KR100273833B1 - A semiconductor device - Google Patents

A semiconductor device Download PDF

Info

Publication number
KR100273833B1
KR100273833B1 KR1020000013018A KR20000013018A KR100273833B1 KR 100273833 B1 KR100273833 B1 KR 100273833B1 KR 1020000013018 A KR1020000013018 A KR 1020000013018A KR 20000013018 A KR20000013018 A KR 20000013018A KR 100273833 B1 KR100273833 B1 KR 100273833B1
Authority
KR
South Korea
Prior art keywords
nickel
film
channel region
thin film
silicon
Prior art date
Application number
KR1020000013018A
Other languages
Korean (ko)
Inventor
오따니히사시
미야나가아끼하라
후꾸나가다께시
장홍영
Original Assignee
야마자끼 순페이
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29463393A external-priority patent/JP3431033B2/en
Priority claimed from JP30343693A external-priority patent/JP3431034B2/en
Priority claimed from JP16270594A external-priority patent/JP3431041B2/en
Priority claimed from KR1019940028037A external-priority patent/KR100273827B1/en
Application filed by 야마자끼 순페이, 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 야마자끼 순페이
Priority to KR1020000013018A priority Critical patent/KR100273833B1/en
Application granted granted Critical
Publication of KR100273833B1 publication Critical patent/KR100273833B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE: A semiconductor device is provided to be capable of improving the productivity of a crystal silicon thin film. CONSTITUTION: A semiconductor device includes a plurality of thin film transistors. At this time, the thin film transistor is provided with a glass substrate, a channel region having a crystal semiconductor layer formed on the glass substrate, and a source/drain region(212,213) formed at both sides of the channel region. At this time, the crystal semiconductor layer has a parallel axis for the surface of the glass substrate. The thin film transistor further includes a gate isolating layer near to the channel region, and a gate electrode(210) formed on the gate isolating layer. Preferably, a hydrogenation is carried out on the crystal semiconductor layer.

Description

반도체 장치{A SEMICONDUCTOR DEVICE}Semiconductor device {A SEMICONDUCTOR DEVICE}

본 발명은 결정성 반도체를 가진 반도체 장치 및 그 제조 방법에 관한 것이다. 본 발명은 또한, 반도체 장치를 사용한 활성 매트릭스 액정 장치와 같은 전자 광학 장치에 관한 것이다.The present invention relates to a semiconductor device having a crystalline semiconductor and a method of manufacturing the same. The present invention also relates to an electro-optical device such as an active matrix liquid crystal device using a semiconductor device.

박막 트랜지스터(이하 'TFT'라 칭함)는 잘 알려져 있으며 다양한 유형의 집적 회로 또는 전자-광학 장치에 널리 사용되고 있으며 특히 활성 매트릭스(활성 매트릭스에 어드레스되는)액정 디스플레이 장치의 각 픽셀(pixel)에 제공되는 소자를 스위칭하는데 사용될 뿐만 아니라 그 주변 회로의 구동 소자에 사용된다.Thin film transistors (hereinafter referred to as 'TFTs') are well known and widely used in various types of integrated circuits or electro-optical devices, and are particularly provided for each pixel of an active matrix (addressed to an active matrix) liquid crystal display device. It is not only used to switch devices but also to drive devices in its peripheral circuits.

비결정성 실리콘 막은 TFT 용 박막 반도체로 가장 용이하게 사용될 수 있다. 그러나 비결정성 실리콘막의 전기적 특성은 불리하게도 양호하지 못하다. 결정성 실리콘인 폴리실리콘(다결정 실리콘)의 박막을 사용함으로써 상기 문제를 해결할 수 있다. 결정성 실리콘은 예컨대 다결정 실리콘, 폴리실리콘 그리고 미세 결정성 실리콘등이 있다. 결정성 실리콘막은 비결정성 실리콘막을 먼저 형성한 다음 생성된 막을 결정화하기 위해 열처리 함으로써 제조될 수 있다.An amorphous silicon film can be most easily used as a thin film semiconductor for TFTs. However, the electrical properties of the amorphous silicon film are disadvantageously not good. The problem can be solved by using a thin film of polysilicon (polycrystalline silicon) which is crystalline silicon. Crystalline silicon includes, for example, polycrystalline silicon, polysilicon and microcrystalline silicon. The crystalline silicon film can be produced by first forming an amorphous silicon film and then heat-treating to crystallize the resulting film.

비결정성 실리콘막을 결정화하기 위한 열처리에는 막을 600℃ 이상의 온도에서 10 시간 이상 동안 가열해야 한다. 이러한 열처리는 유리 기판에 나쁜영향을 미친다. 예컨대, 흔히 활성 매트릭스 액정 디스플레이 장치의 기판에 사용되는 CORNING7059 유리는 변형점(distortion point)이 593℃ 이므로 600℃ 이상으로 가열되는 큰 면적의 기판에는 적합하지 않다.The heat treatment for crystallizing the amorphous silicon film requires heating the film at a temperature of 600 ° C. or higher for at least 10 hours. This heat treatment adversely affects the glass substrate. CORNING, which is often used for substrates of active matrix liquid crystal display devices, for example. 7059 glass has a distortion point of 593 ° C and is not suitable for large area substrates that are heated above 600 ° C.

본 발명자의 연구에 따르면, 비결정성 실리콘 막의 결정화는 막을 550℃ 에서 약 4 시간동안 가열함으로써 이루어짐을 발견하였다. 이것은 미량의 니켈 또는 팔라듐 또는 납과 같은 다른 원소들을 비결정성 실리콘막 표면에 적층시키므로써 달성될 수 있다.According to the inventor's study, the crystallization of the amorphous silicon film was found by heating the film at 550 ° C. for about 4 hours. This can be accomplished by depositing trace amounts of other elements such as nickel or palladium or lead on the surface of the amorphous silicon film.

상기 원소(이하 '비결정성 실리콘 막의 결정화를 가속화할 수 있는 촉매 원소' 또한 간단히 '촉매 원소'라 칭함)들은 플라즈마 처리 또는 증착으로 원소를 퇴적시키거나 이온 주입(ion implantation)으로 원소를 혼입시켜 비결정성 실리콘막 표면에 도입될 수 있다. 플라즈마 처리는 구체적으로, 평행판형 또는 포지티브(positive) 원주형의 플라즈마 CVD 장치에서 촉매 원소를 그속에 함유하고 있는 전극을 사용하여 기체 수소 또는 질소 등의 분위기에서 플라즈마를 발생시킴으로써 비결정성 실리콘막에 촉매 원소를 첨가하는 것으로 이루어진다. 그러나, 반도체 내에 촉매 원소가 다량으로 존재하는 것은 바람직하지 않다. 왜냐하면 그러한 반도체를 사용하면 반도체가 사용되는 장치의 신뢰도 및 전기적 안정성을 크게 손상시키기 때문이다.The elements (hereinafter, 'catalytic elements' that can accelerate the crystallization of amorphous silicon films, also simply referred to as 'catalytic elements') are deposited by depositing elements by plasma treatment or deposition or by incorporating elements by ion implantation. It can be introduced to the surface of the qualitative silicon film. Plasma treatment is specifically a catalyst for an amorphous silicon film by generating a plasma in an atmosphere such as gas hydrogen or nitrogen using an electrode containing a catalyst element therein in a parallel plate or positive columnar plasma CVD apparatus. Consists of adding elements. However, it is undesirable to have a large amount of catalytic elements in the semiconductor. This is because using such a semiconductor greatly impairs the reliability and electrical stability of the device in which the semiconductor is used.

즉, 촉매 원소는 비결정성 실리콘 막의 결정화에 필요하지만 결정화된 실리콘에 혼입되는 것은 바람직하지 않다. 이들 상반된 요건은 결정성 실리콘에서는 촉매 원소로 불활성인 경향을 가진 원소를 선택함으로써, 그리고 그 촉매 원소를 막의 결정화를 가능하게 하는 최소량으로 혼입시킴으로써 충족될 수 있다. 따라서, 막에 혼입되는 촉매 원소의 양은 고정밀로 제어되어야 한다. 니켈 등을 사용한 결정화 방법에 대해 상세히 연구하였다.That is, the catalytic element is required for crystallization of the amorphous silicon film but is not preferably incorporated into the crystallized silicon. These conflicting requirements can be met by selecting elements which tend to be inert as catalytic elements in crystalline silicon and by incorporating the catalyst elements in a minimum amount that enables crystallization of the film. Therefore, the amount of catalytic element incorporated into the membrane must be controlled with high precision. The crystallization method using nickel etc. was studied in detail.

그 결과로 하기한 내용을 발견하게 되었다.As a result, the following contents were found.

(1) 플라즈마 처리로 니켈을 비결정성 실리콘 막에 혼입할 경우 니켈은 막을 열처리하기 전에 비결정성 실리콘 막의 상당한 깊이까지 들어감을 발견하였다.(1) When nickel was incorporated into the amorphous silicon film by the plasma treatment, it was found that nickel entered to a considerable depth of the amorphous silicon film before the film was heat treated.

(2) 초기 핵형성은 니켈이 혼입되는 표면으로 부터 일어난다.(2) Initial nucleation occurs from the surface where nickel is incorporated.

(3) 니켈층이 비결정성 실리콘 막에 퇴적될 경우 비결정성 실리콘막의 결정화는 플라즈마 처리를 하는 경우와 같은 방법으로 일어난다.(3) When the nickel layer is deposited on the amorphous silicon film The crystallization of the amorphous silicon film occurs in the same manner as in the case of performing a plasma treatment.

상기한 것을 고려할때 플라즈마 처리로 도입되는 모든 니켈이 실리콘의 결정화를 촉진하는 작용을 하는 것은 아니다라고 가정할 수 있다. 즉, 다량의 니켈이 도입될 경우 효과적으로 작용하지 않는 과량의 니켈이 존재하게 된다. 이러한 이유로 본 발명자는 저온에서 실리콘의 결정화를 촉진하는 작용을 하는 것은 니켈이 실리콘과 접촉하는 점 또는 면이라고 생각한다. 더욱이 니켈은 실리콘에 원자 형태로 분산되어야 한다고 가정된다. 즉, 니켈은 원자형태로 비결정성 실리콘 막의 표면 근처에 분산될 필요가 있고 니켈의 농도는 가능한 한 작아야 하지만 저온 결정화를 촉진시킬 정도로 충분히 높은 범위에 있어야 한다고 가정한다. 미량의 니켈, 즉 비결정성 실리콘의 결정화를 촉진시킬 수 있는 촉매 원소는 예컨대 증착에 의해 비결정성 실리콘의 표면 부근에 혼입될 수 있다. 그러나, 증착은 막의 제어성에 있어서는 불리하고, 따라서 비결정성 실리콘 막에 혼입되는 촉매 원소의 양을 정밀하게 제어하는데는 적합하지 않다.In view of the above, it can be assumed that not all nickel introduced into the plasma treatment acts to promote crystallization of silicon. In other words, when a large amount of nickel is introduced there is an excess of nickel that does not work effectively. For this reason, the inventors believe that it is the point or surface at which nickel contacts silicon, which serves to promote the crystallization of silicon at low temperatures. Furthermore, it is assumed that nickel must be dispersed in silicon in atomic form. That is, it is assumed that nickel needs to be dispersed in the atomic form near the surface of the amorphous silicon film and the concentration of nickel should be as small as possible but in a range high enough to promote low temperature crystallization. Trace amounts of nickel, i.e. catalytic elements capable of promoting the crystallization of amorphous silicon, may be incorporated near the surface of the amorphous silicon, for example by deposition. However, deposition is disadvantageous in terms of controllability of the film, and therefore is not suitable for precisely controlling the amount of catalytic element incorporated in the amorphous silicon film.

이상의 상황을 고려할때, 본 발명은 촉매 원소를 그 양을 정밀하게 제어하여 혼입하는 조건으로, 촉매 원소를 사용하여 비교적 저온에서 열처리 함으로써 결정성 실리콘 반도체 박막을 고생산성으로 제조하는 것을 목표로 한다.In view of the above situation, the present invention aims to produce a crystalline silicon semiconductor thin film with high productivity by heat treatment at a relatively low temperature using the catalyst element under conditions in which the amount of the catalyst element is precisely controlled and incorporated.

본 발명의 한 양태에 따르면 상기 목적은 비결정성 실리콘 막의 결정화를 촉진하기 위한 촉매 원소 또는 비결정성 실리콘 막과 접촉한 촉매원소를 포함하는 화합물을 비결정성 실리콘 막에 제공하고, 상기 촉매 원소 또는 비결정성 실리콘 막과 접촉하는 상기 화합물을 열처리하여 실리콘 막을 결정화 함으로써 달성될 수 있다.According to an aspect of the present invention, the above object is to provide to the amorphous silicon film a compound comprising a catalytic element for promoting crystallization of the amorphous silicon film or a catalytic element in contact with the amorphous silicon film, wherein the catalytic element or amorphous It can be achieved by heat treating the compound in contact with the silicon film to crystallize the silicon film.

구체적으로는, 비결정성 실리콘 막에 촉매 원소를 도입하기 위하여 비결정성 실리콘 막과 접촉하는 촉매원소를 함유한 용액이 제공된다.Specifically, a solution containing a catalytic element in contact with an amorphous silicon film for introducing a catalytic element into the amorphous silicon film is provided.

본 발명의 또다른 특징은 Ni, Pd, Pt, Cu, Ag, Au, In, Sn, Pd, Sn, P, As 및 Sb 로 이루어지는 군으로부터 선택된 물질을 함유한 용액을 실리콘 막과 접촉시켜 상기 물질을 실리콘 반도체 막에 미량으로 첨가한 다음, 비교적 저온에서 가열함으로써 실리콘 반도체 막을 결정화하는 것이다. 이와 같이 형성된 실리콘 막을 이용하여 PN, PI 또는 NI 접합부위에 적어도 하나의 전기적 접합부를 거기에 포함하는 활성 영역을 형성하는 것이 가능하다. 반도체 장치의 예로는 박막 트랜지스터(TFT), 다이오드, 광센서 등이 있다.Another feature of the present invention is to contact the silicon film with a solution containing a material selected from the group consisting of Ni, Pd, Pt, Cu, Ag, Au, In, Sn, Pd, Sn, P, As and Sb Is added to the silicon semiconductor film in a small amount, and then the silicon semiconductor film is crystallized by heating at a relatively low temperature. Using the silicon film thus formed, it is possible to form an active region including at least one electrical junction therein at the PN, PI or NI junction. Examples of semiconductor devices include thin film transistors (TFTs), diodes, and optical sensors.

도 1a 내지 도 1d는 본 발명에 따른 결정성 실리콘 막을 형성하기 위한 단면도.1A to 1D are cross-sectional views for forming a crystalline silicon film according to the present invention.

도 2a 내지 도 2c는 본 발명에 따른 결정성 실리콘막의 형성을 나타내는 단면도.2A to 2C are cross-sectional views showing the formation of a crystalline silicon film according to the present invention.

도 3은 용액중 니켈의 농도에 대한 결정의 측성장 길이의 관계를 나타내는 그래프.3 is a graph showing the relationship of the side growth length of a crystal to the concentration of nickel in a solution.

도 4는 니켈이 직접 첨가되는 실리콘 영역중의 니켈에 대한 SIMS 데이타를 나타내는 그래프.4 is a graph showing SIMS data for nickel in the silicon region where nickel is added directly.

도 5는 니켈이 직접 첨가되는 영역으로부터 측방향을 따라 결정이 성장하는 실리콘 영역중의 니켈에 대한 SIMS 데이타를 나타내는 그래프.FIG. 5 is a graph showing SIMS data for nickel in a silicon region in which crystal grows laterally from a region where nickel is directly added. FIG.

도 6a 내지 도 6e는 본 발명의 실시예 3 에 따른 반도체 장치의 제조방법을 나타내는 단면도.6A to 6E are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the third embodiment of the present invention.

도 7은 플라즈마 처리되는 실리콘막 내의 Ni 농도를 도시하는 도면.7 shows Ni concentration in a silicon film subjected to plasma treatment.

