In order to solve the above problems, an object of the present invention is to provide a nickel-based active material having a small irreversible capacity and a small capacity decrease even during continuous charging and discharging.

도 1은 본 발명의 제1 실시예에 따른 충방전 그래프.1 is a charge and discharge graph according to a first embodiment of the present invention.

도 2는 본 발명의 제2 실시예에 따른 충방전 그래프.2 is a charge and discharge graph according to a second embodiment of the present invention.

도 3은 본 발명의 제3 실시예에 따른 충방전 그래프.3 is a charge and discharge graph according to a third embodiment of the present invention.

도 4는 본 발명의 제4 실시예에 따른 충방전 그래프.4 is a charge and discharge graph according to a fourth embodiment of the present invention.

상기한 목적을 달성하기 위하여 본 발명은 하기한 화학식 1을 가지며, 평균 입경이 0.5-50마이크론(micron)이고, 비표면적이 0.2-5g/㎡이고, 탭 밀도가 1.7-3g/㏄인 니켈계 활물질을 제공한다.In order to achieve the above object, the present invention has the following general formula (1), has an average particle diameter of 0.5-50 microns, a specific surface area of 0.2-5 g / m 2, and a tap density of 1.7-3 g / kPa. It provides an active material.

화학식 1Formula 1

LiwNi1-x-y-zCoxM′yM″zO2 Li w Ni 1-xyz Co x M ′ y M ″ z O 2

상기 식에서, M′은 Al, B, Mn 또는 Mg이고, M″는 Al, B, Mn 또는 Mg이며, 0.97≤w≤1.05, 0.80≤1-x-y-z≤0.85, 0.11≤x≤0.18, 0.02≤y+z≤0.04이다.Wherein M 'is Al, B, Mn or Mg, M' 'is Al, B, Mn or Mg, 0.97≤w≤1.05, 0.80≤1-xyz≤0.85, 0.11≤x≤0.18, 0.02≤y + z≤0.04.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

리튬 이온 이차 전지의 활물질로 사용되는 LiNiO2의 니켈의 일부를 전자 전도도가 높고, 활물질 구조를 안정화시킬 수 있는 코발트로 치환시키고, 이 코발트의 일부를 다시 알루미늄, 보론, 망간, 마그네슘 또는 이들의 혼합물로 치환시킴으로써 연속적인 충방전시에도 안정하며, 비가역 용량이 작은 활물질을 제조한다. 바람직하게는 마그네슘 단독 또는 마그네슘과 알루미늄을 동시에 사용하여 코발트의 일부를 치환시킨다. 이때, 활물질을 이루는 원소들의 조성비는 하기 화학식 1을 만족시키는 것이 바람직하다.A part of nickel of LiNiO 2 used as an active material of a lithium ion secondary battery is substituted with cobalt having high electron conductivity and stabilizing the active material structure, and a part of the cobalt is again replaced with aluminum, boron, manganese, magnesium or a mixture thereof. By substituting with, it is stable even during continuous charging and discharging to prepare an active material having a small irreversible capacity. Preferably magnesium alone or at the same time magnesium and aluminum are used to displace a portion of cobalt. At this time, the composition ratio of the elements constituting the active material preferably satisfies the following formula (1).

화학식 1Formula 1

LiwNi1-x-y-zCoxM′yM″zO2 Li w Ni 1-xyz Co x M ′ y M ″ z O 2

상기 식에서, M′은 Al, B, Mn 또는 Mg이고, M″는 Al, B, Mn 또는 Mg이며, 0.97≤w≤1.05, 0.80≤1-x-y-z≤0.85, 0.11≤x≤0.18, 0.02≤y+z≤0.04이다.Wherein M 'is Al, B, Mn or Mg, M' 'is Al, B, Mn or Mg, 0.97≤w≤1.05, 0.80≤1-xyz≤0.85, 0.11≤x≤0.18, 0.02≤y + z≤0.04.

이 조성비를 벗어나는 활물질의 경우, 비가역 용량이 크고 바람직한 사이클 수명을 나타내지 않는다.In the case of the active material that deviates from the composition ratio, the irreversible capacity is large and does not exhibit a desirable cycle life.

