KR100268921B1 - method for forming of dielectric - Google Patents

method for forming of dielectric Download PDF

Info

Publication number
KR100268921B1
KR100268921B1 KR1019970063354A KR19970063354A KR100268921B1 KR 100268921 B1 KR100268921 B1 KR 100268921B1 KR 1019970063354 A KR1019970063354 A KR 1019970063354A KR 19970063354 A KR19970063354 A KR 19970063354A KR 100268921 B1 KR100268921 B1 KR 100268921B1
Authority
KR
South Korea
Prior art keywords
dielectric film
tio
current
dielectric layer
dielectric
Prior art date
Application number
KR1019970063354A
Other languages
Korean (ko)
Other versions
KR19990042512A (en
Inventor
전재영
최상준
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019970063354A priority Critical patent/KR100268921B1/en
Publication of KR19990042512A publication Critical patent/KR19990042512A/en
Application granted granted Critical
Publication of KR100268921B1 publication Critical patent/KR100268921B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: A method for manufacturing a dielectric layer is provided to improve an operating characteristic and reliability, by reducing a leakage current and increasing electrostatic breakdown voltage. CONSTITUTION: A TiO2 dielectric layer is deposited. Simultaneously, impurities containing a strontium element of which electrovalence is low and ion radius is large, are implanted together with the TiO2 layer so that a dielectric layer having the ratio of Sr/Ti smaller than 1 on an interface is formed. Ti(OC3H7)4 is used as a source material in evaporating the TiO2 dielectric layer.

Description

유전체막의 형성방법{method for forming of dielectric}Method for forming of dielectric

본 발명은 유전체막에 관한 것으로 특히, 누설전류가 작고 정전파괴전압(내압)의 불량을 개선하기에 적당한 캐패시터의 유전체막의 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric film, and more particularly, to a method of forming a dielectric film of a capacitor suitable for reducing a leakage current and improving a failure of an electrostatic breakdown voltage (withstand voltage).

화학기상증착법으로 증착되는 고유전율의 박막의 경우 박막이 가지고 있는 내부결함에 의하여 과다한 누설전류 및 내압불량현상이 발생할 수 있다.In the case of a high dielectric constant thin film deposited by chemical vapor deposition, excessive leakage current and breakdown voltage may occur due to internal defects of the thin film.

예를 들어 TiO2로 형성된 유전체막의 경우는 비유전상수가 25∼86으로 실리콘산화막으로 형성된 유전체막이 비유전상수가 3.9인데 비하여 7∼25배 정도 높기 때문에 작은 캐패시터 면적에서 더 많은 전하를 저장할 수 있다.For example, in the case of the dielectric film formed of TiO 2 , the dielectric film formed of the silicon oxide film with the dielectric constant of 25 to 86 is 7 to 25 times higher than the dielectric constant of 3.9 so that more charge can be stored in a small capacitor area.

이러한 TiO2로 형성된 유전체막은 열화학기상증착법이나 플라즈마 화학기상 증착법이나 스퍼터링방식이나 이온빔 증착법이나 이온빔 스퍼터링방식이나 전자빔증착법과 같은 방법을 통하여 형성할 수 있다.The dielectric film formed of TiO 2 can be formed by a method such as thermal chemical vapor deposition, plasma chemical vapor deposition, sputtering, ion beam deposition, ion beam sputtering, or electron beam deposition.

종래에는 티타늄 이소프로폭사이드(Titanium Isopropoxide)(TiOC3H7)4를 열화학기상증착법으로 형성하는 것으로 다시말해서 (TiOC3H7)4를 가열 열분해시켜서 웨이퍼상에 증착시키는 방법으로 자세히 설명하면 다음과 같다.Conventionally, titanium isopropoxide (TiOC 3 H 7 ) 4 is formed by thermochemical vapor deposition. In other words, (TiOC 3 H 7 ) 4 is thermally pyrolyzed and deposited on a wafer. Same as

먼저 기상(Evaporator)에서 적정온도로 가열된 (TiOC3H7)4를 전달가스를 사용하여 반응관내로 주입시킨다. 이때 반응관내에는 (TiOC3H7)4의 열분해온도를 고려한 적정온도까지 가열된 서셉터위에 웨이퍼가 놓여 있기 때문에 이 웨이퍼상에 TiO2유전체막이 형성된다.First, (TiOC 3 H 7 ) 4 heated to an appropriate temperature in an evaporator is injected into a reaction tube using a delivery gas. At this time, since the wafer is placed on the susceptor heated to an appropriate temperature considering the thermal decomposition temperature of (TiOC 3 H 7 ) 4 , a TiO 2 dielectric film is formed on the wafer.