도 8은 니켈이 직접 첨가되는 영역에 대한 라만(Raman) 스펙트럼도.8 is a Raman spectral diagram of the region where nickel is added directly.

도 9는 결정이 측방향으로 성장하는 영역에 대한 라만 스펙트럼도.9 is a Raman spectral diagram of a region in which crystals grow laterally.

도 10a 내지 도 10f는 본 발명의 실시예 4 에 따른 전자 광학 장치의 제조방 법을 나타내는 단면도.10A to 10F are cross-sectional views showing a method for manufacturing the electro-optical device according to the fourth embodiment of the present invention.

도 11a 내지 도 11d는 본 발명의 실시예 5 에 따른 TFT 제조 방법을 나타내는 단면도.11A to 11D are sectional views showing the TFT manufacturing method according to the fifth embodiment of the present invention.

도 12는 본 발명의 실시예 6 에 따른 활성 매트릭스형 전자 광학 장치의 개요도.Fig. 12 is a schematic diagram of an active matrix type electro-optical device according to Embodiment 6 of the present invention.

도 13a 및 도 13b는 본 발명의 실시예 7 에 따른 결정성 실리콘막의 형성을 나타내는 단면도.13A and 13B are sectional views showing the formation of a crystalline silicon film according to Example 7 of the present invention.

도 14a 내지 도 14e는 본 발명의 실시예 8 에 따른 TFT 의 제조방법을 나타내는 단면도.14A to 14E are sectional views showing the manufacturing method of the TFT according to the eighth embodiment of the present invention.

도 15a 및 도 15b는 본 발명의 실시예 8 에 따른 TFT 의 활성층의 배열을 나타내는 개요도.15A and 15B are schematic diagrams showing an arrangement of an active layer of a TFT according to Embodiment 8 of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11 : 기판 19 : 결정립11 substrate 19 crystal grain

25 : 측성장영역 61 : 기판25 side growth area 61 substrate

2 : 구동영역 63 : 픽셀 영역2: driving area 63: pixel area

201 : 기판 210 : 게이트 전극201: substrate 210: gate electrode

212, 213 : 불순물 영역 214, 215 : 중간층 절연막212 and 213 impurity regions 214 and 215 an intermediate layer insulating film

216 : 픽셀 전극 217, 218 : 전극/배선216: pixel electrode 217, 218: electrode / wiring

본 발명의 상기 목적 및 특징은 첨부한 도면을 참고로하여 상세히 설명될 것이다.The above objects and features of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 니켈등을 첨가하기 위해 용액을 사용하는 것은 다음과 같은 점들에서 유리하다:The use of a solution to add nickel or the like according to the invention is advantageous in the following points:

(a) 용액중 촉매원소(예컨대 니켈)의 농도는 미리 정확하게 조절될 수 있다;(a) The concentration of the catalytic element (eg nickel) in the solution can be accurately adjusted in advance;

(b) 비결정성 실리콘 막에 혼입되는 촉매 원소의 양은 비결정성 실리콘 막의 표면이 용액과 접촉하게 되는 한 용액중 촉매 원소의 농도에 의해 결정될 수 있다;(b) the amount of catalytic element incorporated into the amorphous silicon film can be determined by the concentration of the catalytic element in the solution as long as the surface of the amorphous silicon film comes into contact with the solution;

(c) 촉매원소는 결정화에 필요한 최소농도로 비결정성 실리콘에 혼입될 수 있는데, 이것은 비결정성 실리콘 막 표면에 흡착되는 촉매원소가 주로 막의 결정화에 기여하기 때문이다.(c) The catalytic element can be incorporated into amorphous silicon at the minimum concentration required for crystallization, since the catalytic element adsorbed on the surface of the amorphous silicon film mainly contributes to the crystallization of the film.

본 발명에서 언급되는 '포함하는' 또는 '함유하는'이란 단어는 (a) 촉매 원소가 용액에 단순히 분산되어 있는 또는 (b) 촉매원소가 화합물 형태로 용액에 함유되어 있는 것으로 이해될 수 있다. 용액으로는 다양한 수용액 및 유기 용매 용액을 사용할 수 있다. 용매들은 극성 용매와 비극성 용매로 대별할 수 있다.The words "comprising" or "containing" as used herein may be understood as (a) the catalyst element is simply dispersed in the solution or (b) the catalyst element is contained in the solution in the form of a compound. As the solution, various aqueous solutions and organic solvent solutions can be used. Solvents can be roughly classified into polar solvents and nonpolar solvents.

물, 알코올, 산 또는 암모늄은 극성 용매로 사용될 수 있다. 극성 용매에 적합한 니켈 화합물의 예로는 브롬화 니켈, 아세트산 니켈, 옥살산 니켈, 탄산 니켈, 염화 니켈, 요오드화 니켈, 질산 니켈, 황산 니켈, 포름산 니켈, 니켈 아세틸 아세토네이트, 4-시클로헥실 부티르산, 산화 니켈 및 수산화 니켈 등이 있다.Water, alcohols, acids or ammonium can be used as polar solvents. Examples of suitable nickel compounds for polar solvents include nickel bromide, nickel acetate, nickel oxalate, nickel carbonate, nickel chloride, nickel iodide, nickel nitrate, nickel sulfate, nickel formate, nickel acetyl acetonate, 4-cyclohexyl butyric acid, nickel oxide and Nickel hydroxide and the like.

또한, 벤젠, 톨루엔, 크실렌, 사염화탄소, 클로로포름, 또는 에테르가 비극성 용매로 사용될 수 있다. 비극성 용매에 적합한 니켈 화합물의 예로는 니켈 아세틸 아세토네이트와 2-에틸 헥사노산 니켈이 있다.In addition, benzene, toluene, xylene, carbon tetrachloride, chloroform, or ether may be used as the nonpolar solvent. Examples of suitable nickel compounds for nonpolar solvents are nickel acetyl acetonate and nickel 2-ethyl hexanoate.

더욱이, 촉매 원소를 함유한 용액에 계면 활성제를 첨가하는 것도 가능하다. 그렇게 함으로써 용액은 더 높은 효율로 표면에 고착 및 흡착될 수 있다. 계면 활성제는 용액을 코팅하기에 앞서 코팅될 표면에 코팅될 수 있다.Moreover, it is also possible to add surfactant to the solution containing the catalytic element. By doing so, the solution can stick and adsorb to the surface with higher efficiency. The surfactant may be coated on the surface to be coated prior to coating the solution.

또한, 원소 니켈(금속)을 사용할 경우에는 산으로 그것을 용해시킬 필요가 있다.In addition, when using elemental nickel (metal), it is necessary to dissolve it with an acid.

상기한 예에서 니켈을 용매로 완전히 용해할 수 있다. 그러나, 니켈이 완전히 용해되지 않더라도 원소 니켈 또는 니켈 화합물이 분산 매질에 균일하게 분산되어 있는 에멀션 따위의 물질을 사용할 수 있다. 니켈을 용해시키기 위해 물 따위의 극성 용매를 사용할 경우 비결정성 실리콘 막은 그러한 용액을 밀어내는 수가 있다. 그러한 경우에 용액이 막위에 균일하게 제공될 수 있도록 산화물 박막을 비결정성 실리콘 막위에 형성하는 것이 바람직하다. 산화막의 두께는 100Å 이하가 바람직하다. 또한, 습윤성(wetting property)을 증가시키기 위해 계면 활성제를 용액에 첨가할 수도 있다.In the above example, nickel can be completely dissolved in a solvent. However, it is possible to use materials such as emulsions in which elemental nickel or nickel compounds are uniformly dispersed in the dispersion medium even if nickel is not completely dissolved. If a polar solvent such as water is used to dissolve nickel, the amorphous silicon film can repel such a solution. In such a case, it is preferable to form an oxide thin film on the amorphous silicon film so that the solution can be uniformly provided on the film. The thickness of the oxide film is preferably 100 Pa or less. In addition, surfactants may be added to the solution to increase the wetting properties.

또한, 표면에 균일한 틈, 너비 및 방향을 갖는 불규칙성을 부여하기 위해 산화박막 표면에 연마 처리(rubbing treatment)를 할수도 있다. 그러한 불규칙성은 용매의 투과를 도와 결정립(crystal grain)의 크기 및 방향의 균일성을 증가시킨다. 또한, 결정이 특정 방향으로 배향된 결정성 반도체 막은 장치 특성의 균일성을 증가시키기 위해 반도체 장치에 유리하게 사용된다.In addition, rubbing treatment may be performed on the surface of the oxide thin film in order to impart irregularities having a uniform gap, width and direction to the surface. Such irregularities help the permeation of the solvent and increase the uniformity of the size and direction of the crystal grains. In addition, crystalline semiconductor films in which crystals are oriented in a particular direction are advantageously used in semiconductor devices to increase the uniformity of device characteristics.

또한, 2-에틸 헥사노산 니켈 용액을 제조하기 위해 톨루엔 따위의 비극성 용매를 사용할 경우 용액은 비결정성 막의 표면에 직접 형성될 수 있다. 그러나, 비결정성 실리콘 막과 용액간의 흡착성을 증가시키기 위한 물질, 예컨대 레지스트의 흡착성을 증가시키는데 사용되는 OAP(도오꾜오 오까 고교 제품으로 헥사메틸 디실라잔을 주성분으로 함유)를 비결정성 실리콘 막과 용액사이에 개입시킬 수도 있다.In addition, when a nonpolar solvent such as toluene is used to prepare a 2-ethyl hexanoic acid nickel solution, the solution may be formed directly on the surface of the amorphous film. However, the amorphous silicon film and the solution contain a material for increasing the adsorption property between the amorphous silicon film and the solution, such as OAP (which contains hexamethyl disilazane as a main component of Tokyo Ogyo Co., Ltd.) used to increase the adsorption of the resist. You can also intervene.

용액중의 촉매 원소의 농도는 용액의 종류에 좌우되지만 대략적으로 말해서 용액중 니켈과 같은 촉매원소의 농도는 중량으로 1ppm 내지 200ppm, 바람직하게는 1ppm 내지 50ppm, 더욱 바람직하게는 10ppm 이하이다. 농도는 실리콘 막중의 니켈 농도 또는 결정화 완료시 막의 하이드로플루오르산에 대한 내성에 기초하여 결정된다.The concentration of the catalytic element in the solution depends on the kind of the solution, but roughly speaking, the concentration of the catalytic element such as nickel in the solution is 1 ppm to 200 ppm by weight, preferably 1 ppm to 50 ppm, more preferably 10 ppm or less. The concentration is determined based on the nickel concentration in the silicon film or the resistance of the film to hydrofluoric acid upon completion of crystallization.

결정 성장은 비결정성 실리콘 막의 선택된 부분에 촉매원소를 함유한 용액을 첨가함으로써 제어될 수 있다. 특히, 결정은 용액이 직접 가해지는 영역으로부터 용액이 가해지지 않는 영역으로 실리콘 막의 면과 거의 평행한 방향으로 실리콘 막을 가열함으로써 성장될 수 있다.Crystal growth can be controlled by adding a solution containing catalytic elements to selected portions of the amorphous silicon film. In particular, crystals can be grown by heating the silicon film in a direction substantially parallel to the surface of the silicon film from the area where the solution is directly applied to the area where the solution is not applied.

상기 측성장 영역이 촉매 원소를 낮은 농도로 함유한다는 것이 확인되었다. 결정성 실리콘 막을 반도체 장치를 위한 활성층 영역으로 이용하는 것이 유용하지만 일반적으로 활성 영역중 불순물의 농도는 가능한한 낮은 것이 바람직하다. 따라서, 활성층 영역을 위한 측성장 영역의 이용은 장치 제조에 유용하다.It was confirmed that the side growth region contained a catalyst element at a low concentration. Although it is useful to use a crystalline silicon film as an active layer region for a semiconductor device, it is generally desirable that the concentration of impurities in the active region be as low as possible. Thus, the use of side growth regions for the active layer region is useful for device fabrication.

촉매 원소로 니켈을 사용하는 것은 본 발명에 따른 방법에 특히 효과적이다. 그러나, 다른 유용한 촉매 원소로는 니켈(Ni), 팔라듐(pd), 백금(Pt), 구리(Cu), 은(Ag), 금(Au), 인듐(In), 주석(Sn), 인(P), 비소(As) 및 안티몬(Sb)이 포함된다. 그렇지 않으면 촉매 원소는 주기율표의 VIII, IIIb, IVb 및 Vb 족에 속하는 원소들로부터 선택된 적어도 하나일 수 있다.The use of nickel as catalytic element is particularly effective in the process according to the invention. However, other useful catalytic elements include nickel (Ni), palladium (pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), indium (In), tin (Sn), phosphorus ( P), arsenic (As) and antimony (Sb). Otherwise the catalytic element may be at least one selected from elements belonging to groups VIII, IIIb, IVb and Vb of the periodic table.

실시예 1Example 1

본 실시예는 유리 기판 표면에 결정성 실리콘 막을 형성하는 방법에 관한 것이다. 도 1a 내지 도 1d를 참고로 하여, 촉매 원소(이 경우에는 니켈)를 비결정성 실리콘 막에 혼입하는 방법에 대해 후술한다. 100mm x 100mm 크기의 CORNING7059 유리 기판이 사용된다.This embodiment relates to a method of forming a crystalline silicon film on a glass substrate surface. 1A to 1D, a method of incorporating a catalytic element (nickel in this case) into an amorphous silicon film will be described later. CORNING 100mm x 100mm 7059 glass substrates are used.

100 내지 1,500Å 두께의 비결정성 실리콘 막을 플라즈마 CVD 또는 LPCVD 로 증착시킨다. 구체적으로는, 이 경우에 비결정성 실리콘 막(12)이 플라즈마 CVD 로 1,000Å의 두께로 증착된다(도 1a).An amorphous silicon film of 100 to 1500 mm thick is deposited by plasma CVD or LPCVD. Specifically, in this case, the amorphous silicon film 12 is deposited to a thickness of 1,000 mW by plasma CVD (FIG. 1A).

그런다음, 비결정성 실리콘 막은 필요하다면 하이드로플루오르산으로 처리하여 불순물과 그 위에 형성된 천연 산화물을 제거한다. 이 처리후 비결정성 실리콘 막위에 10 내지 50Å의 두께로 산화막(13)을 증착시킨다. 천연 산화막이 산화막으로 사용될수도 있다. 막은 극히 얇기 때문에 산화막(13)의 정밀한 두께는 얻을 수 없다. 그러나, 천연 산화막은 두께가 약 20Å으로 추정할 수 있다. 산화막(13)은 산소분위기에서 5 분동안 자외선(UV)을 조사함으로써 증착된다. 산화막(13)은 열산화로도 형성될 수 있다. 또한, 산화막은 수성 과산화수소를 사용한 처리로 형성될 수도 있다. 산화막(13)은 후속단계에서 첨가될 니켈을 함유한 아세테이트 용액을 비결정성 실리콘 막의 전표면에 충분히 퍼지게할 목적으로 제공된다. 간단히 말해서, 산화막(13)은 비결정성 실리콘 막의 습윤성을 개선시키기 위해 제공된다. 예컨대 아세테이트 수용액이 직접 가해질 경우 비결정성 실리콘 막은 아세테이트 수용액을 밀어내어 니켈이 비결정성 실리콘 막 표면에 균일하게 혼입되는 것을 방해한다.The amorphous silicon film is then treated with hydrofluoric acid if necessary to remove impurities and natural oxides formed thereon. After this treatment, an oxide film 13 is deposited on the amorphous silicon film to a thickness of 10 to 50 microns. Natural oxide film may be used as the oxide film. Since the film is extremely thin, the precise thickness of the oxide film 13 cannot be obtained. However, the natural oxide film can be estimated to have a thickness of about 20 kPa. The oxide film 13 is deposited by irradiating ultraviolet (UV) light for 5 minutes in an oxygen atmosphere. The oxide film 13 can also be formed by thermal oxidation. The oxide film may also be formed by treatment with aqueous hydrogen peroxide. The oxide film 13 is provided for the purpose of sufficiently spreading the acetate solution containing nickel to be added in the subsequent step to the entire surface of the amorphous silicon film. In short, the oxide film 13 is provided to improve the wettability of the amorphous silicon film. For example, when an aqueous solution of acetate is added directly, the amorphous silicon film repels the aqueous solution of acetate, preventing the uniform incorporation of nickel into the surface of the amorphous silicon film.