본 발명에 따른 활물질을 제조하기 위해서는 활물질을 이루는 각각의 원소들을 제공할 수 있는 원료 물질을 적정비로 혼합한 후, 350-450℃에서 5-7시간동안 1차 소결하고, 이어서 650-750℃에서 14-16시간동안 2차 소결한다. 바람직하게는 400℃에서 6시간동안 1차 소결을 실시하고, 700℃에서 15시간동안 2차 소결을 실시한다. 이때, 리튬 소스(sourse)로서는 LiOH, 니켈 소스로서 NiOH, 코발트 소스로서 CoOH, 망간 소스로서 MnOOH, 마그네슘 소스로서 MgOH, 알루미늄 소스로서 Al(OH)3, 보론 소스로서 H3BO3를 사용할 수 있다.In order to prepare the active material according to the present invention, the raw materials capable of providing the respective elements constituting the active material are mixed at an appropriate ratio, followed by primary sintering at 350-450 ° C. for 5-7 hours, and then at 650-750 ° C. Second sintering for 14-16 hours. Preferably, primary sintering is carried out at 400 ° C. for 6 hours, and secondary sintering is carried out at 700 ° C. for 15 hours. At this time, LiOH, NiOH as nickel source, CoOH as cobalt source, CoOH as manganese source, MnOOH as magnesium source, MgOH as magnesium source, Al (OH) 3 as aluminum source, H 3 BO 3 as boron source can be used. .

최종적으로 제조된 활물질의 평균 입경은 0.5-50마이크론(micron)인 것이 바람직하다. 평균 입경이 0.5마이크론 미만인 경우에는 전해질과의 부반응이 발생할 우려가 있으며, 평균 입경이 50마이크론을 초과하는 경우에는 극판을 제조시 충진 밀도가 저하될 수 있다.It is preferable that the average particle diameter of the finally prepared active material is 0.5-50 micron. If the average particle diameter is less than 0.5 microns, there is a possibility that side reactions with the electrolyte may occur, and if the average particle diameter exceeds 50 microns, the packing density may be lowered during manufacturing of the electrode plate.

또한, 활물질의 비표면적은 0.2-5g/㎡인 것이 바람직하다. 비표면적이 0.2g/㎡미만인 경우에는 전지의 충방전 효율이 저하될 수 있으며, 비표면적이 5g/㎡을 초과하는 경우에는 전해질과의 부반응이 발생할 우려가 있다.Moreover, it is preferable that the specific surface area of an active material is 0.2-5 g / m <2>. If the specific surface area is less than 0.2 g / m 2, the charge and discharge efficiency of the battery may decrease, and if the specific surface area exceeds 5 g / m 2, there is a possibility that side reactions with the electrolyte occur.

또한, 활물질의 탭 밀도는 1.7-3g/㏄인 것이 바람직하며, 이 범위를 벗어나는 활물질은 극판 제조시 바람직한 충진 밀도를 나타내기가 어렵다.In addition, it is preferable that the tap density of the active material is 1.7-3 g / ㏄, and the active material outside this range is difficult to exhibit a desirable packing density in manufacturing the electrode plate.

본 기술 분야의 당업자는 본 발명의 양극 활물질을 사용하여 공지된 전지 제조 방법에 따라 용이하게 리튬 이온 이차 전지를 제조할 수 있을 것이다.Those skilled in the art will be able to easily manufacture a lithium ion secondary battery according to a known battery manufacturing method using the cathode active material of the present invention.

상기 리튬 이온 이차 전지에서, 음극 활물질로는 틴 옥사이드, 비정질계 카본, 그래파이트, 리튬 금속, 오가닉 설퍼(organic sulfur) 등을 사용할 수 있으며, 전해질로는 LiPF6, LiClO4등의 리튬염을 용해시킨 프로필렌 카보네이트, 에틸렌 카보네이트, 디메틸 카보네이트 등의 비수성(nonaquaous) 전해질을 사용할 수 있다.In the lithium ion secondary battery, tin oxide, amorphous carbon, graphite, lithium metal, organic sulfur, etc. may be used as a negative electrode active material, and lithium salts such as LiPF 6 and LiClO 4 may be dissolved as an electrolyte. Nonnaquaous electrolytes such as propylene carbonate, ethylene carbonate and dimethyl carbonate can be used.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.The following presents a preferred embodiment to aid the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예 1-25Example 1-25

리튬 소스(source)로서 LiOH, 니켈 소스로서 NiOH, 코발트 소스로서 CoOH, 망간 소스로서 MnOOH, 마그네슘 소스로서 MgOH, 알루미늄 소스로서 Al(OH)3, 보론 소스로서 H3BO3를 사용하여 하기 표 1의 화학식에 따른 활물질 조성비가 되도록 혼합하고, 400℃에서 1차 소결하였다. 이어서 700℃에서 15시간 동안 2차 소결한 후, 상온 상태가 될 때까지 서냉하였다.Using LiOH as the lithium source, NiOH as the nickel source, CoOH as the cobalt source, MnOOH as the manganese source, MgOH as the magnesium source, Al (OH) 3 as the aluminum source, H 3 BO 3 as the boron source The mixture was mixed so as to have an active material composition ratio according to the formula of, and first sintered at 400 ° C. Subsequently, after secondary sintering at 700 ° C. for 15 hours, the mixture was slowly cooled to room temperature.