유전체막의 전류전도기구에는 쇼트키(Schottky) 전류나 터널전류나 풀-프렌켈(Poole-Frenkel)전류 또는 호핑(Hopping)전류발생기를 사용할 수 있는데 특히 TiO2유전체막의 경우에는 호핑전류기구에 의해 전류가 전도된다.Schottky currents, tunnel currents, full-french currents, or hopping current generators can be used for the current conducting device of the dielectric film. In particular, the TiO 2 dielectric film is used by the hopping current device. Is inverted.

이와 같은 TiO2유전체막의 전류전도기구는 TiO2유전체막 내부에 비화학양론상에 의해 생성된 옥시 베이컨시(Oxygen Vacancy)와 전자들에 의해 전류가 전도되는것으로써 옥시 베이컨시를 트랩 사이트(trap site)로 하여 각 트랩사이트의 사이를 전자들이 터널링해서 전류가 흐르게 되는 두께 제한 전류양식이다.Such TiO 2 dielectric film current conduction mechanism by doeneungeot current is conducted by the oxy-vacancy (Oxygen Vacancy) and E generated by the non-stoichiometric inside TiO 2 dielectric film oxy trap site vacancy (trap site ) Is a thickness limited current form in which electrons are tunneled between each trap site to allow current to flow.

상기 (TiOC3H7)4을 열화학기상증착법을 이용하여 증착한 TiO2유전체막은 도 1과 도 2에 도시한 바와 같이 0.1MV/㎝의 전장을 가했을 때 누설전류가 1.0(±0.24)×E-2A/㎠이었으며 정전파괴전압(내압)은 0.04(±0.011)MV/㎝이었다.The TiO 2 dielectric film deposited with (TiOC 3 H 7 ) 4 by thermochemical vapor deposition has a leakage current of 1.0 (± 0.24) × E when an electric field of 0.1 MV / cm is applied as shown in FIGS. 1 and 2. The breakdown voltage (withstand voltage) was -0.04 (± 0.011) MV / cm.

상기와 같은 종래 유전체막의 형성방법은 다음과 같은 문제가 있다.The conventional method for forming a dielectric film as described above has the following problems.

화학기상증착법으로 증착된 TiO2유전체막은 증착시에 비화학양론상에 의해 존재하게 되는 옥시 베이컨시와 전자들에 의해서 전류가 흐르게 되며 실리콘산화막에 비하여 누설전류가 크고 정전파괴전압이 낮아서 유전체막으로서의 신뢰성이 떨어진다.The TiO 2 dielectric film deposited by chemical vapor deposition has a current flowing through oxy vacancies and electrons that are present by non-stoichiometric phase during deposition, and has a higher leakage current and lower electrostatic breakdown voltage as a dielectric film than silicon oxide film. Poor reliability

본 발명은 상기와 같은 문제를 해결하기 위하여 안출한 것으로 특히, 누설전류를 줄이고 정전파괴 전압의 불량을 개선하기에 적당한 유전체막의 형성방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of forming a dielectric film suitable for reducing leakage current and improving the failure of electrostatic breakdown voltage.

도 1은 종래 TiO2유전체막과 본 발명 Sr이온이 도핑된 유전체막의 누설전류량을 나타낸 그래프1 is a graph showing the amount of leakage current between a conventional TiO 2 dielectric film and a dielectric film doped with Sr ions of the present invention.

도 2는 종래 TiO2유전체막과 본 발명 Sr이온이 도핑된 유전체막의 전류특성을 나타낸 데이터도Figure 2 is a data diagram showing the current characteristics of the conventional TiO 2 dielectric film and the dielectric film doped with Sr ion of the present invention

상기와 같은 목적을 달성하기 위한 본 발명 유전체막의 형성방법은 유전막을 증착함과 동시에 상기 유전막보다 전자가가 낮고 이온반경이 큰 불순물을 상기 유전막과 함께 주입하여 유전체막을 형성함을 특징으로 한다.The method of forming the dielectric film of the present invention for achieving the above object is characterized by forming a dielectric film by depositing a dielectric film and implanting impurities with a lower electron value and a larger ion radius than the dielectric film together with the dielectric film.

본 발명은 TiO2유전체막의 증착시 불순물 이온을 주입하여 유전체막의 전류특성을 향상시키고자 한 것이다.The present invention is to improve the current characteristics of the dielectric film by implanting impurity ions during the deposition of the TiO 2 dielectric film.