여기에 첨가되는 니켈을 함유한 아세테이트 수용액은 그후에 제조된다. 구체적으로는, 10 내지 200ppm 예컨대 100ppm 의 농도로 니켈을 함유한 아세테이트 수용액이 제조된다. 2 밀리리터의 아세테이트 용액(14)을 비결정성 실리콘 막(12)상의 산화막(13) 표면에 드롭하고, 그 상태로 소정의 시간, 바람직하게는 0.5 분이상, 예컨대 5 분동안 유지한다. 그런다음 스피너(spinner)를 사용하여 2,000rpm 으로 60 분동안 스핀건조하여 불필요한 용액을 제거한다(도 1c 및 도 1d).An aqueous solution of acetate containing nickel added thereto is then produced. Specifically, an aqueous solution of acetate containing nickel is prepared at a concentration of 10 to 200 ppm such as 100 ppm. Two milliliters of the acetate solution 14 is dropped onto the surface of the oxide film 13 on the amorphous silicon film 12 and held there for a predetermined time, preferably 0.5 minutes or more, for example 5 minutes. The spinner is then spin dried at 2,000 rpm for 60 minutes to remove unnecessary solution (Figures 1C and 1D).

아세테이트 용액중의 니켈의 농도는 실제로 1ppm 이상, 바람직하게는 10ppm 이상이다. 용액은 단지 아세테이트 용액일 필요는 없으며 다른 이용가능한 용액으로는 염산염 용액, 질산염 용액 및 황산염 용액을 들수 있다. 유기 옥틸레이트 및 톨루엔의 용액도 마찬가지로 사용할 수 있다. 유기 용액을 사용할 경우 산화막(13)은 혼입될 필요가 없는데, 촉매 원소를 막에 도입하기 위해 비결정성 실리콘 막에 용액을 직접 가할 수 있기 때문이다.The concentration of nickel in the acetate solution is actually at least 1 ppm, preferably at least 10 ppm. The solution need not be just an acetate solution and other available solutions include hydrochloride solution, nitrate solution and sulfate solution. Solutions of organic octylate and toluene can likewise be used. When the organic solution is used, the oxide film 13 does not need to be mixed because the solution can be directly added to the amorphous silicon film to introduce the catalytic element into the film.

용액의 코팅은 한번에 행하거나 반복할 수 있으며 그렇게 해서 니켈을 함유한 막을 비결정성 실리콘 막(12)의 표면에 스핀건조후 수 옹스트롬 내지 수백 옹스트롬의 두께로 균일하게 형성하는 것이 가능하다. 이 막에 함유된 니켈은 후에 수행되는 가열 공정동안 비결정성 실리콘막에 확산되며 비결정성 실리콘 막의 결정화를 촉진시키는 작용을 할 것이다. 그런데 니켈 또는 다른 물질을 함유한 막이 반드시 완전히 연속적인 막 형태일 필요는 없다는것, 즉 예컨대 수개의 클러스터 형태로 불연속일 수도 있다는 것이 본 발명자의 의도이다.Coating of the solution can be performed or repeated at one time so that a nickel-containing film can be uniformly formed on the surface of the amorphous silicon film 12 to a thickness of several angstroms to several hundred angstroms after spin drying. Nickel contained in this film will diffuse into the amorphous silicon film during the heating process carried out later and will serve to promote crystallization of the amorphous silicon film. However, it is the intention of the inventors that the film containing nickel or other material is not necessarily in the form of a completely continuous film, ie it may be discontinuous in the form of several clusters, for example.

상기 용액중 하나로 코팅된 비결정성 실리콘 막은 그후에 그상태로 5 분간 유지된다. 결정화된 실리콘막(12)중 니켈 촉매 원소의 농도는 이 유지시간을 변화시킴으로써 조절될 수 있지만 결정화된 실리콘막중의 니켈 촉매 원소의 최종 농도를 조절하는데 있어 가장 영향력 있는 인자는 용액중 니켈 촉매 원소의 농도이다.The amorphous silicon film coated with one of the solutions is then held there for 5 minutes. The concentration of the nickel catalyst element in the crystallized silicon film 12 can be controlled by varying this holding time, but the most influential factor in controlling the final concentration of the nickel catalyst element in the crystallized silicon film 12 is that of the nickel catalyst element in solution. Concentration.

이와 같이 얻은 니켈 함유 용액으로 코팅된 실리콘막은 가열로에서 질소분위기에서 4 시간 동안 550℃ 의 온도에서 열처리된다. 이와 같이해서 결정성 실리콘(12)의 박막이 기판(11)에 형성된다. 열처리는 450℃ 이상의 어떤 온도에서도 행해질 수 있다. 그러나 저온을 선택할 경우 열처리에는 많은 시간이 소모되고 생산효율이 떨어지게된다. 한편, 550℃ 이상의 열처리 온도를 선택할 경우 유리 기판의 내열성 문제가 고려되어야 한다.The silicon film coated with the nickel-containing solution thus obtained is heat-treated at a temperature of 550 ° C. for 4 hours in a nitrogen atmosphere in a heating furnace. In this way, a thin film of crystalline silicon 12 is formed on the substrate 11. The heat treatment may be performed at any temperature of 450 ° C. or higher. However, if the low temperature is selected, the heat treatment takes a lot of time and the production efficiency is reduced. On the other hand, the heat resistance of the glass substrate should be considered when selecting a heat treatment temperature of 550 ℃ or more.

실시예 2Example 2

본 실시예는 산화실리콘막을 마스크로 사용하여 비결정성 실리콘막의 선택된 영역에 니켈을 혼입하기 위해 1200Å 두께의 산화실리콘막을 선택적으로 제공하는 것을 제외하고는 실시예 1 에 기재된 것과 유사한 방법에 관한것이다.This embodiment relates to a method similar to that described in Example 1, except that a silicon oxide film of 1200 Å thickness is selectively provided for incorporating nickel into selected regions of the amorphous silicon film using the silicon oxide film as a mask.

도 2a 내지 도 2c를 참고로하여, 본 실시예에 따라 반도체를 제조하는 방법에 대해 이하 설명한다. 산화 실리콘막은 비결정성 실리콘막(12)에 마스크로서 1,000Å 이상 예컨대 1,200Å의 두께로 증착된다. 그러나, 막이 마스크로서 충분히 조밀하면 산화 실리콘막(21)이 1000Å 보다 얇아도 예컨대 500Å 이어도 된다. 그런다음 종래의 포토리도그라피법 (photolithography technique)을 사용하여 소정의 패턴으로 패턴화된다. 산화실리콘 박막(20)은 산소분위기에서 5 분동안 UV 를 조사함으로써 형성된다. 산화 실리콘막(20)의 두께는 아마도 약 20 내지 50Å 이다(도 2a). 비결정성 실리콘 막의 습윤성을 개선시키기 위한 이와 같이 형성된 산화 실리콘막의 작용은 때로는 용액이 마스크 패턴의 크기와 매치될 경우 마스크로서 형성된 산화 실리콘막의 친수성에 의해 제공될 수도 있다. 그러나 이것은 특별한 경우이고 일반적으로는 산화 실리콘막(20)이 안정하게 사용된다.2A to 2C, a method of manufacturing a semiconductor according to the present embodiment will be described below. The silicon oxide film is deposited on the amorphous silicon film 12 to a thickness of 1,000 mW or more, for example, 1,200 mW as a mask. However, if the film is sufficiently dense as a mask, the silicon oxide film 21 may be thinner than 1000 GPa, for example, 500 GPa. It is then patterned in a predetermined pattern using conventional photolithography techniques. The silicon oxide thin film 20 is formed by irradiating UV for 5 minutes in an oxygen atmosphere. The thickness of the silicon oxide film 20 is probably about 20 to 50 kPa (FIG. 2A). The action of the thus formed silicon oxide film to improve the wettability of the amorphous silicon film may sometimes be provided by the hydrophilicity of the silicon oxide film formed as a mask when the solution matches the size of the mask pattern. However, this is a special case and generally the silicon oxide film 20 is used stably.

그런다음 실시예 1 에 기재된 방법과 마찬가지로 5 밀리리터(10cm x 10cm 크기의 기판에 대해)의 니켈 100ppm 을 함유한 아세테이트 용액(14)을 결과의 구조물 표면에 떨어뜨린다. 스피너를 사용하여 10 초동안 50rpm 으로 스핀 코팅하여 기판의 전표면에 균일한 수성막을 형성한다. 그런다음 그 상태를 5 분동안 유지한후 결과의 구조물을 60 초 동안 2,000rpm 으로 스피너를 사용하여 스핀 건조시킨다. 유지시간동안 기판은 100rpm 이하의 속도로 스피너상에서 회전시킬 수도 있다(도 2b).Then, as in the method described in Example 1, an acetate solution 14 containing 100 ppm of nickel of 5 milliliters (for a 10 cm × 10 cm sized substrate) is dropped on the resulting structure surface. Spinner was used to spin coat at 50 rpm for 10 seconds to form a uniform aqueous film on the entire surface of the substrate. The state is then held for 5 minutes and the resulting structure is spin dried using a spinner at 2,000 rpm for 60 seconds. During the holding time, the substrate may be rotated on the spinner at a speed of 100 rpm or less (FIG. 2B).

그런다음 기체 질소중에서 4 시간동안 550℃ 에서 열처리 함으로써 비결정성 실리콘막(12)을 결정화한다. 결정 성장은 화살표(23)로 나타낸 것처럼 니켈이 도입되는 영역(22)으로 부터 니켈이 도입되지 않는 영역(25)으로 측방향을 따라 진행됨을 알 수 있다.Then, the amorphous silicon film 12 is crystallized by heat treatment at 550 ° C. for 4 hours in gaseous nitrogen. It can be seen that crystal growth proceeds laterally from the region 22 where nickel is introduced, to the region 25 where nickel is not introduced, as indicated by arrow 23.

도 2c에서 도면부호 24 는 니켈이 직접 도입되어 결정화를 초래하는 영역을 나타내고 도면부호 25 는 영역 (24)로부터 측방향으로 결정화가 진행되는 영역을 나타낸다. 투과형 전자 현미경(TEM)과 전자 회절을 통하여 다음을 확인하였다:In Fig. 2C, reference numeral 24 denotes a region where nickel is directly introduced to cause crystallization, and 25 denotes a region where crystallization proceeds laterally from the region 24. Transmission electron microscopy (TEM) and electron diffraction confirmed the following:

(a) 측방향으로 성장한 결정은 균일한 너비의 원통 또는 침상의 단결정이다;(a) Lateral grown crystals are cylindrical or needle-shaped single crystals of uniform width;

(b) 결정의 성장 방향은 막두께에 좌우되기는 하지만 기판 표면과 거의 평행하다;(b) the direction of growth of the crystal is almost parallel to the substrate surface although it depends on the film thickness;

(c) 결정의 성장방향은 결정의 [111]축과 실질적으로 일직선상에 있다.(c) The direction of growth of the crystal is substantially in line with the [111] axis of the crystal.

상기한 사실로부터, 측성장 영역(25)의 표면은 {hkℓ} (h+k=ℓ)(ℓ은 영문 소문자 ℓ임.)로 표현되는 평면들, 예컨대 {110}, {123}, {134}, {235}, {145}, {156}, {257} 또는 {167} 또는 그 이웃한 평면중 적어도 하나의 평면을 갖는다고 결론지을 수 있다.From the above fact, the surface of the side growth region 25 has planes represented by {hk l} (h + k = l) (l is a lowercase letter l), such as {110}, {123}, {134 }, {235}, {145}, {156}, {257} or {167} or one of its neighboring planes.

결정성 실리콘은 그 스페이스 그룹(space group)이 Fd 3m 인 다이아몬드 구조를 가지기 때문에 상기 지수(hkl)가 짝수-홀수 혼합인 경우 금지된 반사가 일어나고 그것은 전자 회절로 관찰될 수 없음을 주목해야 한다.It should be noted that since crystalline silicon has a diamond structure whose space group is Fd 3m, forbidden reflection occurs when the index hkl is even-odd mixture and it cannot be observed by electron diffraction.

도 3은 횡(측)방향을 따라 영역(23)으로의 결정 성장 거리(㎛)와 아세테이트 수용액중의 니켈 농도(ppm)간의 관계를 나타낸다. 도 3은 100ppm 이상의 농도로 니켈을 함유한 용액을 제조함으로써 25㎛ 이상의 거리의 결정 성장은 이루어질 수 없음을 나타낸다. 도 3으로 부터 10ppm 의 농도로 니켈을 함유한 아세테이트 수용액을 사용하여 약 10μm 의 측방향을 따른 결정 성장을 얻을 수 있음을 또한 알수 있다.FIG. 3 shows the relationship between the crystal growth distance (mu m) to the region 23 along the transverse (lateral) direction and the nickel concentration (ppm) in the aqueous acetate solution. 3 shows that crystal growth of a distance of 25 μm or more cannot be achieved by preparing a solution containing nickel at a concentration of 100 ppm or more. It can also be seen from Fig. 3 that crystal growth along the lateral direction of about 10 μm can be obtained using an aqueous acetate solution containing nickel at a concentration of 10 ppm.

도 3에 나타낸 데이타는 니켈 함유 아세테이트 수용액을 가한후 구조물을 5 분동안 유지시켰을 경우에 해당한다. 그러나, 측방향을 따른 결정성장은 유지시간에 따라 변한다. 예컨대 100ppm 의 농도로 니켈을 함유한 아세테이트 수용액을 사용할 경우 유지시간을 1 분까지 증가시킴에 따라 더 긴 결정 성장 길이를 얻을 수 있다. 그러나 유지 시간이 1 분 이상으로 지정되면 더 이상의 증가는 무의미해진다.The data shown in Figure 3 corresponds to the case where the structure was maintained for 5 minutes after the addition of an aqueous solution containing nickel. However, crystal growth along the lateral direction changes with retention time. For example, when using an aqueous solution of acetate containing nickel at a concentration of 100 ppm, longer crystal growth length can be obtained by increasing the holding time to 1 minute. However, if the holding time is specified to be more than 1 minute, further increase becomes meaningless.

50ppm 의 농도로 니켈을 함유한 아세테이트 수용액을 사용할 경우 유지시간은 횡방향을 따른 결정 성장의 거리에 비례하여 증가한다. 그러나 유지 시간이 5 분이상으로 증가함에 따라 증가량은 포화되게 된다.When using an aqueous acetate solution containing nickel at a concentration of 50 ppm, the holding time increases in proportion to the distance of crystal growth along the transverse direction. However, as the holding time increases above 5 minutes, the increase becomes saturated.

또한, 온도가 반응이 평형을 이루는데 필요한 시간에 크게 영향을 끼친다는 것을 주목해야 한다. 따라서 유지 시간 또한 온도에 좌우되며 온도의 엄격한 조절이 필수적이다. 따라서 결정 성장 거리는 열처리 온도를 상승시키고 열처리 지속시간을 연장시킴으로써 총체적으로 증가될 수 있다.It should also be noted that temperature greatly influences the time required for the reaction to equilibrate. Therefore, the holding time also depends on the temperature and strict control of the temperature is essential. Thus, the crystal growth distance can be collectively increased by raising the heat treatment temperature and extending the heat treatment duration.

도 4 및 도 5는 100ppm 의 니켈을 함유한 아세테이트 수용액을 사용하여 니켈을 도입한 다음 550℃ 에서 4 시간동안 실리콘 막을 열처리함으로써 얻은 실리콘막중의 니켈 농도를 나타낸다. 니켈농도는 2 차 이온 질량 분광법(secondary ion mass spectroscopy; SIMS)으로 얻는다.4 and 5 show the nickel concentration in the silicon film obtained by introducing nickel using an aqueous solution of acetate containing 100 ppm of nickel and then heat treating the silicon film at 550 ° C. for 4 hours. Nickel concentrations are obtained by secondary ion mass spectroscopy (SIMS).

도 4는 도 2c에 나타낸 영역(24), 즉 니켈이 직접 혼입되는 영역의 니켈 농도를 나타낸다. 도 5는 도 2c에 나타낸 영역(25), 즉 영역(22)으로 부터 측방향을 따라 결정 성장이 일어나는 영역의 니켈 농도를 나타낸다.4 shows the nickel concentration in the region 24 shown in FIG. 2C, that is, the region in which nickel is directly mixed. FIG. 5 shows the nickel concentration of the region 25 shown in FIG. 2C, that is, the region in which crystal growth occurs laterally from the region 22.

도 4의 데이타를 도 5의 데이타와 비교함으로써 결정 성장이 측방향을 따라 일어나는 영역의 니켈 농도가 니켈이 직접 도입되는 영역의 니켈 농도와 비교했을때 약 1 자리수 (digit) 정도 낮다는 것을 알수 있다.Comparing the data of FIG. 4 with the data of FIG. 5, it can be seen that the nickel concentration in the region where crystal growth occurs along the lateral direction is about 1 digit lower than that in the region where nickel is directly introduced. .

니켈이 직접 도입되는 영역에서 결정화된 실리콘막중의 니켈 농도는 10ppm 의 농도로 니켈을 함유한 아세테이트 수용액을 사용하여 1018cm-3수준까지 낮출 수 있음을 알수 있다.It can be seen that the nickel concentration in the silicon film crystallized in the region where nickel is directly introduced can be lowered to the level of 10 18 cm -3 by using an aqueous acetate solution containing nickel at a concentration of 10 ppm.

결론적으로, 결정성장이 측방향을 따라 일어나는 결정성 실리콘 영역에서의 니켈 농도는 10ppm 의 농도로 니켈을 함유한 아세테이트 수용액을 사용하고 550˚C 이상에서 4 시간 이상의 지속시간 동안 열처리 함으로써 1017cm-3이하까지 낮출 수 있음을 알수 있다.In conclusion, the nickel concentration in the crystalline silicon region where crystal growth occurs along the lateral direction is 10 17 cm - by using an aqueous acetate solution containing nickel at a concentration of 10 ppm and heat-treating for a duration of 4 hours or more at 550 ° C or more. It can be seen that it can be lowered to 3 or less.

결과적으로, 용액의 농도와 유지시간을 조절함으로써 니켈이 직접 첨가되는 실리콘 막의 영역(24)에서의 니켈 농도를 1 x 1016원자/cm3내지 1 x 1019원자/cm3로 조절할 수 있으며 더 나아가 측성장 영역(25)에서의 니켈 농도를 그 미만으로 유지하는 것도 가능하다.As a result, by adjusting the concentration and retention time of the solution, the nickel concentration in the region 24 of the silicon film to which nickel is directly added can be adjusted from 1 x 10 16 atoms / cm 3 to 1 x 10 19 atoms / cm 3 and more. Furthermore, it is also possible to keep the nickel concentration in the side growth region 25 below.

비교를 위해, 니켈을 함유한 용액을 사용하는 대신 니켈을 실리콘에 첨가하기 위해 일정량의 니켈을 함유한 전극을 사용하여 생성되는 플라즈마에 비결정성 실리콘막을 노출시키고 (이것을 플라즈마 처리라 함), 더나아가 실리콘 막을 550℃ 에서 4 시간 동안 열 어닐링(heat annealing)하여 결정화 하는 방법으로 샘플을 제조한다. 플라즈마 처리 조건은 100ppm 의 니켈을 함유한 아세트산을 사용할 경우와 동일한 정도의 측결정 성장을 얻을 수 있도록 선택된다. 이 샘플에 대한 SIMS 데이타는 도 7에 나타내었다. 여기서 알 수 있듯이 플라즈마 처리를 사용할 경우 측성장 영역에서의 니켈 농도는 5 x 1018원자/cm3보다 높다. 따라서, 측성장 영역에서의 니켈 농도를 최소화 하기 위해서는 용액을 사용하는 것이 유리하다는 것을 알수 있다. 도 8은 도 4에 대응하는 영역, 즉 니켈이 직접 도입되는 영역에 대한 라만 분광기의 사용 결과를 나타낸다. 도 8은 이 영역에서의 결정성이 매우 높다는 것을 나타낸다. 또한, 도 9는 결정이 측방향으로 성장하는 영역에 대한 라만 분광기의 사용 결과를 나타낸다. 여기서 알수 있듯이 측 성장 영역에서도 라만 스펙트럼 강도를 단결정 실리콘의 강도의 1/3 이상이다. 따라서 측성장 영역에서의 결정성도 높다고 할 수 있다.For comparison, instead of using a solution containing nickel, an amorphous silicon film is exposed (called plasma treatment) to the resulting plasma using an electrode containing a certain amount of nickel to add nickel to silicon (this is called plasma treatment). Samples are prepared by a method of crystallizing the silicon film by heat annealing at 550 ° C. for 4 hours. Plasma treatment conditions are selected so that the same degree of crystal growth can be obtained as when acetic acid containing 100 ppm of nickel is used. SIMS data for this sample is shown in FIG. As can be seen here, when plasma treatment is used, the nickel concentration in the side growth region is higher than 5 x 10 18 atoms / cm 3 . Therefore, it can be seen that it is advantageous to use a solution in order to minimize the nickel concentration in the side growth region. FIG. 8 shows the results of using a Raman spectrometer for the region corresponding to FIG. 4, ie, the region into which nickel is directly introduced. 8 shows that the crystallinity in this region is very high. 9 also shows the results of the use of Raman spectroscopy for regions where crystals grow laterally. As can be seen, the Raman spectral intensity in the side growth region is more than 1/3 of that of single crystal silicon. Therefore, it can be said that the crystallinity in the side growth region is also high.

이와 같이 본 발명에 따른 방법으로 제조된 결정성 실리콘 막은 하이드로플루오르산에 대해 뛰어난 내성을 나타내는 것을 특징으로 한다. 본 발명자가 알기로는 니켈이 플라즈마 처리로 도입되면 하이드로플루오르산에 대한 결정화된 실리콘의 내성은 떨어진다. 결정성 실리콘 막위에 형성된 산화 실리콘막을 그곳을 통하는 콘택트 홀을 형성하기 위해 패턴화하는 것이 필요할 경우 하이드로플루오르산이 대개 부식액으로 사용된다. 결정성 실리콘 막이 하이드로플루오르산에 대한 내성이 충분히 큰 경우는 산화 실리콘막만을 제거하기 위해 큰 선택 비율(산화 실리콘막과 결정성 실리콘막의 에칭 비율 차이)이 필요하지 않을 수 있다. 따라서 하이드로 플루오르산의 공격에 대해 높은 내성을 가진 결정성 실리콘막은 반도체 장치 제조 방법에서 아주 유리하다.As such, the crystalline silicon film prepared by the method according to the present invention is characterized by excellent resistance to hydrofluoric acid. It is known to the inventors that the resistance of crystallized silicon to hydrofluoric acid is lowered when nickel is introduced by plasma treatment. Hydrofluoric acid is usually used as a caustic solution when it is necessary to pattern the silicon oxide film formed on the crystalline silicon film to form a contact hole therethrough. When the crystalline silicon film is sufficiently resistant to hydrofluoric acid, a large selection ratio (difference in etching rate between the silicon oxide film and the crystalline silicon film) may not be necessary to remove only the silicon oxide film. Therefore, the crystalline silicon film having high resistance to the attack of hydrofluoric acid is very advantageous in the semiconductor device manufacturing method.

실시예 3Example 3

본 실시예는 본 발명에 따른 방법으로 제조된 결정성 실리콘막을 사용하여 활성 매트릭스 액정 디스플레이 장치의 픽셀 각각에 제공되는 TFT 를 제조하는 방법에 관한것이다. 이와 같이 얻은 TFT 는 액정 디스플레이 장치 뿐만 아니라 박막 집적회로(IC)로 일반적으로 일컬어지는 광범위한 분야에 사용될 수 있다.This embodiment relates to a method of manufacturing a TFT provided to each pixel of an active matrix liquid crystal display device using a crystalline silicon film produced by the method according to the present invention. The TFT thus obtained can be used for a wide range of fields commonly referred to as thin film integrated circuits (ICs) as well as liquid crystal display devices.

도 6a 내지 도 6e를 참조하여 본 실시예에 따른 TFT 제조방법을 이하에서 설명한다. 산화실리콘막(도시않음)이 유리기판상의 베이스 코팅으로서 2000Å 의 두께로 증착된다. 이 산화실리콘막은 유리기판으로부터 장치 구조물내로의 불순물 확산을 방지하기 위해 구비된다.The TFT manufacturing method according to the present embodiment will be described below with reference to FIGS. 6A to 6E. A silicon oxide film (not shown) is deposited to a thickness of 2000 kPa as a base coating on a glass substrate. This silicon oxide film is provided to prevent the diffusion of impurities from the glass substrate into the device structure.

그후 비결정성 실리콘막이 실시예 1 에서 사용된 것과 유사한 방식으로 1000Å의 두께로 증착된다. 하이드로플루오르산을 사용하여 자연산화막을 제거한 후, 박막의 산화막이 가스성의 산소 분위기하에서 UV 방사에 의해 약 20Å의 두께로 형성된다.An amorphous silicon film is then deposited to a thickness of 1000 ns in a manner similar to that used in Example 1. After removing the native oxide film using hydrofluoric acid, an oxide film of the thin film is formed to a thickness of about 20 kPa by UV radiation under a gaseous oxygen atmosphere.

그위에 산화막을 가진 비결정성 실리콘막이 10ppm 농도의 니켈을 함유하는 아세테이트 수용액으로 코팅된다.An amorphous silicon film having an oxide film thereon is coated with an aqueous acetate solution containing nickel at a concentration of 10 ppm.

그 결과 구조물이 5 분간 지속 유지되고, 그후 스피너를 이용해 스핀 건조한다. 그후 산화실리콘막이 희석 하이드로플루오르산을 사용하여 제거되고, 실리콘막이 결과 구조물을 550℃ 에서 4 시간동안 가열하므로써 결정화된다. 상기 단계까지의 공정은 실시예 1 에 기재된 것과 동일하다.As a result, the structure is maintained for 5 minutes and then spin-dried using a spinner. The silicon oxide film is then removed using dilute hydrofluoric acid, and the silicon film is crystallized by heating the resulting structure at 550 ° C. for 4 hours. The process up to this step is the same as described in Example 1.

상기와 같이 결정화된 실리콘막이 패턴화되어 도 6a에 도시된 바와 같은 섬형상 영역(island-like region)(104)을 형성한다. 섬형상 영역(104)은 TFT 용 활성층을 제공한다. 산화실리콘막(105)이 그후 200 내지 1500Å, 예컨대 1000Å의 두께로 형성된다. 이 산화실리콘막은 게이트 절연막으로서 작용한다(도 6a).The silicon film crystallized as above is patterned to form an island-like region 104 as shown in FIG. 6A. The island region 104 provides an active layer for a TFT. The silicon oxide film 105 is then formed to a thickness of 200 to 1500 Pa, for example 1000 Pa. This silicon oxide film acts as a gate insulating film (Fig. 6A).

산화실리콘막(105)이 TEOS(테트라에톡시실란)을 사용한 RF 플라즈마 CVD 에 의해 증착된다. 즉, TEOS 가 증착된 다음 산소와 함께 150 내지 600℃, 바람직하게는 300 내지 450℃ 의 범위의 기판온도에서 증착된다. TEOS 와 산소를 0.05 내지 0.5 토르(Torr)의 전체 압력하에 압력비가 1:1 내지 1:3 으로 도입하면서 100 내지 250W 의 RF 전력을 가한다. 또한, 산화실리콘막은 기판온도를 350 내지 600℃, 바람직하게는 400 내지 550℃ 의 범위로 유지하면서 TEOS 를 가스질의 오존과 함께 출발가스로 사용하여 저압 CVD 또는 정상압 CVD 에 의해 제조될 수 있다. 이와 같이 증착된 막은 산소에서 또는 오존하에서 400 내지 600℃ 의 온도로 30 내지 60 분간 어닐링된다.The silicon oxide film 105 is deposited by RF plasma CVD using TEOS (tetraethoxysilane). That is, TEOS is deposited followed by oxygen at a substrate temperature in the range of 150 to 600 ° C., preferably 300 to 450 ° C. RF power of 100 to 250 W is applied while introducing TEOS and oxygen at a pressure ratio of 1: 1 to 1: 3 under a total pressure of 0.05 to 0.5 Torr. In addition, the silicon oxide film can be produced by low pressure CVD or normal pressure CVD using TEOS as a starting gas together with gaseous ozone while maintaining the substrate temperature in the range of 350 to 600 ° C, preferably 400 to 550 ° C. The film thus deposited is annealed for 30 to 60 minutes at a temperature of 400 to 600 ° C. in oxygen or under ozone.

실리콘 영역(104)의 결정화는 KrF 엑시머 레이저(24nm 의 파장과 20nsec 의 펄스폭으로 작동)를 사용한 레이저 빔 또는 이것과 동등한 강도의 광을 조사하므로써 가속될 수 있다. 적외선을 사용한 RTA(급속 열 어닐링)의 응용은 유리기판을 가열하지 않고서 실리콘막을 선택적으로 가열할 수 있기 때문에 특히 효과적이다. 더욱이, RTA 는 그것이 실리콘층과 산화실리콘막 사이의 접촉 수준을 감소시키기 때문에 절연 게이트 전계효과 반도체 장치의 제조에 매우 유용하다.Crystallization of the silicon region 104 can be accelerated by irradiating a laser beam or light of equivalent intensity with a KrF excimer laser (operating at a wavelength of 24 nm and a pulse width of 20 nsec). Application of RTA (Rapid Heat Annealing) using infrared rays is particularly effective because the silicon film can be selectively heated without heating the glass substrate. Moreover, RTA is very useful for the manufacture of insulated gate field effect semiconductor devices because it reduces the level of contact between the silicon layer and the silicon oxide film.

다음, 알루미늄막이 전자빔 증착에 의해 2000Å 내지 1㎛의 두께로 증착되어 패턴화되어 게이트 전극(106)을 형성한다. 알루미늄막은 도펀트로서 0.15 내지 0.2 중량% 의 스칸듐을 함유할 수 있다. 다음, 기판을 PH 가 약 7 로 조절되고 1 내지 3% 의 주석산을 함유하는 에틸렌 글리콜 용액내에 침지시켜 백금을 음극으로 사용하고 알루미늄 게이트 전극을 양극으로 사용하여 양극 산화를 행한다. 양극 산화는 산화가 완결되도록 먼저 전압을 220V 로 일정한 속도로 증가시키고 전압을 220V 로 1 시간동안 유지시키므로써 달성된다. 일정한 전류가 상기의 경우와 같이 인가되는 경우에 전압은 2 내지 5 v/분의 비율로 바람직하게 증가된다. 양극 산화물(109)이 1500 내지 3500Å의 두께로, 보다 상세히는 예컨대 상기의 방식에서는 2000Å의 두께로 형성된다(도 6b).Next, an aluminum film is deposited to a thickness of 2000 k? To 1 [mu] m by electron beam evaporation to be patterned to form the gate electrode 106. The aluminum film may contain 0.15 to 0.2% by weight of scandium as a dopant. Subsequently, the substrate is immersed in an ethylene glycol solution containing a pH of about 7 and containing 1 to 3% of tartaric acid, and anodized using platinum as a cathode and an aluminum gate electrode as an anode. Anodic oxidation is achieved by first increasing the voltage to 220V at a constant rate and maintaining the voltage at 220V for 1 hour so that the oxidation is complete. When a constant current is applied as in the above case, the voltage is preferably increased at a rate of 2 to 5 v / min. The anodic oxide 109 is formed to a thickness of 1500 to 3500 kV, more specifically to 2000 kPa in the above manner (FIG. 6B).

불순물(상기의 경우, 인)이 게이트 전극부를 마스크로 이용하여 이온 도핑(플라즈마 도핑)에 의해 셀프-얼라이닝 (self-aligning) 방식으로 TFT 의 섬형상 실리콘안으로 주입된다. 포스핀(PH3)을 도펀트가스로 사용하여 인을 1 x 1015내지 4 x 1015cm-2의 투여량으로 주입한다.An impurity (phosphorus in this case) is injected into the island-like silicon of the TFT in a self-aligning manner by ion doping (plasma doping) using the gate electrode portion as a mask. Phosphine (PH 3 ) is used as the dopant gas to inject phosphorus at a dose of 1 × 10 15 to 4 × 10 15 cm −2 .

불순물의 도입에 의해 손상된 결정성을 갖는 부분의 결정성을 248nm 의 파장과 20nsec 의 펄스폭으로 작동하는 KrF 엑시머 레이저를 사용하여 레이저 빔을 조사하므로써 회복된다. 레이저는 150 내지 400mJ/cm₂, 양호하게는 200 내지 250mJ/cm₂ 범위의 에너지 밀도로 작동된다. 따라서, N 형 불순물 영역(인으로 도핑된 영역)(108)이 형성된다. 이 영역의 면 저항은 200 내지 800Ω/스퀘어 의 범위에 있음을 알았다.The crystallinity of the part having crystallinity damaged by the introduction of impurities is recovered by irradiating the laser beam using a KrF excimer laser operating at a wavelength of 248 nm and a pulse width of 20 nsec. The laser is operated at an energy density in the range of 150 to 400 mJ / cm 2, preferably 200 to 250 mJ / cm 2. Thus, an N-type impurity region (region doped with phosphorus) 108 is formed. It was found that the sheet resistance of this region was in the range of 200 to 800 Ω / square.

레이저 어닐링의 상기 단계는 플래쉬 램프를 사용한 RTA 방법, 즉 급속 열 어닐링 방법으로 대체될 수 있고, 이 방법은 실리콘 막의 온도를 1000 내지 1200℃(실리콘 모니터상에서 측정시)의 범위로 급속히 승온시키는 것으로 이루어져 있다. 상기 어닐링 방법은 RTP(급속 열처리)라 칭하기도 한다.This step of laser annealing can be replaced by an RTA method using a flash lamp, i.e. a rapid thermal annealing method, which consists in rapidly raising the temperature of the silicon film in the range of 1000 to 1200 ° C (measured on a silicon monitor). have. The annealing method is also called RTP (Rapid Heat Treatment).

이후, 산화실리콘막이 TEOS 를 산소와 함께 사용하여 플라즈마 CVD 에 의해, 또는 TEOS 를 오존과 함께 사용하여 저압 CVD 또는 정상압 CVD 에 의해 중간층 유전체(110)로서 3000Å의 두께로 증착된다. 기판온도는 250 내지 450℃ 범위로 예컨대 350℃ 에 유지된다. 이후 결과의 산화실리콘막을 기계적으로 정밀 연마(polishing)하여 매끄로운 표면을 얻는다. 그 위에 ITO 코팅이 스퍼터링에 의해 퇴적되고, 픽셀 전극(111)을 형성하도록 패턴화된다(도 6d).The silicon oxide film is then deposited to a thickness of 3000 kPa as the interlayer dielectric 110 by plasma CVD using TEOS with oxygen, or by low pressure CVD or normal pressure CVD using TEOS with ozone. The substrate temperature is maintained at, for example, 350 ° C. in the range of 250 to 450 ° C. The resultant silicon oxide film is then mechanically polished to obtain a smooth surface. The ITO coating is deposited thereon by sputtering and patterned to form the pixel electrode 111 (FIG. 6D).

중간층 유전체(110)가 에칭되어 도 6e에 도시된 바와 같은 소스/드레인 내에 콘택트홀이 형성되고, 접속부(112, 113)를 크롬 또는 질화 티타늄을 사용하여 형성하여 접속부(113)를 픽셀 전극(111)에 접속시킨다.The interlayer dielectric 110 is etched to form contact holes in the source / drain as shown in FIG. 6E, and the connections 112 and 113 are formed using chromium or titanium nitride to form the connection 113 as the pixel electrode 111. ).

본 발명에 따른 방법에 있어서, 니켈을 10ppm 의 저농도로 함유하는 수용액을 사용하여 니켈이 혼입된다. 따라서, 하이드로 플루오르산에 대해 높은 내성을 갖는 실리콘막을 실현할 수 있고 콘택트홀이 높은 복제성을 갖으면서 안정되게 형성될 수 있다.In the process according to the invention, nickel is incorporated using an aqueous solution containing nickel at a low concentration of 10 ppm. Therefore, a silicon film having high resistance to hydrofluoric acid can be realized and the contact hole can be stably formed while having high replication property.

실리콘막을 300 내지 400℃ 온도범위의 수소내에서 0.1 내지 2 시간동안 최종적으로 어닐링하여 실리콘막의 수소처리를 완결하여 완벽한 TFT 를 형성할 수 있다. 이미 설명한 것과 유사한 복수의 TFT 가 동시에 제조되고, 매트릭스로 배열되어 활성 매트릭스 액정 디스플레이 장치를 형성한다.The silicon film is finally annealed in hydrogen in the temperature range of 300 to 400 ° C. for 0.1 to 2 hours to complete the hydrogen treatment of the silicon film to form a perfect TFT. A plurality of TFTs similar to those already described are manufactured at the same time and arranged in a matrix to form an active matrix liquid crystal display device.

본 실시예에 따르면 활성층에 함유된 니켈의 농도는 5 x 1016내지 3 x 1018원자/cm3이다.According to this embodiment, the concentration of nickel contained in the active layer is 5 x 10 16 to 3 x 10 18 atoms / cm 3 .

상기 설명된 바와 같이, 본 실시예에 따른 방법은 니켈이 도입되는 부분을 결정화 하는 단계를 포함한다. 그러나, 본 방법은 실시예 2 에서와 같이 수정될 수 있다. 즉, 니켈은 마스크를 통해 선택된 부분에 혼입되고, 결정이 그 부분으로부터 측방향으로 성장하게 할 수 있다. 상기 결정성장의 영역이 장치에 사용된다. 장치의 활성영역 니켈 농도를 보다 낮추므로써 전기적인 안정성 및 신뢰성의 관점에서 보다 양호한 장치를 실현할 수 있다.As described above, the method according to the present embodiment includes crystallizing the portion where nickel is introduced. However, the method can be modified as in Example 2. That is, nickel can be incorporated into the selected portion through the mask and allow crystals to grow laterally from that portion. The region of crystal growth is used in the device. By lowering the active region nickel concentration of the device, it is possible to realize a better device in terms of electrical stability and reliability.

실시예 4Example 4

본 실시예는 활성 매트릭스의 픽셀을 제어하는데 사용되는 TFT 제조에 관한 것이다. 도 10a 내지 도 10f는 본 실시예에 따른 TFT 의 제조를 설명하기 위한 단면도이다.This embodiment relates to TFT fabrication used to control the pixels of the active matrix. 10A to 10F are sectional views for explaining the manufacture of a TFT according to the present embodiment.

도 10a에 있어서, 기판(201), 예컨대 유리기판이 세척되어 그 표면상에 산화실리콘막(202)이 구비되어 있다. 이 산화실리콘막(202)은 출발가스로서 사용되는 산소와 테트라에톡시 실란으로 플라즈마 CVD 를 통해 형성된다. 이 막의 두께는 예컨대 2000Å이다. 다음, 500 내지 1500Å, 예컨대 1000Å의 두께를 갖는 진성의 비결정 실리콘막(203)을 산화 실리콘막(202)상에 형성하고, 그후 500 내지 2000Å, 예컨대 1000Å의 산화실리콘막 (205)을 연속적으로 비결정 실리콘막상에 형성한다.In Fig. 10A, a substrate 201, for example, a glass substrate, is cleaned and a silicon oxide film 202 is provided on the surface thereof. This silicon oxide film 202 is formed by plasma CVD with oxygen and tetraethoxy silane used as starting gas. The thickness of this film is, for example, 2000 mm 3. Next, an intrinsic amorphous silicon film 203 having a thickness of 500 to 1500 mW, such as 1000 mW, is formed on the silicon oxide film 202, and then 500 to 2000 mW of silicon oxide film 205 is continuously amorphous. It is formed on a silicon film.

또한, 개구(206)를 형성하여 비결정 실리콘막을 노출시키도록 산화실리콘막(205)을 선택적으로 에칭한다. 다음, 니켈 함유 용액(본 실시예에서는 아세트산염 용액)으로 실시예 2 에서 개시된 방식과 동일 방식으로 전표면을 코팅한다. 아세트산염 용액내 니켈 농도는 100ppm 이다. 기타 다른 조건은 실시예 2 와 동일하다. 이와 같이하여 니켈 함유막(207)이 형성된다.Further, the silicon oxide film 205 is selectively etched to form an opening 206 to expose the amorphous silicon film. Next, the entire surface is coated in the same manner as described in Example 2 with a nickel-containing solution (acetate solution in this example). The nickel concentration in the acetate solution is 100 ppm. Other conditions are the same as in Example 2. In this way, the nickel-containing film 207 is formed.

니켈 함유막과 접촉시켜 구비된 비결정 실리콘막(203)이 질소분위기에서 4 시간 동안 500 내지 620℃ 에서 열 어닐링을 통해 결정화된다. 이 결정화는 실리콘막이 직접 니켈 함유막과 접촉하는 개구(206)아래의 영역에서 시작되어 기판과 평행한 방향으로 계속 진행된다. 도면에 있어서, 참조번호 204 는 실리콘막에 니켈이 직접 첨가되어 결정화되는 실리콘막의 일부분을 지시하며 203 은 결정이 측 방향으로 성장하는 부분을 지시한다. 측방향으로 성장된 결정은 약 25㎛이다. 또한, 결정 성장의 방향은 대략 [111]축에 나란하다.The amorphous silicon film 203 provided in contact with the nickel containing film is crystallized by heat annealing at 500 to 620 ° C. for 4 hours in a nitrogen atmosphere. This crystallization starts in the region under the opening 206 where the silicon film is in direct contact with the nickel containing film and continues in a direction parallel to the substrate. In the figure, reference numeral 204 designates a portion of the silicon film in which nickel is directly added to the silicon film to crystallize, and 203 designates a portion in which the crystal grows laterally. Lateral grown crystals are about 25 μm. In addition, the direction of crystal growth is approximately parallel to the [111] axis.

결정화 후, 산화 실리콘막(205)을 제거한다. 이때, 개구(206)내의 실리콘막상에 형성된 산화막이 동시에 제거된다. 또한, 실리콘막(204)을 드라이 에칭으로 패턴화하여 도 10b에 도시된 바와 같은 섬형상으로 활성층(208)을 형성한다. 니켈은 니켈이 직접 첨가되는 개구(206) 아래뿐만 아니라 결정의 정상 단부가 존재하는 부분에서도 더 농후한 농도로 실리콘막에 함유된다는 것에 주목해야 한다. 실리콘막의 패턴화는 패턴화된 실리콘막(208)이 니켈을 더 농후한 농도로 함유하는 부분을 포함하지 않도록 수행되어야 한다.After crystallization, the silicon oxide film 205 is removed. At this time, the oxide film formed on the silicon film in the opening 206 is simultaneously removed. In addition, the silicon film 204 is patterned by dry etching to form the active layer 208 in an island shape as shown in Fig. 10B. It should be noted that nickel is contained in the silicon film in a thicker concentration not only below the opening 206 to which nickel is directly added, but also in the portion where the top end of the crystal is present. The patterning of the silicon film should be performed such that the patterned silicon film 208 does not contain portions containing nickel at a higher concentration.

다음, 패턴화된 활성층(208)을, 그 표면을 산화하여 1000Å의 산화실리콘막(209)을 형성하도록, 500 내지 600℃, 전형적으로는 550℃ 에서 10 기압의 100% 수증기를 함유하는 분위기에 노출시킨다. 산화후, 기판을 400℃ 의 암모늄 분위기(1 기압, 100%)에서 유지시킨다. 이상태에서, 산화실리콘막(209)이 0.6 내지 4㎛, 예컨대 0.8 내지 1.4㎛ 범위의 파장에 강도피크를 갖는 적외선으로 조사되어 산화실리콘막 (209)을 질화시킨다. HCl 이 상기 분위기에 0.1 내지 10% 추가될 수도 있다. 할로겐 램프가 적외선의 광원으로 사용된다. 적외선(IR)의 강도는 측정하고 있는 단결정 실리콘 웨이퍼의 표면 온도가 900 내지 1200℃ 로 설정되도록 조절된다. 보다 상세하게, 온도는 단결정 실리콘 웨이퍼내에 박아넣은 열전쌍(thermocouple)에 의해 측정되고 적외선 광원에 전달된다(피드백). 본 실시예에서, 온도 상승률은 50 내지 200℃/초의 범위내에서 일정하게 유지되고 또한 기판은 20 내지 100℃/초로 자연냉각된다. 적외선은 실리콘막을 선택적으로 가열할 수 있기 때문에 유리 기판의 가열을 최소화 할 수 있다.The patterned active layer 208 is then subjected to an atmosphere containing 100% water vapor of 10 atm at 500 to 600 ° C., typically 550 ° C., to oxidize its surface to form a 1000 Å silicon oxide film 209. Expose After oxidation, the substrate is maintained in an ammonium atmosphere (1 atm, 100%) at 400 ° C. In this state, the silicon oxide film 209 is irradiated with infrared rays having an intensity peak at a wavelength in the range of 0.6 to 4 mu m, for example, 0.8 to 1.4 mu m to nitride the silicon oxide film 209. HCl may be added 0.1 to 10% to the atmosphere. Halogen lamps are used as the source of infrared light. The intensity of infrared (IR) is adjusted so that the surface temperature of the single crystal silicon wafer being measured is set to 900 to 1200 ° C. More specifically, the temperature is measured by a thermocouple embedded in a single crystal silicon wafer and transferred to an infrared light source (feedback). In this embodiment, the rate of temperature rise is kept constant within the range of 50 to 200 ° C / sec and the substrate is naturally cooled to 20 to 100 ° C / sec. Infrared light can selectively heat the silicon film, thereby minimizing the heating of the glass substrate.

도 10c에 있어서, 알루미늄막을 스퍼터링법으로 3000 내지 8000Å, 예컨대 6000Å의 두께로 형성한 다음에 게이트 전극(210)으로 패턴화한다. 알루미늄막은 0.01 내지 0.2% 의 스칸듐을 함유하는 것이 양호할 수 있다.In Fig. 10C, the aluminum film is formed to a thickness of 3000 to 8000 Å, for example 6000 으로 by the sputtering method, and then patterned by the gate electrode 210. The aluminum film may preferably contain 0.01 to 0.2% of scandium.

도 10d에 있어서, 알루미늄 전극(210)의 표면이 양극 산화막(211)을 형성하도록 주석산을 1 내지 5% 함유하는 에틸렌 글리콜 용액내에서 양극산화된다. 산화막(211)의 두께는 2000Å 이고, 이 두께는 이하에서 설명되는 바와 같은 추후단계에서 형성될 오프셋 게이트의 크기를 결정한다.In FIG. 10D, the surface of the aluminum electrode 210 is anodized in an ethylene glycol solution containing 1 to 5% tartaric acid to form an anodized film 211. The thickness of the oxide film 211 is 2000 GPa, and this thickness determines the size of the offset gate to be formed in a later step as described below.

도 10e에 있어서, 게이트 전극과 주변 양극산화막을 마스크로 사용하여 N 형 전도성 불순물(본 실시예에서는 인)이 불순물 영역(212, 213)을 형성하도록 이온 도핑법(플라즈마 도핑법이라고도 함)에 의해 셀프-얼라이닝 방식으로 활성층내로 주입된다. 포스핀(pH3)이 도펀트 가스로서 사용된다. 가속전압은 60 내지 90kV, 예컨대 80kV 이다. 투여량은 1 x 1015내지 8 x 1015cm-2, 예컨대 4 x 1015cm-2이다. 도면으로 알수 있는 바와 같이, 불순물 영역(212, 213)은 게이트 전극으로부터 거리 'X' 만큼 벗어나 있다. 이러한 형태는 역 바이어스 전압(즉 NTFT 의 경우 음 전압)을 가할때 발생하는 리크 전류(오프 전류)를 감소시키는데 유리하다. 특히, 양호한 디스플레이를 얻도록 픽셀 전극내에 저장된 전하가 누출없이 유지되는 것이 바람직하기 때문에 TFT 가 본 실시예의 경우와 같이 활성 매트릭스의 픽셀을 제어하는데 사용될때 오프셋 상태가 특히 유리하다.In Fig. 10E, by using an ion doping method (also referred to as plasma doping method) such that an N-type conductive impurity (phosphorus in this embodiment) forms impurity regions 212 and 213 using a gate electrode and a peripheral anodization film as a mask. It is injected into the active layer in a self-aligning manner. Phosphine (pH 3 ) is used as the dopant gas. The acceleration voltage is 60 to 90 kV, for example 80 kV. The dosage is 1 × 10 15 to 8 × 10 15 cm −2 , such as 4 × 10 15 cm −2 . As can be seen from the figure, the impurity regions 212 and 213 are separated by a distance 'X' from the gate electrode. This form is advantageous for reducing the leakage current (off current) that occurs when applying a reverse bias voltage (ie negative voltage in the case of NTFT). In particular, the offset state is particularly advantageous when the TFT is used to control the pixels of the active matrix as in the case of this embodiment, since it is desirable that the charge stored in the pixel electrode be kept without leakage to obtain a good display.

이후, 레이저 조사로 어닐링을 수행한다. 레이저로서 KrF 엑시머 레이저(파장: 248nm, 펄스폭: 20nsec) 또는 기타 다른 레이저를 사용할 수 있다. KrF 엑시머 레이저의 경우 레이저 조사의 조건은 에너지 밀도가 200 내지 400mJ/cm₂, 예컨대 250mJ/cm₂이고, 스폿수는 한 장소당 2 내지 10 스폿, 예컨대 2 스폿이다. 기판은 조사 효과가 향상되도록 200 내지 450℃ 로 가열되는 것이 바람직하다.Then, annealing is performed by laser irradiation. KrF excimer laser (wavelength: 248 nm, pulse width: 20 nsec) or other laser can be used as the laser. In the case of a KrF excimer laser, the conditions for laser irradiation are from 200 to 400 mJ / cm 2, such as 250 mJ / cm 2, and the number of spots is 2 to 10 spots, such as 2 spots, per place. The substrate is preferably heated to 200 to 450 ° C to improve the irradiation effect.

도 10f에 있어서, 산화실리콘의 중간층 절연막 (214)이 플라즈마 CVD 를 통해 6000Å의 두께로 형성된다. 또한, 투명한 폴리이미드막(215)이 사면을 얻도록 스핀 코팅에 의해 형성된다. 다음, 예컨대 인듐산화주석으로 된 투명한 전도성막이 스퍼터링에 의해 800Å의 두께로 상기 사면상에 형성되고 픽셀 전극(216)으로 패턴화된다.In Fig. 10F, an interlayer insulating film 214 of silicon oxide is formed to have a thickness of 6000 mV through plasma CVD. In addition, a transparent polyimide film 215 is formed by spin coating to obtain a slope. Next, a transparent conductive film made of, for example, indium tin oxide, is formed on the slope with a thickness of 800 kPa by sputtering and patterned with the pixel electrode 216.

중간층 절연막(214, 215)에는 콘택트 홀들이 설치되며, 이것을 통해 전극/배선(217, 218)이 TFT 의 불순물 영역에 도달할 수 있다. 전극/배선(217, 218)들은 금속물질, 예컨대 질화 티타늄과 알루미늄의 다중층으로 형성된다.Contact holes are provided in the interlayer insulating films 214 and 215, through which the electrodes / wiring 217 and 218 can reach the impurity region of the TFT. The electrodes / wirings 217 and 218 are formed of multiple layers of metal material, such as titanium nitride and aluminum.

마지막으로, 1 기압의 수소 분위기에서 30 분동안 350℃ 에서 어닐링을 행하여 TFT 를 갖는 활성 매트릭스 회로의 픽셀 회로를 완성한다.Finally, annealing is carried out at 350 DEG C for 30 minutes in a hydrogen atmosphere of 1 atmosphere to complete the pixel circuit of the active matrix circuit having the TFTs.

실시예 5Example 5

본 실시예는 TFT 의 제조에 관한 것이고 도 11a 내지 도 11d를 참조하여 설명한다. 선행 실시예의 요소와 동일 또는 유사한 요소는 동일한 참조번호가 설명을 위해 사용된다.This embodiment relates to the fabrication of TFTs and will be described with reference to Figs. 11A to 11D. Elements that are the same as or similar to those of the preceding embodiments are given the same reference numerals for description.

도 11a에 있어서, 먼저 산화실리콘의 기부막(202)이 스퍼터링에 의해 2000Å 두께로 CORNING??7059 기판(201)상에 형성된다. 이 기판은 기판의 변형점보다 높은 온도에서 어닐링된 다음, 유리를 0.1 내지 1.0℃/분의 속도로 변형점 이하의 온도로 냉각한다. 이에 의해, 이후 일어나는 기판 가열(예컨대, 열산화, 열어닐링)에 기인한 기판의 수축을 감소시킬 수 있고, 이 결과로서 마스크 정렬 공정이 용이해질 것이다. 이 단계는 기부막(201)의 형성전이나 후에 수행되거나 기부막(201)의 형성 전과 형성후 수행될 수 있다. CORNING 7059 기판을 사용하는 경우에, 기판은 620 내지 660℃ 에서 1 시간 내지 4 시간동안 가열될 수 있고, 그후 0.1 내지 0.3℃/초로 냉각되어 온도가 400 내지 500℃로 감소하였을때 가열로(furnace)로 부터 꺼내진다.In Fig. 11A, first, the base film 202 of silicon oxide is CORNING to 2000 mm thick by sputtering.??7059 is formed on the substrate 201. The substrate is annealed at a temperature above the strain point of the substrate and then the glass is cooled to a temperature below the strain point at a rate of 0.1 to 1.0 ° C./min. This can reduce shrinkage of the substrate due to subsequent substrate heating (eg, thermal oxidation, open annealing), which will facilitate the mask alignment process. This step may be performed before or after the base film 201 or before and after the base film 201 is formed. CORNING In the case of using a 7059 substrate, the substrate can be heated at 620 to 660 ° C. for 1 to 4 hours, then cooled to 0.1 to 0.3 ° C./sec to furnace when the temperature is reduced to 400 to 500 ° C. Is taken out of.

다음, 진성(I 형) 비결정 실리콘막이 플라즈마 CVD 를 통해 500 내지 1500Å, 예컨대 1000Å의 두께로 형성된다. 비결정성 실리콘막은 실시예 1 과 동일한 방식으로 결정화된다. 따라서, 반복적인 설명은 생략한다. 결정화후, 실리콘막은 10 내지 1000 제곱 미크론의 크기를 갖는 섬형상으로 패턴화된다. 따라서, 섬형상의 결정 실리콘막(208)이 도 11a에 도시된 바와 같이 TFT 의 활성층으로서 형성된다.Next, an intrinsic (I-type) amorphous silicon film is formed to a thickness of 500 to 1500 mW, for example 1000 mW through plasma CVD. The amorphous silicon film is crystallized in the same manner as in Example 1. Therefore, repetitive description is omitted. After crystallization, the silicon film is patterned into island shapes having a size of 10 to 1000 square microns. Thus, an island-shaped crystalline silicon film 208 is formed as an active layer of the TFT as shown in Fig. 11A.

도 11b에 있어서, 실리콘막의 표면을 산화분위기에 노출하여 산화시키므로써 산화막(209)을 형성한다. 이 산화 분위기는 수증기를 70 내지 90% 함유한다. 이 분위기의 압력 및 온도는 1 기압과 500 내지 750℃, 전형적으로는 600℃ 이다. 이 분위기는 수소/산소 비율이 1.5 내지 1.9 인 산소와 수소 가스로부터 발열 반응에 의해 형성된다. 이와 같이 형성된 분위기에 실리콘막을 3-5 시간 동안 노출시킨다. 이결과, 500 내지 1500Å, 예컨대 1000Å 두께의 산화막(209)이 형성된다. 실리콘막의 표면이 산화에 기인하여 50Å 이상 축소(침식)되기 때문에, 실리콘막의 최상부 표면의 오염 효과가 실리콘-산화실리콘 접촉면까지 연장하지 않는다. 즉, 산화에 의해 깨끗한 실리콘-산화실리콘 접촉면을 얻을 수 있다. 또한, 산화실리콘막의 두께는 산화되는 실리콘막 부분의 두께에 두배이기 때문에 실리콘막이 최초 1000Å 두께이고 얻은 산화실리콘막이 1000Å 일때, 산화후 남아있는 실리콘막의 두께는 500Å 이다.In FIG. 11B, an oxide film 209 is formed by exposing and oxidizing the surface of the silicon film to an oxidation atmosphere. This oxidizing atmosphere contains 70 to 90% of water vapor. The pressure and temperature of this atmosphere are 1 atmosphere and 500-750 degreeC, typically 600 degreeC. This atmosphere is formed by an exothermic reaction from oxygen and hydrogen gas having a hydrogen / oxygen ratio of 1.5 to 1.9. The silicon film is exposed to the atmosphere thus formed for 3-5 hours. As a result, an oxide film 209 having a thickness of 500 to 1500 mV, for example 1000 mV, is formed. Since the surface of the silicon film is reduced (eroded) by 50 dB or more due to oxidation, the contamination effect of the top surface of the silicon film does not extend to the silicon-silicon oxide contact surface. In other words, a clean silicon-silicon oxide contact surface can be obtained by oxidation. In addition, since the thickness of the silicon oxide film is twice the thickness of the portion of the silicon film to be oxidized, when the silicon film is initially 1000 mm thick and the obtained silicon oxide film is 1000 mm, the thickness of the silicon film remaining after oxidation is 500 mm.

통상, 산화실리콘막(게이트 절연막)과 활성층이 얇을수록 가동성이 더욱 높아지고 오프전류는 더욱 작아진다. 한편, 비결정 실리콘막의 예비 결정화는 그 두께가 더 두꺼울때 더 용이하다. 따라서, 활성층의 두께에 대한 전기적 특성과 결정화 방법에 모순이 있었다. 본 실시예는 이러한 문제점을 유리하게 해결한다. 즉, 양호한 결정성 실리콘막이 형성될 수 있도록 더 두꺼운 두께를 갖는 비결정 실리콘막이 먼저 형성되고, 그후 실리콘막의 두께가 산화에 의해 감소되어 TFT 의 활성층 특성을 향상시킨다. 더욱이, 결정 실리콘막내에 함유된 비결정성 성분 또는 결정립 경계는 열산화동안 산화되는 경향이 있어 활성층에 포함된 재결합 중추를 감소시킨다.Usually, the thinner the silicon oxide film (gate insulating film) and the active layer, the higher the mobility and the smaller the off current. On the other hand, precrystallization of the amorphous silicon film is easier when the thickness thereof is thicker. Therefore, there was a contradiction in the electrical properties and the crystallization method with respect to the thickness of the active layer. This embodiment advantageously solves this problem. That is, an amorphous silicon film having a thicker thickness is formed first so that a good crystalline silicon film can be formed, and then the thickness of the silicon film is reduced by oxidation to improve the active layer characteristics of the TFT. Moreover, the amorphous components or grain boundaries contained in the crystalline silicon film tend to oxidize during thermal oxidation, reducing the recombination center contained in the active layer.

산화실리콘막(209)을 열산화를 통해 형성한 후, 기판을 1 기압 600℃ 의 100% 모노사이드 디니트로겐 분위기에서 2 시간 동안 어닐링한다.After the silicon oxide film 209 is formed through thermal oxidation, the substrate is annealed for 2 hours in a 100% monoside dinitrogen atmosphere at 1 atm.

도 11c에 있어서, 인을 0.01 내지 0.2% 함유하는 실리콘이 저압 CVD 를 통해 3000 내지 8000Å, 예컨대 6000Å 두께로 증착된 다음에 패턴화되어 게이트 전극(210)을 형성한다. 또한, 이 게이트 전극(210)을 마스크로서 이용하여 N 형 불순물을 이온 도핑에 의한 셀프-얼라이닝 방식으로 활성층의 일부분내에 첨가된다. 도펀트가스로서 포스핀이 사용된다. 도핑 조건은 실시예 4 와 실질적으로 동일하다. 투여량은 예컨대 5 x 1015cm-2이다. 이로써 N 형 불순물 영역(212, 213)이 형성된다.In FIG. 11C, silicon containing 0.01-0.2% phosphorus is deposited to 3000-8000 microns, such as 6000 microns thick, via low pressure CVD and then patterned to form a gate electrode 210. Further, using this gate electrode 210 as a mask, N-type impurities are added into a portion of the active layer in a self-aligning manner by ion doping. Phosphine is used as the dopant gas. Doping conditions are substantially the same as in Example 4. Dosage is for example 5 × 10 15 cm −2 . As a result, the N-type impurity regions 212 and 213 are formed.

이후, 어닐링을 실시예 4 와 동일한 방식으로 KrF 엑시머 레이저로 수행한다. 레이저 어닐링은 근적외선을 갖는 램프 어닐링으로 대체될 수도 있다. 근적외선은 비결정 실리콘보다 결정 실리콘에 의해 보다 효과적으로 흡수된다. 따라서, 근적외선으로의 어닐링은 1000℃ 이상에서의 열 어닐링에 필적한다. 한편, 근적외선이 유리 기판에 흡수되지 않는 만큼 유리기판이 손상되도록 가열되는 것을 방지할 수 있다. 즉, 원적외선은 유리기판에 흡수되더라도, 파장이 0.5 내지 5㎛ 범위인 가시 또는 근적외선은 그리 흡수되지 않는다.Thereafter, annealing is performed with a KrF excimer laser in the same manner as in Example 4. Laser annealing may be replaced by lamp annealing with near infrared light. Near infrared rays are more effectively absorbed by crystalline silicon than amorphous silicon. Thus, annealing in the near infrared is comparable to thermal annealing at 1000 ° C or higher. On the other hand, it is possible to prevent the glass substrate from being heated so that the near infrared rays are not absorbed by the glass substrate. That is, although far infrared rays are absorbed by the glass substrate, visible or near infrared rays having a wavelength in the range of 0.5 to 5 mu m are not absorbed so much.

도 11d에 있어서, 산화실리콘의 중간층 절연막(214)이 플라즈마 CVD 를 통해 6000Å 두께로 형성된다. 산화실리콘대신에 폴리이미드가 사용될 수도 있다. 또한, 콘택트 홀이 절연막을 관통하여 형성된다. 전극/배선(217, 218)이 다층의 질화 티타늄 및 알루미늄막을 사용하여 콘택트 홀을 통해 형성된다. 마지막으로, 수소 분위기에서 어닐링이 350℃, 1 기압으로 30 분 동안 수행된다. 이로써, TFT 가 완성된다.In Fig. 11D, an interlayer insulating film 214 of silicon oxide is formed to be 6000 탆 thick through plasma CVD. Polyimides may be used instead of silicon oxide. In addition, contact holes are formed through the insulating film. Electrodes / wiring 217 and 218 are formed through contact holes using multilayer titanium nitride and aluminum films. Finally, annealing in a hydrogen atmosphere is carried out at 350 ° C., 1 atmosphere for 30 minutes. This completes the TFT.

이와 같이 형성된 TFT 의 가동성은 110 내지 150cm₂/Vs 이다. S 값은 0.2 내지 0.5V/digit 이다. 또한, 소스.드레인 영역안으로 붕소를 도핑하므로써 P-채널형 TFT 를 형성한 경우에 가동성은 90 내지 120cm₂/Vs 이고 S 값은 0.4 내지 0.6V/digit 이다. 종래의 PVD 또는 CVD 에 의해 게이트 절연막을 형성한 경우와 비교할때, 본 실시예에 따른 가동성은 20% 이상 증가될 수 있고 S 값은 20% 이상 감소될 수 있다.The mobility of the TFT thus formed is 110 to 150 cm 2 / Vs. S value is 0.2-0.5V / digit. In addition, when the P-channel type TFT is formed by doping boron into the source / drain region, the mobility is 90 to 120 cm 2 / Vs and the S value is 0.4 to 0.6 V / digit. Compared with the case where the gate insulating film is formed by conventional PVD or CVD, the mobility according to the present embodiment can be increased by 20% or more and the S value can be reduced by 20% or more.

또한, 본 실시예에 따른 TFT 의 신뢰성은 1000℃ 정도의 높은 온도에서 열산화를 통해 제조된 TFT 의 신뢰성에 필적할 수 있다.In addition, the reliability of the TFT according to the present embodiment may be comparable to that of the TFT manufactured through thermal oxidation at a high temperature of about 1000 ° C.

실시예 6Example 6

도 12는 본 실시예에 따른 활성 매트릭스형 액정 장치의 예를 도시한다.12 shows an example of an active matrix liquid crystal device according to the present embodiment.

도면에 있어서, 참조번호 61 은 유리기판이고, 63 은 각각 스위칭 소자(switching element)로서 TFT 가 구비된 복수의 픽셀을 매트릭스의 형태로 갖고 있는 픽셀 영역을 도시한다. 참조번호 62 는 구동 TFT 들이 픽셀 영역의 TFT 들을 구동하도록 구비된 주변 구동 영역(들)을 도시한다. 픽셀 영역(63) 및 구동 영역(62)은 동일 기판(61)상에 합체되어 있다.In the figure, reference numeral 61 denotes a glass substrate, and 63 denotes a pixel region each having a plurality of pixels in the form of a matrix provided with TFTs as switching elements. Reference numeral 62 shows the peripheral drive region (s) in which the driving TFTs are provided to drive the TFTs of the pixel region. The pixel region 63 and the driving region 62 are integrated on the same substrate 61.

구동 영역(62)내에 설치된 TFT 들은 큰 용량의 전류가 그것들을 통과하도록 높은 가동성을 가질 필요가 있다. 또한 픽셀 영역(63)내에 설치된 TFT 들은 픽셀 전극의 전하 보전 능력을 증가시키도록 낮은 리크 전류 특성을 가질 필요가 있다. 예컨대, 실시예 3 에 따라 제조된 TFT 들이 픽셀 영역(63)의 TFT 로서 적합하다.The TFTs installed in the drive region 62 need to have high mobility so that a large amount of current passes through them. In addition, the TFTs installed in the pixel region 63 need to have low leakage current characteristics to increase the charge holding capability of the pixel electrode. For example, TFTs manufactured according to Embodiment 3 are suitable as TFTs of the pixel region 63.

실시예 7Example 7

본 실시예는 실시예 1 의 변경 실시예이다. 즉, 니켈 아세테이드 수성 용액을 형성하기 전에, 산화 실리콘 표면상에 연마 처리(rubbing treatment)를 수행하여 그곳에 미세한 스크래치(scratches), 즉 긁힘 자국을 다수 형성시킨다.This embodiment is a modified embodiment of the first embodiment. That is, before forming the nickel acetate aqueous solution, rubbing treatment is performed on the silicon oxide surface to form a large number of fine scratches, that is, scratch marks thereon.

도 13a에 있어서, 산화 실리콘막을 기부막(18)으로서 갖고 있는 CORNING 7059 기판(11)이 구비되어 있다. 이 산화실리콘막이 스퍼터링에 의해 예컨대 2000Å의 두께로 형성된다. 산화실리콘 막상에 비결정 실리콘막(12)이 플라즈마 CVD 에 의해 300 내지 800Å 의 두께, 예컨대 500Å의 두께로 형성된다. 다음, 비결정 실리콘막의 표면이 플루오르화수소산으로 처리되어 그곳에 형성된 천연 산화물 또는 오염물질이 제거된다. 이후, 기판의 표면을 산소분위기에서 자외선(도시않음)으로 노출시키므로써 10 내지 100Å 두께의 산화 실리콘막이 형성된다. 산화는 과산화수소 처리 또는 열산화로 수행될 수도 있다.13A, CORNING having a silicon oxide film as the base film 18 The 7059 substrate 11 is provided. This silicon oxide film is formed to a thickness of, for example, 2000 kPa by sputtering. On the silicon oxide film, an amorphous silicon film 12 is formed by plasma CVD to a thickness of 300 to 800 mW, for example, 500 mW. The surface of the amorphous silicon film is then treated with hydrofluoric acid to remove natural oxides or contaminants formed thereon. Thereafter, the surface of the substrate is exposed to ultraviolet light (not shown) in an oxygen atmosphere to form a silicon oxide film having a thickness of 10 to 100 Å. The oxidation may be carried out by hydrogen peroxide treatment or thermal oxidation.

다음, 참조번호 17 로 도시된 바와같은 미세한 스크래치들이 연마 처리에 의해 산화 실리콘막상에 형성된다. 이 연마 처리는 다이아몬드 페이스트(diamond paste)로 수행된다. 그러나, 목화 직물 또는 고무가 다이아몬드 페이스트 대신에 사용될 수도 있다. 스크래치는 균일한 방향, 폭 그리고 깊이를 갖는 것이 바람직하다.Next, fine scratches as shown by reference numeral 17 are formed on the silicon oxide film by the polishing treatment. This polishing treatment is performed with diamond paste. However, cotton fabric or rubber may be used instead of diamond paste. The scratches preferably have a uniform direction, width and depth.

연마처리 후, 니켈 아세테이트 막이 실시예 1 과 동일한 방식으로 스핀 코팅에 의해 형성된다. 니켈 아세테이트 용액은 스크래치에 균일하게 흡착된다.After the polishing treatment, a nickel acetate film was formed by spin coating in the same manner as in Example 1. The nickel acetate solution is uniformly adsorbed on the scratches.

도 13b를 참조하면, 비결정 실리콘막을 실시예 1 과 같이 질소 분위기에서 4 시간 동안 550℃ 로 어닐링한다. 이로써, 결정성 실리콘막이 형성된다. 이와같이 형성된 막에 있어서 결정립(19)의 크기와 배향은 실시예 1 에서 얻은 것보다 더욱 균일하다. 결정립(19)은 한 방향으로 연장되고 대략 직사각형 또는 타원형 등과 같은 형상을 하고 있다.Referring to FIG. 13B, the amorphous silicon film is annealed at 550 ° C. for 4 hours in a nitrogen atmosphere as in Example 1. As a result, a crystalline silicon film is formed. In the film thus formed, the size and orientation of the crystal grains 19 are more uniform than those obtained in Example 1. The crystal grains 19 extend in one direction and have a shape such as a substantially rectangular or elliptical shape.

스크래치의 크기 또는 갯수는 다이아몬드 페이스트의 밀도를 변경하므로써 조절될 수 있다. 현미경으로 스크래치를 관찰하기는 곤란하기 때문에 얻어진 결정성 실리콘막내에 잔류하는 비결정 실리콘의 밀도 또는 결정립의 크기가 최대가 될 수 있게 연마 조건을 결정한다. 본 실시예에 있어서, 연마 처리의 조건은 결정화 후 잔류하는 비결정 영역의 길이가 1㎛ 이하, 바람직하게는 0.3㎛ 이하가 되도록 선택된다.The size or number of scratches can be adjusted by changing the density of the diamond paste. Since it is difficult to observe scratches under a microscope, the polishing conditions are determined so that the density or size of crystal grains of amorphous silicon remaining in the obtained crystalline silicon film can be maximized. In this embodiment, the conditions for polishing are selected so that the length of the amorphous region remaining after crystallization is 1 탆 or less, preferably 0.3 탆 or less.

연마처리를 수행하지 않는 실시예 1 의 경우, 니켈이 균일하게 확산되지 않고 1 내지 10㎛의 원형으로 결정화되지 않은 영역이 발견되는 경향이 있다. 따라서, 연마처리는 결정의 균일성을 향상시킨다.In the case of Example 1 without performing the polishing treatment, there is a tendency that regions where nickel is not uniformly diffused and crystallized in a circle of 1 to 10 mu m are found. Therefore, the polishing treatment improves the uniformity of the crystal.

실시예 8Example 8

본 실시예는 실시예 7 에 따른 활성 매트릭스의 스위칭 픽셀용 TFT 의 제조 방법에 관한 것이다. 도 14a 내지 도 14e는 제조 공정을 도시하는 단면도이다.This embodiment relates to a method of manufacturing a TFT for switching pixels of an active matrix according to the seventh embodiment. 14A to 14E are sectional views showing the manufacturing process.

도 14a에 있어서, 산화 실리콘막(202)이 플라즈마 CVD 에 의해 3000Å의 두께로 CORNING 7059 유리로 제조된 기판 (201)(10 제곱 cm)상에 형성된다. 다음, 비결정 실리콘막(203)이 플라즈마 CVD 에 의해 300 내지 1000Å의 두께, 예컨대 500Å의 두께로 산화 실리콘막(202)상에 형성된다.In Fig. 14A, the silicon oxide film 202 is CORNING to a thickness of 3000 GPa by plasma CVD. It is formed on a substrate 201 (10 square cm) made of 7059 glass. Next, an amorphous silicon film 203 is formed on the silicon oxide film 202 to a thickness of 300 to 1000 mW, for example, 500 mW by plasma CVD.

이와같이 형성된 비결정 실리콘막을 실시예 7 에서 설명한 방법으로 결정화한다. 열결정화 후, 200 내지 350mJ/cm2의 에너지 밀도를 갖는 kr 엑시머레이저(248nm 파장)로 레이저 어닐링을 수행하여 결정화를 향상시킨다. 이결과, 결정성 실리콘막에 잔류하는 비결정성 성분이 완전히 결정화되었다.The amorphous silicon film thus formed is crystallized by the method described in Example 7. After thermal crystallization, laser annealing is performed with a kr excimer laser (248 nm wavelength) having an energy density of 200 to 350 mJ / cm 2 to improve crystallization. As a result, the amorphous component remaining in the crystalline silicon film was completely crystallized.

결정화 후, 실리콘막(203)을 도 14b에 도시된 바와같은 섬형상 실리콘막(208)으로 패턴화한다. 이때, 결정립 경계에 대한 실리콘섬의 위치 및 배향이 도 15a 및 도 15b에 도시된 방식으로 선택될 수 있다.After crystallization, the silicon film 203 is patterned into an island-like silicon film 208 as shown in Fig. 14B. At this time, the position and orientation of the silicon islands with respect to the grain boundary may be selected in the manner shown in FIGS. 15A and 15B.

TFT 의 전류가 결정립 경계를 교차할 때, 결정립 경계는 저항으로서 기능한다. 한편, 전류는 결정립 경계를 따라 흐르기가 쉽다. 따라서, TFT 의 전기적 특성은 채널 영역내에 포함된 결정립(결정립 경계)의 갯수와 배향에 의해 크게 영향을 받는다. 예컨대, 그곳에 많은 TFT 들이 존재하면 각 TFT 의 리크 전류 특성은 채널 영역내에 포함된 결정립의 갯수 및 배향에 따라 변화한다.When the current of the TFT crosses the grain boundary, the grain boundary functions as a resistance. On the other hand, current easily flows along grain boundaries. Therefore, the electrical characteristics of the TFT are greatly influenced by the number and orientation of grains (grain boundaries) contained in the channel region. For example, if there are many TFTs there, the leakage current characteristic of each TFT changes depending on the number and orientation of crystal grains contained in the channel region.

이러한 문제점은 결정립의 크기가 채널의 크기와 대략 동일하거나 그것보다 작을 때 심각하다. 채널이 결정립보다 매우 클때, 상기 분산이 평균화되고 많이 발견되지 않는다.This problem is severe when the grain size is approximately equal to or smaller than the size of the channel. When the channel is much larger than the grains, the dispersion is averaged and not found much.

예컨대, 채널내에 결정립 경계가 전혀없다면 TFT 는 단결정 TFT 의 전기적 성질과 동일한 전기적 성질을 갖는 것으로 예상될 수 있다. 한편, 결정립 경계가 섬을 통해 드레인 전류의 방향을 따라 연장하면, 리크 전류가 더 커진다. 반대로, 결정립 경계가 드레인 전류의 방향에 수직한 방향으로 연장하면, 리크 전류는 더 작아진다.For example, if there is no grain boundary in the channel, the TFT can be expected to have the same electrical properties as those of the single crystal TFT. On the other hand, if the grain boundary extends in the direction of the drain current through the island, the leakage current becomes larger. In contrast, if the grain boundary extends in the direction perpendicular to the direction of the drain current, the leak current becomes smaller.

드레인 전류가 연마 방향에 나란한 방향으로 흐르도록 TFT 들이 배열될 때, 결정은 연마 방향을 따라 길이가 증가되기 때문에 채널내에 포함된 결정립 경계의 갯수가 균일하지 않게 되고, 따라서 리크 전류가 분산되기 쉽다. 더욱이, 리크 전류의 강도는 결정립 경계가 도 15a에 도시된 바와같이 드레인 전류의 방향으로 정렬되기 때문에 더 크게 된다. 한편, 도 15b에 도시된 바와같이, 드레인 전류가 연마 방향에 수직한 방향으로 흐른다면, 오프 전류 특성이 안정화될 수 있다. 이는 결정립(19)의 폭이 대략 균일하고 채널 영역(26)내에 존재하는 결정립의 갯수가 일정하게 될 수 있기 때문이다. 결론적으로 TFT 의 드레인 전류가 결정립 경계 방향, 즉 연마 방향에 수직한 방향으로 흐르도록 활성 영역(208)을 배열하는 것이 바람직하다. 더욱이, 연마처리는 결정립의 크기를 균일하게 하여 결정화되지 않은 영역이 다음의 레이저 조사에 의해 에피택시하게 결정화될 수 있다.When the TFTs are arranged so that the drain current flows in a direction parallel to the polishing direction, the number of grain boundaries contained in the channel becomes uneven because the crystals are increased in length along the polishing direction, and therefore the leakage current is likely to be dispersed. Moreover, the intensity of the leak current becomes larger because the grain boundary is aligned in the direction of the drain current as shown in Fig. 15A. On the other hand, as shown in Fig. 15B, if the drain current flows in the direction perpendicular to the polishing direction, the off current characteristic can be stabilized. This is because the width of the grains 19 is approximately uniform and the number of grains present in the channel region 26 can be constant. In conclusion, it is preferable to arrange the active region 208 such that the drain current of the TFT flows in the grain boundary direction, that is, the direction perpendicular to the polishing direction. Moreover, the polishing treatment makes the grain size uniform, so that the uncrystallized region can be crystallized epitaxially by the next laser irradiation.

도 14b에 도시된 바와같이, 200 내지 1500Å, 예컨대 1000Å 두께의 산화실리콘막이 플라즈마 CVD 를 통해 게이트 절연막(209)으로서 형성된다.As shown in Fig. 14B, a silicon oxide film having a thickness of 200-1500 Å, for example 1000 Å, is formed as the gate insulating film 209 through plasma CVD.

다음, 1 중량 % 의 Si 또는 0.1 내지 0.3 중량 % 의 Sc 를 함유하는 알루미늄이 1000Å 내지 3㎛, 예컨대 5000Å으로 스퍼터 형성된 다음, 게이트 전극(210)으로 패턴화된다. 다음, 주석산을 1 내지 3% 를 함유하는 에틸렌 글리콜 용액을 사용하여 알루미늄 전극을 양극 산화 처리를 한다. 전해액의 PH 는 약 7 이다. 백금 전극은 음극으로서 사용되는 반면 알루미늄 전극은 양극으로 사용된다. 전압이 220V 에 이를 때까지 일정하게 유지된 전류로 전압을 증가시킨 다음, 이 상태를 한 시간 동안 유지시킨다. 이결과, 양극 산화막(211)이 1500 내지 3500Å, 예컨대 2000Å의 두께로 형성된다.Next, aluminum containing 1% by weight of Si or 0.1 to 0.3% by weight of Sc is sputtered to 1000 m 3 to 3 m, for example 5000 m 3, and then patterned with the gate electrode 210. Next, an aluminum electrode is subjected to anodization using an ethylene glycol solution containing 1% to 3% tartaric acid. The pH of the electrolyte is about 7. The platinum electrode is used as the cathode while the aluminum electrode is used as the anode. The voltage is increased to a constant current until the voltage reaches 220V, and then maintained at this state for one hour. As a result, the anodic oxide film 211 is formed to a thickness of 1500 to 3500 mV, for example 2000 mV.

도 14c를 참조할 때, 게이트 전극(210)을 마스크로서 사용하여 하나의 전도성 타입을 가지는 불순물(붕소)을 이온 도핑 방법을 통해 셀프-얼라이닝 방식으로 실리콘 섬안으로 주입한다. 디보란(B2H6)을 도펀트 가스로서 사용한다. 투여량은 4-10x1015cm-2이다. 가속 전압은 65kV 이다. 이로써, 한쌍의 불순물 영역(P 형)(212,213)을 얻었다.Referring to FIG. 14C, an impurity (boron) having one conductivity type is implanted into a silicon island by a self-aligning method using an ion doping method using the gate electrode 210 as a mask. Diborane (B 2 H 6 ) is used as the dopant gas. Dosage is 4-10 × 10 15 cm −2 . The acceleration voltage is 65 kV. As a result, a pair of impurity regions (P-types) 212 and 213 were obtained.

이후, 불순물 영역(212,213)을 KrF 엑시머레이저 (파장 248nm, 펄스폭 20nsec)를 조사하므로써 활성화한다. 이 레이저 빔의 에너지 밀도는 200 내지 400mJ/cm2, 양호하게는 250 내지 300mJ/cm2이다.Thereafter, the impurity regions 212 and 213 are activated by irradiating KrF excimer laser (wavelength 248 nm, pulse width 20 nsec). The energy density of this laser beam is 200 to 400 mJ / cm 2 , preferably 250 to 300 mJ / cm 2 .

도 14d를 참조하면, 산화실리콘으로 만들어진 중간층 절연막(214)을 플라즈마 CVD 를 통해 3000Å의 두께로 형성한다. 다음, 콘택트홀이 불순물 영역(212)(소스)상에 에칭에 의해 중간층 절연막(214) 및 게이트 절연막(209)을 관통해 형성된다. 다음, 알루미늄막을 스퍼터링에 의해 형성한 뒤 패터닝하여 소스 전극(217)을 형성시킨다.Referring to FIG. 14D, an interlayer insulating film 214 made of silicon oxide is formed to have a thickness of 3000 μm through plasma CVD. Next, a contact hole is formed through the interlayer insulating film 214 and the gate insulating film 209 by etching on the impurity region 212 (source). Next, an aluminum film is formed by sputtering and then patterned to form a source electrode 217.

도 14e를 참조하면, 질화 실리콘을 플라즈마 CVD 를 통해 보호막(215)으로서 2000 내지 6000Å으로 증착한다. 콘택트홀이 불순물 영역(드레인)(213)상에 에칭에 의해 보호막(215), 중간층 절연막(214) 및 게이트 절연막(209)을 관통하여 형성된다. 마지막으로 인듐 주석 산화막(ITO)이 픽셀 전극 (216)으로 형성된다. 이와 같이 해서 픽셀 TFT 가 얻어졌다.Referring to Fig. 14E, silicon nitride is deposited as a protective film 215 at 2000 to 6000 mV through plasma CVD. A contact hole is formed on the impurity region (drain) 213 through the protective film 215, the interlayer insulating film 214, and the gate insulating film 209 by etching. Finally, an indium tin oxide film ITO is formed as the pixel electrode 216. In this way, a pixel TFT was obtained.

본 발명이 양호한 실시예들로 개시되었더라도 본 발명의 범위는 그러한 특정 실시예들로 한정되지 않음을 이해해야 하며, 다양한 변형이 이루어질 수 있다.Although the present invention has been disclosed in the preferred embodiments, it should be understood that the scope of the present invention is not limited to such specific embodiments, and various modifications may be made.

예컨대 알콜등과 같은 무수용액을 사용하여 니켈 함유막이 형성될 수도 있다. 알콜을 사용할 때, 그 용액은 산화막을 사용하지 않고서 비결정 실리콘막상에 직접 형성될 수 있다. 특히, 니켈 아세틸 아세토네이트와 같은 니켈 함유 화합물은 에탄올에 용해될 수 있다. 상기 물질은 그 분해 온도가 비교적 낮기 때문에 결정화를 위해 가열하는 동안 분해될 수 있다. 니켈 아세틸 아세토네이트의 양은 용액내의 니켈 농도가 100ppm 이 되도록 선택된다. 용액을 코팅한 뒤 1 분 동안 1500rpm 으로 스핀 건조법을 통해 건조하므로서 니켈 함유막을 얻을 수 있다. 또한, 알콜의 접촉각이 물의 접촉각 보다 작기 때문에 막을 형성하는데 사용되는 용액의 양은 수용액이 사용될 때보다 더 적을 수 있다. 이경우, 100 제곱 mm 에 대해 2ml 가 적절하다. 결정 실리콘을 형성하기 위한 그다음의 공정들은 상기 양호한 실시예에서 설명된 공정과 전적으로 동일할 수 있다.For example, a nickel containing film may be formed using anhydrous solutions, such as alcohol. When using alcohol, the solution can be formed directly on the amorphous silicon film without using an oxide film. In particular, nickel containing compounds such as nickel acetyl acetonate can be dissolved in ethanol. The material can decompose during heating for crystallization because its decomposition temperature is relatively low. The amount of nickel acetyl acetonate is selected so that the nickel concentration in the solution is 100 ppm. After coating the solution, the nickel-containing film can be obtained by drying by spin drying at 1500 rpm for 1 minute. In addition, since the contact angle of alcohol is smaller than that of water, the amount of solution used to form the membrane may be less than when an aqueous solution is used. In this case, 2 ml is appropriate for 100 square mm. The following processes for forming crystalline silicon may be entirely the same as those described in the above preferred embodiment.

또다른 실시예로서 원소 니켈이 산에 의해 용해될 수 있다. 즉, 0.1 몰/l 의 질산이 산으로서 사용된다. 니켈분말이 상기 산에 50ppm 용해된다.In another embodiment, elemental nickel can be dissolved by acid. That is, 0.1 mol / l nitric acid is used as the acid. Nickel powder is dissolved in 50 ppm of the acid.

Claims (26)

하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 유리기판과,Glass substrate, 상기 유리 기판 상에 형성된 실리콘을 가진 결정 반도체층을 포함하는 채널 영역과,A channel region including a crystalline semiconductor layer having silicon formed on the glass substrate; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 결정 반도체층은 상기 유리기판의 표면에 평행한 축을 가지는 것을 특징으로 하는 반도체 장치.And the crystal semiconductor layer has an axis parallel to the surface of the glass substrate. 제 1 항에 있어서,The method of claim 1, 상기 결정 반도체층은 수소화 처리되는 것을 특징으로 하는 반도체 장치.The crystalline semiconductor layer is hydrogenated. 제 1 항에 있어서,The method of claim 1, 상기 결정 반도체층은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the crystalline semiconductor layer comprises a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 3 항에 있어서,The method of claim 3, wherein 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 유리 기판과,Glass substrate, 상기 유리 기판 상에 형성된 실리콘을 가진 결정 반도체층을 포함하는 채널 영역과,A channel region including a crystalline semiconductor layer having silicon formed on the glass substrate; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 결정 반도체층의 표면은 {110}, {123}, {134}, {235}, {145}, {156}, {257} 및 {167} 면들중 하나이상의 면을 갖지만 {111}면은 갖지 않는 것을 특징으로 하는 반도체 장치.The surface of the crystalline semiconductor layer has at least one of {110}, {123}, {134}, {235}, {145}, {156}, {257} and {167} planes, but the {111} plane It does not have a semiconductor device characterized by the above-mentioned. 제 5 항에 있어서,The method of claim 5, 상기 결정 반도체층은 수소화 처리되는 것을 특징으로 하는 반도체 장치.The crystalline semiconductor layer is hydrogenated. 제 5 항에 있어서,The method of claim 5, 상기 결정 반도체층은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the crystalline semiconductor layer comprises a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 7 항에 있어서,The method of claim 7, wherein 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 유리 기판과,Glass substrate, 상기 유리 기판 상에 형성된 실리콘을 가진 결정 반도체층을 포함하는 채널 영역과,A channel region including a crystalline semiconductor layer having silicon formed on the glass substrate; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 결정 반도체층의 표면은 {110}면은 갖지만 {111}면은 갖지 않는 것을 특징으로 하는 반도체 장치.A surface of the crystalline semiconductor layer has a {110} plane but no {111} plane. 제 9 항에 있어서,The method of claim 9, 상기 결정 반도체층은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the crystalline semiconductor layer comprises a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 9 항에 있어서,The method of claim 9, 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 상기 절연면 상에 형성된 복수의 실리콘 결정을 가진 채널 영역과,A channel region having a plurality of silicon crystals formed on the insulating surface; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 각각의 실리콘 결정은 상기 절연면에 평행한 [111]축을 가지는 것을 특징으로 하는 반도체 장치.Wherein each silicon crystal has a [111] axis parallel to the insulating surface. 제 12 항에 있어서,The method of claim 12, 상기 채널영역은 수소화 처리되는 것을 특징으로 하는 반도체 장치.And the channel region is hydrogenated. 제 12 항에 있어서,The method of claim 12, 상기 채널영역은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the channel region includes a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 14 항에 있어서,The method of claim 14, 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 제 12 항에 있어서,The method of claim 12, 상기 채널영역은 유리기판 상에 형성된 것을 특징으로 하는 반도체 장치.And the channel region is formed on a glass substrate. 하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 상기 절연면 상에 형성된 복수의 실리콘 결정을 가진 채널영역과,A channel region having a plurality of silicon crystals formed on the insulating surface; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 실리콘 결정의 각각은 {110}, {123}, {134}, {235}, {145}, {156}, {257} 및 {167} 면들중 하나이상의 면을 갖지만 {111}면은 갖지 않는 것을 특징으로 하는 반도체 장치.Each of the silicon crystals has at least one of {110}, {123}, {134}, {235}, {145}, {156}, {257} and {167} faces but no {111} faces. Characterized in that the semiconductor device. 제 17 항에 있어서,The method of claim 17, 상기 결정 반도체층은 수소화 처리되는 것을 특징으로 하는 반도체 장치.The crystalline semiconductor layer is hydrogenated. 제 17 항에 있어서,The method of claim 17, 상기 채널영역은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the channel region includes a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 19 항에 있어서,The method of claim 19, 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 제 17 항에 있어서,The method of claim 17, 상기 채널영역은 유리기판 상에 형성된 것을 특징으로 하는 반도체 장치.And the channel region is formed on a glass substrate. 하나 이상의 박막 트랜지스터를 가진 반도체 장치에 있어서,A semiconductor device having one or more thin film transistors, 상기 박막 트랜지스터는,The thin film transistor, 상기 절연면 상에 형성된 복수의 실리콘 결정을 가진 채널 영역과,A channel region having a plurality of silicon crystals formed on the insulating surface; 그들 사이에 끼워진 채널영역을 가진 소스 및 드레인 영역과,Source and drain regions having channel regions sandwiched between them, 상기 채널영역에 인접한 게이트 절연막 및,A gate insulating film adjacent to the channel region; 상기 게이트 절연막에 인접한 게이트 전극을 포함하며;A gate electrode adjacent the gate insulating film; 상기 각각의 실리콘 결정은 {110}면은 갖지만 {111}면은 갖지 않는 것을 특징으로 하는 반도체 장치.Wherein each of the silicon crystals has a {110} plane but no {111} plane. 제 22 항에 있어서,The method of claim 22, 상기 채널영역은 1×1019원자/㎤ 이하의 농도로 결정을 촉진시키기 위한 촉매 원소를 포함하는 것을 특징으로 하는 반도체 장치.And the channel region includes a catalytic element for promoting crystallization at a concentration of 1 × 10 19 atoms / cm 3 or less. 제 23 항에 있어서,The method of claim 23, wherein 상기 촉매 원소는 니켈, 팔라듐, 백금, 구리, 은, 금, 인듐, 주석, 인, 비소 및 안티몬으로 이루어진 군에서 선택된 것을 특징으로 하는 반도체 장치.The catalyst element is selected from the group consisting of nickel, palladium, platinum, copper, silver, gold, indium, tin, phosphorus, arsenic and antimony. 제 22 항에 있어서,The method of claim 22, 상기 채널영역은 수소를 포함하는 것을 특징으로 하는 반도체 장치.And the channel region comprises hydrogen. 제 22 항에 있어서,The method of claim 22, 상기 채널영역은 유리기판 상에 형성되는 것을 특징으로 하는 반도체 장치.And the channel region is formed on a glass substrate.
KR1020000013018A 1993-10-29 2000-03-15 A semiconductor device KR100273833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000013018A KR100273833B1 (en) 1993-10-29 2000-03-15 A semiconductor device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP29463393A JP3431033B2 (en) 1993-10-29 1993-10-29 Semiconductor fabrication method
JP93-294633 1993-10-29
JP30343693A JP3431034B2 (en) 1993-11-09 1993-11-09 Method for manufacturing semiconductor device
JP93-303436 1993-11-09
JP30720693 1993-11-12
JP93-307206 1993-11-12
JP16270594A JP3431041B2 (en) 1993-11-12 1994-06-20 Method for manufacturing semiconductor device
JP94-162705 1994-06-20
KR1019940028037A KR100273827B1 (en) 1993-10-29 1994-10-29 Semiconductor devices
KR1020000013018A KR100273833B1 (en) 1993-10-29 2000-03-15 A semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019940028037A Division KR100273827B1 (en) 1993-10-29 1994-10-29 Semiconductor devices

Publications (1)

Publication Number Publication Date
KR100273833B1 true KR100273833B1 (en) 2000-11-15

Family

ID=27528301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000013018A KR100273833B1 (en) 1993-10-29 2000-03-15 A semiconductor device

Country Status (1)

Country Link
KR (1) KR100273833B1 (en)

Similar Documents

Publication Publication Date Title
KR100297315B1 (en) A method for manufacturing a semiconductor device
US5923962A (en) Method for manufacturing a semiconductor device
KR100303898B1 (en) Semiconductor device manufacturing method
KR100297318B1 (en) Method of manufacturing a semiconductor device
KR100259665B1 (en) Method for manufacturing semiconductor device
US5612250A (en) Method for manufacturing a semiconductor device using a catalyst
KR100303110B1 (en) Semiconductor device and manufacturing method
JP3431041B2 (en) Method for manufacturing semiconductor device
US5851860A (en) Semiconductor device and method for producing the same
US7391051B2 (en) Semiconductor device forming method
JP3431034B2 (en) Method for manufacturing semiconductor device
KR100273833B1 (en) A semiconductor device
JP3545289B2 (en) Semiconductor device manufacturing method
JP3980298B2 (en) Method for manufacturing semiconductor device
JP3618604B2 (en) Semiconductor device manufacturing method
JP3193358B2 (en) Method for manufacturing semiconductor device
JP3600092B2 (en) Semiconductor device manufacturing method
JP3950307B2 (en) Method for manufacturing semiconductor device
JP2000138378A (en) Insulated gate field effect semiconductor device
JP2000114543A (en) Semiconductor device
JP2002057348A (en) Semiconductor device

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130801

Year of fee payment: 14

EXPY Expiration of term