제조된 활물질 92중량%, 도전제 4중량% 및 바인더로서 폴리비닐리덴 플루오라이드 4중량%를 용매인 N-메틸 피롤리돈에 혼합하여 슬러리를 제조한 후 집전체에 도포하여 양극판을 제조하였다.92 wt% of the prepared active material, 4 wt% of the conductive agent, and 4 wt% of polyvinylidene fluoride as a binder were mixed with N-methyl pyrrolidone as a solvent to prepare a slurry, and then applied to a current collector to prepare a positive electrode plate.

상기 양극판, 이에 대한 대극으로서 리튬 금속, 세퍼레이터, 전해질로서 LiPF6를 용해시킨 에틸렌 카보네이트와 디메틸 카보네이트의 혼합물을 사용하여 전지를 조립한 후 0.1C로 초기 충방전을 실시하여 초기 충전 용량 및 방전 용량 값을 표 1에 나타내었다. 이때, 최종 충전 전압은 4.1V이고, 최종 방전 전압은 2.75V로 하였으며, 실시예 1, 실시예 2, 실시예 3, 실시예 4에 따른 전지의 충방전 그래프를 각각 도 1, 도 2, 도 3 및 도 4에 나타내었다. 초기 충전 용량과 방전 용량 값으로 비가역 용량을 계산하여 % 비율로 나타내었으며, 사이클 수명은 1C로 80사이클의 충방전을 실시한 후의 용량을 초기 용량에 대한 % 비율로 나타낸 것이다.The battery was assembled using a mixture of ethylene carbonate and dimethyl carbonate in which lithium metal, a separator, and LiPF 6 were dissolved as electrolytes, and then charged and discharged at 0.1 C. Is shown in Table 1. At this time, the final charging voltage was 4.1V, the final discharge voltage was 2.75V, and the charge and discharge graphs of the batteries according to Examples 1, 2, 3, and 4 are respectively 1, 2, and FIG. 3 and FIG. 4. The irreversible capacity is calculated from the initial charge capacity and the discharge capacity value, and is expressed as a percentage. The cycle life is the capacity after 80 cycles of charge and discharge at 1C.

화학식Chemical formula 충전 용량(㎃h/g)Charge capacity (h / g) 방전 용량(㎃h/g)Discharge capacity (h / g) 비가역 용량(%)Irreversible capacity (%) 사이클 수명(%)Cycle life (%) 실시예 1Example 1 LiNi0.8Co0.16Mn0.04O2 LiNi 0.8 Co 0.16 Mn 0.04 O 2 150150 9797 3535 7070 실시예 2Example 2 LiNi0.8Co0.16Mg0.04O2 LiNi 0.8 Co 0.16 Mg 0.04 O 2 168168 128128 2424 8585 실시예 3Example 3 LiNi0.8Co0.16Al0.04O2 LiNi 0.8 Co 0.16 Al 0.04 O 2 164164 118118 2828 8181 실시예 4Example 4 LiNi0.8Co0.16B0.04O2 LiNi 0.8 Co 0.16 B 0.04 O 2 134134 8484 3636 7575 실시예 5Example 5 LiNi0.8Co0.18Mn0.02O2 LiNi 0.8 Co 0.18 Mn 0.02 O 2 160160 110110 3232 6565 실시예 6Example 6 LiNi0.8Co0.18Mg0.02O2 LiNi 0.8 Co 0.18 Mg 0.02 O 2 195195 156156 2020 7070 실시예 7Example 7 LiNi0.8Co0.18Al0.02O2 LiNi 0.8 Co 0.18 Al 0.02 O 2 184184 140140 2424 6565 실시예 8Example 8 LiNi0.8Co0.18B0.02O2 LiNi 0.8 Co 0.18 B 0.02 O 2 150150 102102 3232 6262 실시예 9Example 9 LiNi0.85Co0.11Mn0.04O2 LiNi 0.85 Co 0.11 Mn 0.04 O 2 155155 101101 3535 7070 실시예 10Example 10 LiNi0.85Co0.11Mg0.04O2 LiNi 0.85 Co 0.11 Mg 0.04 O 2 181181 138138 2424 8282 실시예 11Example 11 LiNi0.85Co0.11Al0.04O2 LiNi 0.85 Co 0.11 Al 0.04 O 2 175175 126126 2828 7676 실시예 12Example 12 LiNi0.85Co0.11B0.04O2 LiNi 0.85 Co 0.11 B 0.04 O 2 145145 9090 3838 7272 실시예 13Example 13 LiNi0.8Co0.16Mg0.02O2 LiNi 0.8 Co 0.16 Mg 0.02 O 2 140140 9898 3030 6565 실시예 14Example 14 LiNi0.8Co0.16Mg0.02Al0.02O2 LiNi 0.8 Co 0.16 Mg 0.02 Al 0.02 O 2 163163 124124 2424 6565 실시예 15Example 15 LiNi0.8Co0.16Mg0.02B0.02O2 LiNi 0.8 Co 0.16 Mg 0.02 B 0.02 O 2 162162 115115 2929 6262 실시예 16Example 16 LiNi0.85Co0.11Mn0.02Mg0.02O2 LiNi 0.85 Co 0.11 Mn 0.02 Mg 0.02 O 2 153153 103103 3333 7070 실시예 17Example 17 LiNi0.85Co0.11Al0.02Mg0.02O2 LiNi 0.85 Co 0.11 Al 0.02 Mg 0.02 O 2 175175 131131 2525 7676 실시예 18Example 18 LiNi0.85Co0.11B0.02Mg0.02O2 LiNi 0.85 Co 0.11 B 0.02 Mg 0.02 O 2 145145 9494 3535 7272 실시예 19Example 19 LiNi0.85Co0.11Mn0.01Al0.03O2 LiNi 0.85 Co 0.11 Mn 0.01 Al 0.03 O 2 155155 101101 3535 7070 실시예 20Example 20 LiNi0.85Co0.11Al0.03B0.01O2 LiNi 0.85 Co 0.11 Al 0.03 B 0.01 O 2 175175 126126 2828 7676 실시예 21Example 21 LiNi0.85Co0.11B0.02Al0.02O2 LiNi 0.85 Co 0.11 B 0.02 Al 0.02 O 2 145145 9090 3838 7272 실시예 22Example 22 LiNi0.85Co0.11Mn0.02Al0.02O2 LiNi 0.85 Co 0.11 Mn 0.02 Al 0.02 O 2 155155 101101 3535 7070 실시예 23Example 23 Li1.05Ni0.8Co0.18Mg0.02O2 Li 1.05 Ni 0.8 Co 0.18 Mg 0.02 O 2 185185 143143 2323 실시예 24Example 24 LiNi0.8Co0.18Mg0.02O2 LiNi 0.8 Co 0.18 Mg 0.02 O 2 195195 156156 2020 실시예 25Example 25 Li0.97Ni0.8Co0.18Mg0.02O2 Li 0.97 Ni 0.8 Co 0.18 Mg 0.02 O 2 176176 147147 1616

도 1, 도 2, 도 3, 도 4 및 표 1에서 보이는 바와 같이 마그네슘을 사용한 실시예 2 및 알루미늄을 사용한 실시예 3의 경우 비교적 고용량의 특성을 나타냄을 알 수 있다. 또한, 비가역 용량이 25% 이하인 것을 살펴보면, 마그네슘 단독 또는 마그네슘 및 알루미늄을 동시에 사용하여 코발트의 일부를 치환시킨 경우임을 알 수 있으며, 사이클 수명이 80% 이상인 것도 마그네슘 또는 알루미늄을 사용하여 코발트의 일부를 치환시킨 경우임을 알 수 있다. 이 결과로 마그네슘 또는 알루미늄 또는 이들의 혼합물을 사용하여 니켈계 양극 활물질에 첨가된 코발트의 일부를 치환시키는 것이 바람직함을 알 수 있다.As shown in FIGS. 1, 2, 3, 4 and Table 1, it can be seen that Example 2 using magnesium and Example 3 using aluminum exhibit relatively high capacity characteristics. In addition, when the irreversible capacity is 25% or less, it can be seen that a part of cobalt is substituted by using magnesium alone or magnesium and aluminum at the same time, and a cycle life of 80% or more can be used to remove part of cobalt using magnesium or aluminum. It can be seen that the case of substitution. As a result, it can be seen that it is preferable to replace a part of cobalt added to the nickel-based positive electrode active material using magnesium or aluminum or a mixture thereof.

상기한 바와 같이, 본 발명에 따른 니켈계 양극 활물질을 사용하여 제조한 리튬 이온 이차 전지는 비가역 용량이 작고, 연속적인 충방전시에도 용량 감소가 적다. 아울러, 본 발명에 따른 양극 활물질 및 이 양극 활물질과 동일한 양의 비가역 용량을 가지는 음극 활물질을 사용하여 전지를 조립함으로써 활물질 이용이 효율적인 전지를 제공할 수 있다.As described above, the lithium ion secondary battery manufactured using the nickel-based positive electrode active material according to the present invention has a small irreversible capacity and a small capacity decrease even during continuous charging and discharging. In addition, by assembling the battery using the positive electrode active material according to the present invention and the negative electrode active material having the same amount of irreversible capacity as the positive electrode active material, it is possible to provide a battery having efficient use of the active material.

Claims (2)

하기한 화학식 1을 가지며, 평균 입경이 0.5-50마이크론이고, 비표면적이 0.2-5g/㎡이고, 탭 밀도가 1.7-3g/㏄인 리튬 이온 이차 전지용 양극 활물질.The positive electrode active material for lithium ion secondary batteries which has the following general formula (1), has an average particle diameter of 0.5-50 microns, a specific surface area of 0.2-5 g / m 2, and a tap density of 1.7-3 g / m 3. 화학식 1Formula 1 LiwNi1-x-y-zCoxM′yM″zO2 Li w Ni 1-xyz Co x M ′ y M ″ z O 2 상기 식에서, M′은 Al, B, Mn 및 Mg로 이루어진 군에서 선택되고, M″는 Al, B, Mn 및 Mg로 이루어진 군에서 선택되며, 0.97≤w≤1.05, 0.80≤1-x-y-z≤0.85, 0.11≤x≤0.18, 0.02≤y+z≤0.04이다.Wherein M ′ is selected from the group consisting of Al, B, Mn and Mg, M ″ is selected from the group consisting of Al, B, Mn and Mg, and 0.97 ≦ w ≦ 1.05, 0.80 ≦ 1-xyz ≦ 0.85 , 0.11 ≦ x ≦ 0.18, 0.02 ≦ y + z ≦ 0.04. 제 1항에 있어서, 상기 M′은 Mg이고, M″는 Al 또는 Mg인 리튬 이온 이차 전지용 양극 활물질.The positive active material for a lithium ion secondary battery of claim 1, wherein M ′ is Mg and M ″ is Al or Mg.
KR1019980018318A 1998-05-21 1998-05-21 Cathode active material for lithium ion secondary battery KR100274235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980018318A KR100274235B1 (en) 1998-05-21 1998-05-21 Cathode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980018318A KR100274235B1 (en) 1998-05-21 1998-05-21 Cathode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
KR19990085724A KR19990085724A (en) 1999-12-15
KR100274235B1 true KR100274235B1 (en) 2001-02-01

Family

ID=40749486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980018318A KR100274235B1 (en) 1998-05-21 1998-05-21 Cathode active material for lithium ion secondary battery

Country Status (1)

Country Link
KR (1) KR100274235B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236508B2 (en) 2015-12-31 2019-03-19 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794168B1 (en) * 2006-12-21 2008-01-11 주식회사 엘 앤 에프 Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
KR101466448B1 (en) * 2012-11-29 2014-11-28 삼성정밀화학 주식회사 Method for preparing lithium metal oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236508B2 (en) 2015-12-31 2019-03-19 Samsung Electronics Co., Ltd. Positive active material, positive electrode, and lithium battery containing the positive active material

Also Published As

Publication number Publication date
KR19990085724A (en) 1999-12-15

Similar Documents

Publication Publication Date Title
KR100441524B1 (en) Positive active material slurry composition for rechargeable lithium battery
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP3869605B2 (en) Nonaqueous electrolyte secondary battery
EP0720247B1 (en) Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same
KR100609789B1 (en) Non-Aqueous Electrolyte Secondary Battery
JPH0732017B2 (en) Non-aqueous electrolyte secondary battery
KR20060048698A (en) Non-aqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP2006236830A (en) Lithium secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
CA2210489A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
US6482546B1 (en) Rechargeable lithium battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
KR100274235B1 (en) Cathode active material for lithium ion secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
KR100296878B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP2000188095A (en) Lithium-ion secondary battery
KR100434547B1 (en) Lithium metal oxide cathode and lithium secondary battery using the same
KR100326456B1 (en) A positive active material for a lithium secondary battery and A method of preparing the same
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
JPH11242959A (en) Lithium secondary battery
JPH11250936A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 18

EXPY Expiration of term