Ti4+보다 전자가가 낮고 이온반경이 큰 Sr2+를 주입하여 전기적 특성을 향상시키고자 한 것으로 티타늄 이소프로폭사이드(Titanium Isopropoxide)(Ti(OC3H7)4)에 SrO의 원료물질인 비스-테트라-메틸-헤프타네디어나토 스트론튬(Bis-Tetra-Methyl-Heptanedionato-Strontium)(Sr(TMHD)2)를 반응기 내로 주입하여 열화학기상증착법으로 형성하는 것이다.In order to improve the electrical properties by injecting Sr 2+ with lower electron valence and larger ion radius than Ti 4+ , the raw material of SrO in titanium isopropoxide (Ti (OC 3 H 7 ) 4 ) Phosphorus bis-tetra-methyl-heptanedierato strontium (Bis-Tetra-Methyl-Heptanedionato-Strontium) (Sr (TMHD) 2 ) is injected into the reactor and formed by thermochemical vapor deposition.

다시말해서 Ti(OC3H7)4와 Sr(TMHD)2을 가열 열분해시켜서 웨이퍼상에 증착시키는 방법으로써 보다 자세히 설명하면 다음과 같다.In other words, Ti (OC 3 H 7 ) 4 and Sr (TMHD) 2 are thermally pyrolyzed and deposited on a wafer.

먼저 원료물질인 Ti(OC3H7)4와 Sr(TMHD)2이 각각 들어있는 기상기(Evaporator)를 전달가스인 아르곤(Ar)을 사용하여 반응기 내부로 적정온도로 가열된 원료물질 (TiOC3H7)4와 Sr(TMHD)2을 반응관내로 주입한다. 이때 반응관내에는 (TiOC3H7)4의 열분해온도를 고려한 적정온도까지 가열된 서셉터위에 웨이퍼가 놓여 있고, 이 웨이퍼상에 TiO2유전체막이 형성된다.First, an evaporator containing Ti (OC 3 H 7 ) 4 and Sr (TMHD) 2 , respectively, was heated to an appropriate temperature inside the reactor using argon (Ar) as a delivery gas (TiOC). 3 H 7 ) 4 and Sr (TMHD) 2 are injected into the reaction tube. At this time, in the reaction tube, a wafer is placed on the susceptor heated to an appropriate temperature considering the thermal decomposition temperature of (TiOC 3 H 7 ) 4 , and a TiO 2 dielectric film is formed on the wafer.

유전체막의 전류전도기구에는 쇼트키(Schottky) 전류나 터널전류나 풀-프렌켈(Poole-Frenkel)전류 또는 호핑(Hopping)전류발생기를 사용할 수 있는데 특히 TiO2유전체막의 경우에는 호핑전류기구에 의해 전류가 전도된다.Schottky currents, tunnel currents, full-french currents, or hopping current generators can be used for the current conducting device of the dielectric film. In particular, the TiO 2 dielectric film is used by the hopping current device. Is inverted.

이와 같은 TiO2유전체막의 전류전도기구는 TiO2유전체막 내부에 비화학양론상에 의해 생성된 옥시 베이컨시(Oxygen Vacancy)와 전자들에 의해 전류가 전도되는것으로써 옥시 베이컨시를 트랩 사이트(trap site)로 하여 각 트랩사이트의 사이를 전자들이 터널링해서 전류가 흐르게 되는 두께 제한 전류양식을 사용한다.Such TiO 2 dielectric film current conduction mechanism by doeneungeot current is conducted by the oxy-vacancy (Oxygen Vacancy) and E generated by the non-stoichiometric inside TiO 2 dielectric film oxy trap site vacancy (trap site ), A thickness limited current form is used in which electrons tunnel between each trap site to allow current to flow.

본 발명에 따라 형성된 유전체막의 전류 흐름 이론을 화학식으로 설명하면 다음과 같다.Referring to the current flow theory of the dielectric film formed according to the present invention as follows.

TiO2유전체막에 2가의 금속산화물인 SrO를 유입시킬 경우 다음과 같은 관계식은 만족한다.When SrO, a divalent metal oxide, is introduced into the TiO 2 dielectric film, the following relation is satisfied.

MO=SrTi+Oo+VoMO = Sr Ti + Oo + Vo

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

상기와 같은 관계식에서 볼수 있듯이 전자의 농도가 감소하여 옥시젼 베이컨시가 증가한다. 여기서 단순히 2가의 금속산화물을 첨가할 경우에는 전류특성의 개선을 기대하기가 어렵다. 본 발명에서는 이온반경이 0.64Å인 Ti4+보다 훨씬 큰 1.27Å인 Sr2+이온을 첨가하게 될 경우 Sr2+이온이 Ti4+이온을 치환하지 못하고 계면에서 SrTiO3의 2차상을 형성하게 된다. SrTiO3의 경우 역시 옥시젼 베이컨시에 의한 전류 전도기구를 갖고 있지만 Sr과 Ti의 비율에 따라서 옥시젼 베이컨시의 농도가 변하게 된다. SrTiO3내에 여분의(Excess) Ti가 존재하여 Sr/Ti의 비율이 1보다 작도록 박막을 제조할 경우는 다음의 관계를 갖는다.As can be seen from the above relation, the concentration of electrons decreases, which increases oxygen vacancy. In this case, it is difficult to expect improvement in current characteristics when simply adding a divalent metal oxide. In the present invention, Sr 2+ ions do not substitute for Ti 4+ ions and form a secondary phase of SrTiO 3 at the interface when Sr 2+ ions with 1.27 훨씬 are much larger than Ti 4+ having an ion radius of 0.64 Å. do. SrTiO 3 also has a current conduction mechanism by oxygen vacancy, but the concentration of oxygen vacancy varies according to the ratio of Sr and Ti. When the thin film is manufactured such that an excess Ti exists in SrTiO 3 and the Sr / Ti ratio is less than 1, the following relationship is obtained.

TiO2=VSr+TiTi+2Oo+VoTiO 2 = V Sr + Ti Ti + 2Oo + Vo

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

의 관계식을 가지면서 전자의 농도가 감소하게 된다.The concentration of electrons decreases with the relation of.

호핑(Hopping) 전기전도기구에서 누설전류에 영향을 미치는 인자로는 차아지 캐리어(Charge Carrier)의 농도와 호핑 거리(Hopping distance)이며 따라서 계면에 형성된 SrTiO3이차상의 전류특성은 차아지 캐리어의 농도인 전자의 농도가 감소함에 따라 향상된다.The factors affecting the leakage current in the hopping electrical conduction device are the concentration of the charge carrier and the hopping distance. Therefore, the current characteristic of the SrTiO 3 secondary phase formed at the interface is the concentration of the charge carrier. It improves as the concentration of phosphorus electrons decreases.

따라서 TiO2박막의 전류특성은 두께 제한 기구에서 계면전류제한기구로 바뀌게 되며 전류 특성이 향상된 SrTiO3가 계면에서 이차상을 형성하고 있기 때문에 유전체막의 전류특성이 향상된다.Therefore, the current characteristics of the TiO 2 thin film are changed from the thickness limiting mechanism to the interfacial current limiting mechanism, and the current characteristics of the dielectric film are improved because the SrTiO 3 having improved current characteristics forms a secondary phase at the interface.

상기와 같은 본 발명의 전류누설량과 정전파괴전압은 도 1과 도 2에 도시한 바와 같이 6(±0.64)E-4A/㎠으로 감소하였고, 정전파괴전압은 0.54(±0.078)MV/㎝로 증가하였다.As shown in FIGS. 1 and 2, the current leakage amount and the electrostatic breakdown voltage of the present invention were reduced to 6 (± 0.64) E-4A / cm 2, and the electrostatic breakdown voltage was 0.54 (± 0.078) MV / cm. Increased.

상기와 같은 본 발명 유전체막의 형성방법은 다음과 같은 효과가 있다.The method of forming the dielectric film of the present invention as described above has the following effects.

종래에 따라 형성된 유전체막에 비하여 누설전류는 감소하였고, 정전파괴전압은 증가하였다. 따라서 동작특성이 좋은 신뢰성이 높은 유전체막을 형성할 수 있다.Compared with the dielectric film formed according to the prior art, the leakage current is reduced and the electrostatic breakdown voltage is increased. Therefore, a highly reliable dielectric film with good operating characteristics can be formed.

Claims (5)

TiO2의 유전막을 증착함과 동시에 상기 TiO2보다 전자가가 낮고 이온반경이 큰 Sr원소를 함유한 불순물을 상기 TiO2막과 함께 주입하여 계면의 Sr/Ti의 비가 1보다 작은 유전체막을 형성함을 특징으로 하는 유전체막 형성방법.A dielectric film of TiO 2 is deposited and an impurity containing an Sr element having a lower valence and a larger ion radius than that of TiO 2 is injected together with the TiO 2 film to form a dielectric film having a Sr / Ti ratio of less than 1 at an interface. A dielectric film forming method, characterized in that. 제 1 항에 있어서, 상기 TiO2의 유전막을 증착할때 원료물질은 Ti(OC3H7)4를 사용함을 특징으로 하는 유전체막의 형성방법.The method of claim 1, wherein the source material is Ti (OC 3 H 7 ) 4 when depositing the TiO 2 dielectric film. 제 1 항에 있어서, 상기 불순물로는 SrO를 사용함을 특징으로 하는 유전체막의 형성방법.The method of claim 1, wherein SrO is used as the impurity. 제 3 항에 있어서, 상기 불순물로 SrO를 사용하였을 경우 원료물질은 Sr(TMHD)2를 사용함을 특징으로 하는 유전체막의 형성방법.4. The method of claim 3, wherein when SrO is used as the impurity, the raw material uses Sr (TMHD) 2 . 제 1 항에 있어서, 상기 유전체막으로 SrTiO3이 형성되는 것을 특징으로 하는 유전체막의 형성방법.The method of claim 1, wherein SrTiO 3 is formed as the dielectric film.
KR1019970063354A 1997-11-27 1997-11-27 method for forming of dielectric KR100268921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970063354A KR100268921B1 (en) 1997-11-27 1997-11-27 method for forming of dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970063354A KR100268921B1 (en) 1997-11-27 1997-11-27 method for forming of dielectric

Publications (2)

Publication Number Publication Date
KR19990042512A KR19990042512A (en) 1999-06-15
KR100268921B1 true KR100268921B1 (en) 2000-12-01

Family

ID=19525737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970063354A KR100268921B1 (en) 1997-11-27 1997-11-27 method for forming of dielectric

Country Status (1)

Country Link
KR (1) KR100268921B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195227A (en) * 1992-01-16 1993-08-03 Mitsubishi Materials Corp High purity dielectric thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195227A (en) * 1992-01-16 1993-08-03 Mitsubishi Materials Corp High purity dielectric thin film

Also Published As

Publication number Publication date
KR19990042512A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
Moon et al. Roles of buffer layers in epitaxial growth of SrTiO3 films on silicon substrates
McKinley et al. Tantalum pentoxide for advanced DRAM applications
US7309889B2 (en) Constructions comprising perovskite-type dielectric
WO2001049896A1 (en) Methods of forming a high k dielectric layer and a capacitor
US8674479B2 (en) Method for producing MIM capacitors with high K dielectric materials and non-noble electrodes
Kwon et al. Atomic layer deposition and electrical properties of SrTiO3 thin films grown using Sr (C11H19O2) 2, Ti (Oi-C3H7) 4, and H2O
Lim et al. Characteristics of TiO2 films prepared by ALD with and without plasma
JP2012041633A (en) SUBSTANCE EQUIPPED WITH Zr-Ge-Ti-O OR Hf-Ge-Ti-O DIELECTRIC MATERIAL, AND ITS MANUFACTURING METHOD
Kim et al. The effect of an annealing process on atomic layer deposited TiO2 thin films
Song et al. Increment of the Dielectric Constant of Ta2 O 5 Thin Films by Retarding Interface Oxide Growth on Si Substrates
US6503763B2 (en) Method of making MFMOS capacitors with high dielectric constant materials
US6720607B1 (en) Method for improving the resistance degradation of thin film capacitors
KR100268921B1 (en) method for forming of dielectric
Choi et al. Control of the interfacial layer thickness in hafnium oxide gate dielectric grown by PECVD
Aleskandrova et al. Poole-Frenkel conduction in Al/ZrO 2/SiO 2/Si structures
KR100267780B1 (en) Method for forming of dielectric
Kim et al. Improvement in electrical insulating properties of 10-nm-thick Al 2 O 3 film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures
US5932905A (en) Article comprising a capacitor with non-perovskite Sr-Ba-Ti oxide dielectric thin film
KR100549566B1 (en) Capacitor Formation Method of Semiconductor Device
Werner et al. Atomic layer deposition of Ti-HfO2 dielectrics
Choi et al. Characteristics of ferroelectric YMnO3 thin films for MFISFET by MOCVD
KR19990006042A (en) Capacitor Manufacturing Method of Semiconductor Device
KR890001600B1 (en) Process of ceramic capacitors
KR100382247B1 (en) method of fabricating tantalum oxide layer for a semiconductor device
KR20000027837A (en) Method for forming capacitor of semiconductor devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100624

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee