KR100267143B1 - Fabrication method of light polarizing particles - Google Patents

Fabrication method of light polarizing particles Download PDF

Info

Publication number
KR100267143B1
KR100267143B1 KR1019940017458A KR19940017458A KR100267143B1 KR 100267143 B1 KR100267143 B1 KR 100267143B1 KR 1019940017458 A KR1019940017458 A KR 1019940017458A KR 19940017458 A KR19940017458 A KR 19940017458A KR 100267143 B1 KR100267143 B1 KR 100267143B1
Authority
KR
South Korea
Prior art keywords
polarizing material
particles
water
amount
micron
Prior art date
Application number
KR1019940017458A
Other languages
Korean (ko)
Other versions
KR950003861A (en
Inventor
에이. 첵 3세 조제프
아이. 톰슨 로버트
엠. 슬로박 스티븐
Original Assignee
로버트 엘. 삭스
리서치 프론티어스 인코퍼레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로버트 엘. 삭스, 리서치 프론티어스 인코퍼레이티드 filed Critical 로버트 엘. 삭스
Publication of KR950003861A publication Critical patent/KR950003861A/en
Application granted granted Critical
Publication of KR100267143B1 publication Critical patent/KR100267143B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Polarising Elements (AREA)
  • Colloid Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

편광물질 입자 제조에 사용되는 반응물의 양에 대해 일정량의 물을 첨가하여 액체 광밸브 서스펜션에 유용한 편광물질 결정을 제조하는 방법.A method of preparing a polarizer crystal useful for liquid light valve suspension by adding a certain amount of water to the amount of reactant used to prepare the polarizer particles.

Description

편광입자 제조방법Method of manufacturing polarized particles

본 발명은 광밸브에서 투과성을 제어하는데 사용하는 광밸브 서스펜션에 유용한 입자제조의 개선점에 관계한다.The present invention relates to improvements in particle production useful for light valve suspensions used to control permeability in light valves.

미국특허 제 4,877,313 호와 제 5,002,701 호는 광밸브, 광밸브 서스펜션에 유용한 입자, 및 광밸브 서스펜션을 발표한다. 이들 특허에서 흡착요오드를 함유한 편광재료는, (i) 원소형, 분자형 요오드, (ii) 할로겐화 수소산이나 암모늄이나 알칼리금속 또는 알칼리 토금속의 할로겐화물, (iii) 선구화합물을 선구화합물과 편광재료가 불용상태로 유지되는 비수성용매내 고분자 안정화제 용액의 존재하에서 반응시켜 얻은 착염으로 구성된다. 이들 입자는 액상 현택매질에 부유하며 광밸브 서스펜션을 형성한다.U.S. Patent Nos. 4,877,313 and 5,002,701 disclose light valves, particles useful for light valve suspensions, and light valve suspensions. In these patents, polarizing materials containing adsorbed iodine include (i) elemental and molecular iodine, (ii) halides of halides or ammonium or alkali metals or alkaline earth metals, and (iii) precursors to precursors and polarizing materials. It consists of a complex salt obtained by reacting in the presence of a polymer stabilizer solution in a non-aqueous solvent that remains insoluble. These particles float in the liquid suspension medium and form a light valve suspension.

광밸브 서스펜션에 현탁된 입자크기는 광밸브의 반복된 온-오프 싸이클동안 응집이나 침전현상없이 입자를 현탁상태로 유지시키도록 너무 크지 않는 것이 좋다(1㎛이하). 적절한 콜로이드 크기의 입자를 수득하는 것은 예상치 못한 것인데, 입자형성에 사용된 반응재료의 특성 및 조합, 다양한 결정화 조건 및 변수 때문이다. 큰 입자를 분쇄하면 광밸브 입자로서 기능을 하는 입자의 기능에 영향을 미친다. 따라서 초기에 적절한 크기로 입자를 형성시키는 것이 필요하다.The particle size suspended in the light valve suspension is preferably not too large (1 μm or less) to keep the particles suspended without flocculation or settling during repeated on-off cycles of the light valve. Obtaining particles of appropriate colloidal size is unexpected because of the nature and combination of the reaction materials used to form the particles, the various crystallization conditions and variables. Crushing large particles affects the function of particles functioning as light valve particles. Therefore, it is necessary to initially form the particles to a suitable size.

본 발명의 목적은 광밸브 서스펜션에 사용하기 적합한 크기의 편광재료의 결정을 제공하는 것이다.It is an object of the present invention to provide crystals of a polarizing material of a size suitable for use in a light valve suspension.

또다른 목적은 편광재료의 입자가 초기 형성될때 적절한 크기의 편광 결정 입자를 형성시키는 수단을 제공하는 것이다.Another object is to provide a means for forming polarized crystal particles of appropriate size when particles of polarizing material are initially formed.

이들과 다른 목적 및 특징과 장점은 다음의 설명에서 명확하다.These and other objects, features and advantages are apparent in the following description.

본 발명은 (i) 원소형, 분자형 요오드, (ii) 할로겐화 수소산, 또는 암모늄 또는, 알칼리금속 이나 토금속의 할로겐화물, 또한 (iii) 선구화합물을 선구화합물과 편광재료가 불용상태로 유지되는 비-수성용매에서 고분자 안정화제 용액의 존재하에서 또한 편광재료 입자를 형성시키지만 1㎛ 이상의 평균입자 길이를 가지는 편광재료 입자 형성을 가져오는 양보다는 적은양의 물의 존재하에서 반응시켜 얻은 착염으로 구성된 흡착 요오드 함유 편광재료를 제공한다.The present invention relates to the use of (i) elemental, molecular iodine, (ii) halogenated acid or halides of ammonium or alkali metals or earth metals, and (iii) precursor compounds in which the precursor and polarizing materials remain insoluble. Adsorbed iodine containing complex salts formed in the presence of a polymer stabilizer solution in an aqueous solvent and also reacted in the presence of a small amount of water rather than an amount that results in the formation of polarizing material particles having an average particle length of 1 μm or more. It provides a polarizing material.

일반적으로, 본 발명은 상기 반응혼합물로부터 형성된 편광재료 결정의 입자크기를 조절하여서, 광밸브 서스펜션에서 콜로이드성 서스펜션으로 유지되기 적절한 소형 입자만 제공하는 단계를 포함한다. 본 발명에서, 결정의 입자크기 조절은 편광재료 결정형성에 사용되는 반응매질내 물의 상대적 양을 조절하여 이루어질 수 있음이 발견되었다. 반응매질내 과잉량의 물은 광밸브 재료로는 적합치 못한 크기인 큰 결정을 형성시키며, 물이 전혀없는 곳에서 결정이 형성될 경우 광밸브입자 형성반응은 일어나지 않는다.In general, the present invention includes controlling the particle size of the polarizing material crystals formed from the reaction mixture to provide only small particles suitable to be maintained in the colloidal suspension in the light valve suspension. In the present invention, it was found that the control of the particle size of the crystal can be made by controlling the relative amount of water in the reaction medium used for crystallization of the polarizing material. Excess water in the reaction medium forms large crystals of a size unsuitable for the light valve material, and no light valve particle formation reaction occurs when crystals are formed in the absence of water.

본 발명에 있어서, 반응물 (i), (ii), (iii)의 조합된 중량에 대해서 사용될 물의 양은 미량에서 최대 20%이다. 어느 경우나 반응 매질에 포함될 물의 양은 실험에 의해 쉽게 결정할 수 있다. 일반적으로 광밸브입자에 적합한 평균입자크기는 0.2 마이크론 내지 1 마이크론 길이범위이며 물의 양이 많을수록 입자도 커진다. 광밸브 현탁매질내 입자현탁액 함유 광밸브 서스펜션의 붕괴시간과 서스펜션내 입자크기간에 상호관계가 있음이 발견되었다. 특정입자크기에 대한 시험은 붕괴시간 측정으로 이루어진다. 최대물의 양은 약 50 밀리초의 붕괴시간에 상관되는데, 이것은 붕괴시간 검사법을 써서 1 마이크론 길이의 입자를 나타낸다.In the present invention, the amount of water to be used for the combined weight of reactants (i), (ii) and (iii) is at most 20% in trace amounts. In either case, the amount of water to be included in the reaction medium can be easily determined experimentally. Generally, the average particle size suitable for light valve particles ranges from 0.2 micron to 1 micron in length, and the greater the amount of water, the larger the particles. It has been found that there is a correlation between the decay time of the light valve suspension containing the particle suspension in the light valve suspension medium and the particle size period in the suspension. Testing for specific particle sizes consists of measuring decay time. The maximum amount of water correlates to a decay time of about 50 milliseconds, which represents 1 micron long particles using the decay time test.

광밸브 현탁매질내 입자 서스펜션을 적절한 전극을 수용한 5밀리간격의 유리판으로된 광밸브 전지속에 충전한다. 광밸브 서스펜션을 텅스텐 램프로 연속 조사한다. 광밸브내 입자 서스펜션은 전극에 10KHz 에서 55 볼트를 가함으로써 여자된다. 광밸브 개방상태에 도달하기 위해서는 2-3밀리초정도 걸리며, 20밀리초 후에 전기장이 차단된다. 이후에 광밸브의 완전 폐쇄상태까지 붕괴시간이 측정된다. 6밀리초("ms")의 붕괴시간은 최고 0.2 마이크론의 평균입자크기에 상응하며 20ms 붕괴시간은 0.7 마이크론 정도의 평균입자크기, 50ms 정도의 붕괴시간은 1 마이크론 이상의 평균입자 길이에 상응한다. 붕괴시간은 입자크기에 관계하며 입자가 클수록 붕괴시간도 길다. 짧은 붕괴시간이 바람직하다. 50ms 이상의 붕괴시간은 및 침전이 일어나기 쉬운 적절하지 못한 입자를 나타낸다. 그러므로 최대 수분함량은 선구 화합물에 따라 50 밀리초 이상의 붕괴시간을 갖는 결정 또는 입자 제공하는 양보다 적은것이 바람직하다. 상기 언급한 바와 같이 최대 수분함량은 반응물 (i), (ii)와 (iii) 중량기초로 20 중량% 에서 시작한다.Particle suspension in the light valve suspension medium is charged into a light valve cell of 5 mm spacing glass plates containing appropriate electrodes. The light valve suspension is continuously irradiated with a tungsten lamp. Particle suspension in the light valve is excited by applying 55 volts at 10 KHz to the electrode. It takes 2-3 milliseconds to reach the light valve open state, and after 20 milliseconds the electric field is cut off. The decay time is then measured until the light valve is fully closed. The decay time of 6 milliseconds ("ms") corresponds to an average particle size of up to 0.2 microns, the 20 ms decay time corresponds to an average particle size of 0.7 microns, and the decay time of 50 ms corresponds to an average particle length of more than 1 micron. The decay time is related to the particle size, and the larger the particle, the longer the decay time. Short decay times are preferred. Disintegration times of more than 50 ms indicate inadequate particles that are susceptible to precipitation. Therefore, the maximum moisture content is preferably less than the amount provided by the crystal or particles having a disintegration time of 50 milliseconds or more, depending on the precursor compound. As mentioned above, the maximum moisture content starts at 20% by weight on the basis of reactants (i), (ii) and (iii) by weight.

본 발명의 방법에 있어서, (i) 원소형, 분자형 요오드, (ii) 할로겐화 수소산이나 암모늄이나 알칼리 금속 또는 알카리 토금속의 할로겐화물, (iii) 선구화합물을 선구화합물과 편광재료가 불용인 비-수성 용매와 일정량의 물의 존재하에서 반응된다. 반응 혼합물이 형성되면, 선구화합물은 반응용기 바닥에 침전하는데, 그 이유는 선구화합물이 비수성 용매에 불용성이기 때문이다. 반응물을 서로 접촉시킴으로써 반응이 진행될 수 있지만 초음파 교반법등으로 반응혼합물을 교반하여 반응속도를 증가시키는 것이 바람직하다.In the process of the present invention, (i) elemental, molecular iodine, (ii) halides of halides or ammonium, alkali metals or alkaline earth metals, and (iii) precursor compounds are insoluble in which the precursor compound and the polarizing material are insoluble. The reaction is carried out in the presence of an aqueous solvent and a certain amount of water. When the reaction mixture is formed, the precursor compound precipitates at the bottom of the reaction vessel because the precursor compound is insoluble in non-aqueous solvents. The reaction may proceed by contacting the reactants with each other, but it is preferable to increase the reaction rate by stirring the reaction mixture by ultrasonic stirring or the like.

편광재료 입자를 형성하는 반응은 반응혼합물 교반과 함께 실온에서 행하며 수시간내에 완료된다. 편광재료 입자가 비수성 용매에 불용성이므로 입자는 여과, 원심분리등의 방법으로 용매로 부터 쉽게 분리된다. 잔류 비-수성 용매는 증발에 의해 제거될 수 있다.The reaction to form the polarizing material particles is carried out at room temperature with stirring of the reaction mixture and is completed within a few hours. Since the particles of the polarizing material are insoluble in the non-aqueous solvent, the particles are easily separated from the solvent by filtration or centrifugation. Residual non-aqueous solvent can be removed by evaporation.

선구화합물(iii)은 원소요오드(i) 및 할로겐화물(ii)과 반응할 때 편광 결정을 생성하는 금속이온-킬레이트화 헤테로고리 화합물이다. 선구화합물은 헤테로고리 환에 질소원자를 함유하고 또한 킬레이트기도 포함한다. 질소-함유 헤테로고리 환은 4 내지 10개의 변(member)을 포함하며 질소, 산소 또는 황에서 선택된 3개의 추가 헤테로원자를 함유할 수 있다. 금속이온-킬레이트화 헤테로고리화합물은 각각 4 내지 10개의 환원자를 갖는 1 내지 4개의 융합헤테로고리 환이나 4 내지 8 변을 갖는 융합 헤테로환을 포함한다. 융합 헤테로고리 환은 산소, 질소나 황중 선택된 4개까지의 헤테로 원자를 갖는 것이 적당하다.Precursor (iii) is a metal ion-chelated heterocyclic compound that produces polarized crystals when reacted with elemental iodine (i) and halide (ii). The precursor compound contains a nitrogen atom in the heterocyclic ring and also contains a chelating group. The nitrogen-containing heterocyclic ring contains 4 to 10 members and may contain three additional heteroatoms selected from nitrogen, oxygen or sulfur. The metal ion-chelated heterocyclic compound includes one to four fused heterocyclic rings each having 4 to 10 reducing atoms or a fused hetero ring having 4 to 8 sides. The fused heterocyclic ring preferably has up to four hetero atoms selected from oxygen, nitrogen or sulfur.

예컨대, 금속이온-킬레이트화 헤테로고리 화합물은 하나이상의 킬레이트기 -N(H)-C(CO)-를 헤테로고리환의 환원자 일부로서 포함하는 포화나 불포화 헤테로고리환을 가질수 있다. 금속 이온-킬레이트화 헤테로고리환은 헤테로고리환의 환원자 일부로서 하나 이상의 킬레이트화기 -N=C(COOH)-를 가진 6-변 방향족(완전불포화) 헤테로고리환을 포함할 수 있다.For example, the metal ion-chelated heterocyclic compound may have a saturated or unsaturated heterocyclic ring containing at least one chelating group —N (H) —C (CO) — as part of the reducer of the heterocyclic ring. The metal ion-chelated heterocyclic ring may comprise a six-membered aromatic (fully unsaturated) heterocyclic ring having one or more chelating groups —N═C (COOH) — as part of the reducer of the heterocyclic ring.

본 발명의 편광재료를 형성하는데 유용한 화합물(Ⅰ-Ⅴ)은 다음의 구조의 화합물을 포함한다:Compounds (I-V) useful for forming the polarizing material of the present invention include compounds having the following structure:

여기서 R1은 카르복시, 히드록시, 2-피리딜이나 카르복시나 히드록시로 치환된 저급알킬이고 R2는 카르복시, 히드록시나 히드록시 혹은 카르복시 치환된 저급알킬이다. 저급알킬은 1 내지 4 탄소원자를 갖는 것이 바람직하다.Wherein R 1 is carboxy, hydroxy, 2-pyridyl or lower alkyl substituted by carboxy or hydroxy and R 2 is carboxy, hydroxy or hydroxy or carboxy substituted lower alkyl. Lower alkyl preferably has 1 to 4 carbon atoms.

화합물(Ⅰ-Ⅴ)은 공지이며 이량체, 공지화합물의 동형물이나 유사물이고 공지화합물과 유사하게 제조한다.Compounds (I-V) are known and dimers, isoforms or analogs of known compounds, and are prepared analogously to known compounds.

2-피리딜기 함유 화합물(Ⅰ)와 (Ⅳ)는 2,2'-디피리딜 제조와 유사하게 생성된다.2-pyridyl group-containing compounds (I) and (IV) are produced similarly to the preparation of 2,2'-dipyridyl.

화합물(Ⅵ)과 (Ⅶ)는 본 발명의 편광재료를 형성하는데 유용하다.Compounds (VI) and (IX) are useful for forming the polarizing material of the present invention.

여기서, R5, R6, R7, R8은 수소나 저급 알킬이고 R5와 R6중 하나 이상은 저급알킬이다.Wherein R 5 , R 6 , R 7 , R 8 are hydrogen or lower alkyl and at least one of R 5 and R 6 is lower alkyl.

R5, R6, R7또한 R8이 저급알킬일때 저급알킬은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸 및 유사체 같은 직쇄나 측쇄 알킬이 된다. 보통 저급알킬은 1 내지 6개의 탄소원자를 갖는다. 일반적으로 저급알킬 치환체의 탄소수가 증가할 때 유기용매내의 화합물(Ⅵ)이나 (Ⅶ)의 용해도는 증가하고 물에서의 용해도는 감소한다. 원하는 유기용매/물 용해도의 균형은 저급알킬기를 적절히 선택하여 얻는다.When R 5 , R 6 , R 7 and R 8 are lower alkyl, lower alkyl is straight or branched chain alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl and analogs. Lower alkyl usually has 1 to 6 carbon atoms. In general, as the carbon number of the lower alkyl substituent increases, the solubility of the compound (VI) or (iii) in the organic solvent increases and the solubility in water decreases. The desired balance of organic solvent / water solubility is obtained by appropriately selecting lower alkyl groups.

화합물(Ⅵ)과 (Ⅶ)는 공지되었고 이량체, 공지화합물의 동형물이나 유사물이고 공지화합물과 유사하게 제조할 수 있다.Compounds (VI) and (iii) are known and dimers, isoforms or analogs of known compounds, and can be prepared analogously to known compounds.

바람직한 선구화합물은 특히:Preferred precursor compounds are in particular:

글리신 무수물 (2,5-피페라진디온)Glycine Anhydride (2,5-piperazindione)

5,6-디히드로우라실5,6-dihydrouracil

우라졸Urasol

숙신이미드Succinimide

글리코루릴(아세틸렌우레아)Glycoruryl (acetylene urea)

히단토인Hydantoin

알라닌무수물(3,6-디메틸-2,5-피페라진디온)Alanine Anhydride (3,6-dimethyl-2,5-piperazindione)

3-메톡시-2-(1H)피리돈3-methoxy-2- (1H) pyridone

퀴날딘산Quinaldic acid

3,6-디메틸-피라진-2,5-디카르복실산3,6-dimethyl-pyrazine-2,5-dicarboxylic acid

피라진-2,5-디카르복실산Pyrazine-2,5-dicarboxylic acid

피라진산 (2-카르복시 피라진)Pyrazine acid (2-carboxypyrazine)

4-히드록시 퀴날딘산4-hydroxy quinaldic acid

4-메톡시 퀴날딘산4-methoxy quinaldic acid

피리딘-2-카르복실산Pyridine-2-carboxylic acid

피콜린산Picolinic acid

2-히드록시피리딘2-hydroxypyridine

바르비투르산Barbituric acid

8-히드록시퀴놀린8-hydroxyquinoline

시클로 루신Cycloleucine

2,2'-디피리딜중에서 선택한다.Select from 2,2'-dipyridyl.

입자형성에 사용되는 비-수성 용매는 광밸브 서스펜션의 액체 현탁매질으로서 아세트산 이소펜틸과 같은 공지의 유기에스테르이다. 비-수성 용매로서 아세트산 헥실을 사용하는 것이 바람직하다. 또한 비-수성 용매는 고분자 안정제를 용해할 수 있어야 하지만 선구화합물과 편광재료는 비-수성 용매에 불용성이어야 한다.The non-aqueous solvent used for forming the particles is a known organic ester such as isopentyl acetate as the liquid suspending medium of the light valve suspension. Preference is given to using hexyl acetate as a non-aqueous solvent. In addition, non-aqueous solvents should be able to dissolve the polymer stabilizer, while precursors and polarizers should be insoluble in non-aqueous solvents.

반응물(ii)의 할로겐화물 성분은 보통 요오드화물이며 염화물 또는 브롬화물도 가능하다.The halide component of reactant (ii) is usually iodide and may be chloride or bromide.

상술한 바에 있어서, 반응진행을 위해 조절된 양의 물이 반응매질에 들어있어야 한다. 물이 없을경우 반응이 일어나지 않고 과잉량의 물이 있을경우 입자가 너무 커진다. 사용될 물의 양을 결정하기 위해서 반응물, 고분자 안정화제, 비수성 용매 같은 공급원에 연루된 물을 계산에 포함시킬 필요가 있다. 예컨대 선구 화합물이 운반한 표면수와 선구화합물내 결정수가 계산에 포함되어야 한다.As described above, a controlled amount of water must be present in the reaction medium for the reaction to proceed. In the absence of water, no reaction occurs, and in the presence of excess water, the particles become too large. In order to determine the amount of water to be used, it is necessary to include water involved in sources such as reactants, polymer stabilizers, non-aqueous solvents. For example, the number of surfaces carried by the precursor compound and the number of crystallites in the precursor compound should be included in the calculation.

반응매질은 또한 반응물(i), (ii)과 (iii) 중량의 5 내지 50중량%의 양으로 소량의 메탄올을 포함한다.The reaction medium also comprises a small amount of methanol in an amount of 5 to 50% by weight of reactants (i), (ii) and (iii) by weight.

고분자 안정화제는 입자 응집을 방지하기 위해 사용된다. 고분자 안정화제는 광밸브 서스펜션에서 입자 응집 방지를 위해 사용하는 것으로 공지되었다. 편광재료 형성시 고분자 안정화제로서 니트로셀룰로오스를 사용하는 것이 바람직하며 광밸브 분야에 공지된 다른 고분자 안정화제도 사용할 수 있다.Polymeric stabilizers are used to prevent particle agglomeration. Polymeric stabilizers are known to be used to prevent particle agglomeration in light valve suspensions. It is preferable to use nitrocellulose as the polymer stabilizer in forming the polarizing material, and other polymer stabilizers known in the light valve field may be used.

편광재료 입자는 액체 현탁매질에 특히, 고분자 안정화제와 혼합물로 입자를 현탁시킴으로서 공지방식대로 광밸브 서스펜션이 된다.The polarizing material particles become light valve suspensions in a known manner by suspending the particles in a liquid suspending medium, in particular in a mixture with a polymer stabilizer.

일반적으로, 액체 현탁매질은 입자를 현탁시키며 입자응집 경향을 감소시켜서 입자를 현탁상태로 유지시키는 폴리머 안정화제를 용해하는 하나 이상의 전기 저항성 화학적 불활성 액체를 포함할 수 있다. 공지의 액체 현탁매질이 사용가능하다(미국특허 4,247,175). 일반적으로 액체 현탁매질 또는 이속에 용해된 고분자 안정화제중 하나 또는 둘다는 현탁된 입자를 중력 평형 상태로 유지시키도록 선택된다.In general, the liquid suspending medium may comprise one or more electrically resistant chemically inert liquids that dissolve the polymer stabilizer that suspends the particles and reduces the tendency for particle aggregation to maintain the particles in suspension. Known liquid suspending media can be used (US Pat. No. 4,247,175). In general, one or both of the liquid suspension medium or polymer stabilizer dissolved therein is selected to keep the suspended particles in gravity equilibrium.

본 발명의 광밸브 서스펜션은 미국특허 4,407,565에 공지되었고 액체 매질로서 전기저항성 불활성 저분자량 액체 플루오르카본 고분자를 사용하는 것에 기초하며, 상기 고분자는 50% 이상의 원자가 할로겐 원자이고 또한 60% 이상의 할로겐 원자가 불소이며 나머지는 염소 또는 브롬인 것으로 실온에서 비중이 1.5인 특징이 있다. 액체 현탁매질은 또한 예컨대 트리알킬 트리멜리테이트 같은 혼화성 전기저항성 유기액체를 포함하여 현탁입자에 대한 중력평형을 제공하고 입자를 액상 현탁매질에서 분산하는 것을 도와준다. 혼화성 전기저항성 유기액체로 유용한 기타물질도 공지이다(미국특허 4,772,103). 또한 액체 현탁재료에 대한 세부내용도 있다(미국특허 4,407,565).The light valve suspension of the present invention is known from US Pat. No. 4,407,565 and is based on the use of an electrically resistive inert low molecular weight liquid fluorocarbon polymer as a liquid medium, wherein the polymer is at least 50% valent halogen atoms and at least 60% halogen fluorine is fluorine. The remainder is chlorine or bromine with a specific gravity of 1.5 at room temperature. Liquid suspension media also include miscible electrically resistive organic liquids, such as trialkyl trimellitates, to provide gravity equilibrium for the suspended particles and to help disperse the particles in the liquid suspension medium. Other materials useful as miscible electrically resistive organic liquids are also known (US Pat. No. 4,772,103). There is also detail on liquid suspension materials (US Pat. No. 4,407,565).

할로겐화 액체를 포함하지 않는 다른 종류의 서스펜션도 사용가능하며 충분한 양의 안정화 고분자를 사용하면 입자를 중력 평형상태로 유지할 수 있다.Other types of suspensions that do not contain halogenated liquids are also available, and sufficient amounts of stabilizing polymer can be used to keep the particles in equilibrium.

또다른 광밸브 서스펜션은 가소제로 분류되는 유기액체의 액체 현탁 매질로 사용하는 것에 기초한다. 이러한 "가소제" 액체 현탁매질은 하나 이상의 전기저항성 불활성 유기액체를 함유하며 이들이 입자를 현탁하고 고체고분자 가소제를 용해한다. 예컨대 고체 고분자 가소제가 고체폴리(메타)크릴레이트일 경우 유용한 액체 현탁매질은 아디페이트, 벤조에이트, 글리세롤 트리아세테이트, 이소프탈레이트, 멜리테이트, 올레이트, 클로로파라핀, 프탈레이트, 세바케이트와 같은 폴리(메타)크릴레이트용 액체 가소제를 함유할 수도 있다. 다른 고체 고분자 안정화제용 액체 현탁매질은 이들 고분자용 가소제로 유용한 액체중 선택한다. 특히 트리-n-프로필이나 트리-n-부틸-트리멜리테이트 같은 트리알킬 트리멜리테이트, 디-옥틸 아디페이트 또는 디-2-에틸헥실 아디페이트와 같은 디알킬아디페이트가 네오펜틸(메타)크릴레이트 공중합체 기초 고분자 안정화제용 액체현탁 매질로 사용될 수 있다.Another light valve suspension is based on the use as a liquid suspending medium of organic liquids classified as plasticizers. Such “plasticizer” liquid suspension media contain one or more electrically resistive inert organic liquids, which suspend particles and dissolve solid polymer plasticizers. For example, when the solid polymeric plasticizer is a solid poly (meth) acrylate, useful liquid suspending media are adipates, benzoates, glycerol triacetates, isophthalates, melitates, poly (meth) s such as oleates, chloroparaffins, phthalates and sebacates. A liquid plasticizer for acrylate may be included. Liquid suspension media for other solid polymer stabilizers are selected among the liquids useful as plasticizers for these polymers. In particular, trialkyl trimellitates such as tri-n-propyl or tri-n-butyl-trimellitate, dialkyl adipates such as di-octyl adipate or di-2-ethylhexyl adipate may be neopentyl (meth) acrylic. It can be used as a liquid suspending medium for the rate copolymer base polymer stabilizer.

광밸브 서스펜션용 고분자 안정화제는 입자표면에 결합하고 또한 현탁매질의 비수성 액체에 용해하는 단일종 폴리머일 수 있다. 혹은, 고분자 안정화제 시스템 역할을 하는 2개이상의 고분자 안정화제가 있다. 예컨대 입자는 니트로셀룰로오스 같이 입자에 평면코팅을 제공하는 제 1 형 고분자 안정화제와 또한 제1안정화제에 결합하며 현탁매질에 용해하여 입자를 분산시키고 입자에 입체장애효과를 제공하는 하나이상의 고분자 안정화제로 코팅될 수 있다.The polymer stabilizer for light valve suspension may be a single polymer that binds to the particle surface and dissolves in the non-aqueous liquid of the suspension medium. Alternatively, there are two or more polymer stabilizers that serve as polymer stabilizer systems. For example, the particles may be a type 1 polymer stabilizer that provides planar coating to the particles, such as nitrocellulose, and also one or more polymer stabilizers that bind to the first stabilizer and dissolve in the suspension medium to disperse the particles and provide steric hindrance to the particles. Can be coated.

바람직하게는 서스펜션 상태로 입자를 유지하기 위해 액체 매질은 고분자 안정화제로서 A-B형 블럭 중합체를 포함할 수 있다(U.S. Patent application Serial No. 855,266, filed March 23, 1992, European Patent Publication 350,354). 니트로셀룰로오스나 다른 고분자 안정화제가 블럭 중합체에 추가적으로 액체 현탁매질에 제공될 수 있다. 입자를 현탁상태로 유지하기 위해 충분한 양의 A-B 블럭 중합체를 사용하는 것이 바람직하며 광밸브 서스펜션에 대해 사용되는 양은 실험적으로 결정된다. 폴리머 안정화제는 네오펜틸(메타)크릴레이트와 불포화 유기상의 공중합체와 같은 고체이거나 n-부틸아크릴레이트 및 히드록시에틸 아크릴레이트의 액체 공중합체같은 액체일 수 있다.Preferably the liquid medium may comprise an A-B type block polymer as a polymer stabilizer to maintain the particles in suspension (U.S. Patent application Serial No. 855,266, filed March 23, 1992, European Patent Publication 350,354). Nitrocellulose or other polymer stabilizers may be provided in the liquid suspension medium in addition to the block polymer. It is preferred to use an A-B block polymer in sufficient amount to keep the particles suspended and the amount used for the light valve suspension is determined experimentally. The polymer stabilizer may be a solid such as a copolymer of neopentyl (meth) acrylate and an unsaturated organic phase or a liquid such as a liquid copolymer of n-butyl acrylate and hydroxyethyl acrylate.

보통 고분자 안정화제의 양은 액체 광밸브 서스펜션 총량 기준하여 1 내지 30%, 특히 5 내지 25 중량% 이다. 그러나 고분자 안정화제 사용이 바람직하여도 모든 경우에 필요한 것은 아니다.Usually the amount of polymer stabilizer is from 1 to 30%, in particular from 5 to 25% by weight, based on the total amount of liquid light valve suspension. The use of polymer stabilizers, however, is preferred but not necessary in all cases.

본 발명의 액체 광밸브 서스펜션이나 광밸브는 자외선 흡수제, 열안정화제, 비-고분자형 계면활성제와 분산제등의 상용화재료를 포함할 수 있다.The liquid light valve suspension or light valve of the present invention may include commercially available materials such as ultraviolet absorbers, heat stabilizers, non-polymeric surfactants and dispersants.

액체 광밸브 서스펜션은 광밸브 광조절기소로 사용하거나 또는 광조절기소로 사용되는 필름으로 형성될 수 있다. 예컨대 U.S 특허와 출원을 참조한다(972, 826, 972, 830, November 6,1992).The liquid light valve suspension may be formed of a film used as a light valve light regulator or used as a light regulator. See, eg, U.S patents and applications (972, 826, 972, 830, November 6,1992).

다음은 본 발명의 구체예이다.The following is an embodiment of the present invention.

[실시예 1]Example 1

다음의 성분을 혼합한다:Mix the following ingredients:

55℃에서 일정 중량까지 건조시킨 40g의 1/4sec SS 니트로셀룰로오스를 600g의 헥실 아세테이트(알수없는 양의 잔류수를 함유)에 용해하고 이 용액에 12g의 선구화합물인 피라진-2,5-디카르복실산 디히드레이트(표면수 함유) 10.56g의 무수요오드화칼슘, 18g의 요오드원소, 또한 3.5g의 무수에탄올을 첨가한다. 혼합물을 1시간동안 흔들고 그동안 편광입자가 헥실 아크릴레이트에 서스펜션으로 형성된다. 시험기로 측정시 입자 붕괴시간은 6 밀리초이었다.40 g of 1/4 sec SS nitrocellulose, dried at 55 ° C. to constant weight, are dissolved in 600 g of hexyl acetate (containing an unknown amount of residual water) and 12 g of the precursor pyrazine-2,5-dicar in this solution. Acid dihydrate (containing surface water) 10.56 g of calcium iodide anhydride, 18 g of iodine element, and 3.5 g of anhydrous ethanol are added. The mixture is shaken for 1 hour during which time polarizing particles are formed as a suspension in hexyl acrylate. The particle disintegration time was 6 milliseconds as measured by the tester.

[실시예 2]Example 2

0.07g의 물을 첨가하여 실시예 1이 반복된다. 입자의 붕괴시간은 9.5 밀리초였다.Example 1 is repeated with addition of 0.07 g of water. The decay time of the particles was 9.5 milliseconds.

[실시예 3]Example 3

0.10g의 물을 첨가하여 실시예 1이 반복된다. 입자의 붕괴 시간은 15 밀리초였다.Example 1 is repeated with addition of 0.10 g of water. The decay time of the particles was 15 milliseconds.

[실시예 4]Example 4

상기 성분을 다음과 같이 혼합한다:The ingredients are mixed as follows:

55℃에서 일정 중량까지 건조시킨 10g의 1/4sec SS 니트로셀룰로오스를 150g의 헥실 아세테이트(잔류수 제거를 위해 132 분자체에 통과 건조)에 용해하고 이 용액에 3g의 선구화합물인 피라진-2,5-디카르복실산 디히드레이트(표면수 함유), 2.64g의 무수 요오드화칼슘, 4.5g의 요오드원소, 1.10g의 물 또한 3.5g의 무수 메탄올을 첨가한다. 혼합물을 1시간동안 흔들고 이후에 편광입자가 헥실 아크릴레이트에서 서스펜션으로 형성된다. 시험기로 측정시 입자 붕괴시간은 6 밀리초이었다.10 g of 1/4 sec SS nitrocellulose, dried at 55 ° C. to a constant weight, is dissolved in 150 g of hexyl acetate (dry through 132 molecular sieves to remove residual water) and 3 g of the precursor compound pyrazine-2,5 -Dicarboxylic acid dihydrate (containing surface water), 2.64 g of anhydrous calcium iodide, 4.5 g of iodine element, 1.10 g of water, and also 3.5 g of anhydrous methanol. The mixture is shaken for 1 hour and then polarized particles are formed in suspension in hexyl acrylate. The particle disintegration time was 6 milliseconds as measured by the tester.

[실시예 5]Example 5

0.20g의 물을 첨가하여 실시예 4를 반복한다. 입자의 붕괴시간은 8밀리초였다.Repeat Example 4 with the addition of 0.20 g of water. The decay time of the particles was 8 milliseconds.

[실시예 6]Example 6

0.23g의 물을 첨가하여 실시예 4를 반복한다. 입자의 붕괴시간은 10밀리초였다.Repeat Example 4 with the addition of 0.23 g of water. The decay time of the particles was 10 milliseconds.

[실시예 7]Example 7

0.30g의 물을 첨가하여 실시예 4를 반복한다. 입자의 붕괴시간은 11밀리초였다.Example 4 is repeated with addition of 0.30 g of water. The decay time of the particles was 11 milliseconds.

[실시예 8]Example 8

0.35g의 물을 첨가하여 실시예 4를 반복한다. 입자의 붕괴시간은 12밀리초였다.Example 4 is repeated with addition of 0.35 g of water. The decay time of the particles was 12 milliseconds.

[실시예 9]Example 9

0.5g의 물과 5g의 무수 메탄올을 첨가하여 실시예 4를 반복한다. 그결과로 나온 편광입자의 붕괴시간은 50 밀리초이고 입자크기는 너무 컸다.Example 4 is repeated with 0.5 g of water and 5 g of anhydrous methanol. The resulting decay time of the polarized particles was 50 milliseconds and the particle size was too large.

실시예에서 보는 것과 같이 입자의 붕괴시간은(입자크기의 함수) 물의 첨가에 따라 증가한다. 선구화합물에 존재하는 표면수는 가변적이지만 대체로 선구화합물 중량에 대해 1 내지 3 중량% 범위이다. 표면수의 양은 일정량의 선구물질을 일정중량까지 건조하고 결정수로 존재하는 물의 계산치를 감하여 결정한다. 완전 수화된 선구화합물내의 결정수는 1몰의 선구화합물 당 2몰의 물의 비율로 존재한다. 결정수는 선구 화합물에 약하게 결합되어 있으므로 결정수의 일부를 상실함 없이 표면수를 제거할 수는 없다.As shown in the examples, the disintegration time of the particles (function of particle size) increases with the addition of water. The number of surfaces present in the precursor is variable but generally ranges from 1 to 3% by weight relative to the weight of the precursor. The amount of surface water is determined by drying a certain amount of precursor to a certain weight and subtracting the calculated water present in the crystal water. Crystalline water in the fully hydrated precursor compound is present at a rate of 2 moles of water per mole of precursor. Crystalline water is weakly bound to the precursor compounds, so it is not possible to remove surface water without losing part of the crystallized water.

Claims (7)

(i) 원소형, 분자형 요오드, (ii) 할로겐 수소산, 암모늄이나 알칼리금속 또는 알칼리 토금속의 할로겐화물, (iii) 헤테로고리환에 질소원자를 포함한 금속이온 킬레이트화 헤테로고리 화합물에서 선택된 선구화합물을 선구화합물과 편광재료가 불용상태로 유지되는 비-수성 용매에든 고분자 안정제 용액의 존재하에서 반응시켜 수득되는 착염을 포함하는 흡착 요오드 함유 편광재료에 있어서,precursors selected from (i) elemental and molecular iodine, (ii) halogenated hydrochloric acid, halides of ammonium or alkali metals or alkaline earth metals, and (iii) metal ion chelated heterocyclic compounds containing nitrogen atoms in the heterocyclic ring. In an adsorbed iodine-containing polarizing material comprising a complex salt obtained by reacting a precursor compound and a polarizing material in a non-aqueous solvent in an insoluble state in the presence of a polymer stabilizer solution, 편광재료 입자를 형성시키지만 평균 입자길이가 1마이크론을 초과하는 편광재료입자를 형성시키지 못하도록 하는 양으로 물의 존재하에서 수득되며, 상기 편광재료 입자가 1마이크론 미만의 평균길이를 가짐을 특징으로 하는 흡착요오드 함유 편광재료.Adsorption iodine characterized in that the polarizing material particles are formed in the presence of water in an amount that prevents the formation of polarizing material particles whose average particle length exceeds 1 micron, and wherein the polarizing material particles have an average length of less than 1 micron. Containing polarizing material. 제 1 항에 있어서, 선구화합물이 2,5-디카르복시 피라진인것을 특징으로 하는편광재료.The polarizing material according to claim 1, wherein the precursor compound is 2,5-dicarboxypyrazine. (i) 원소분자형 요오드, (ii) 할로겐 수소산, 암모늄이나 알칼리금속 또는 알칼리 토금속의 할로겐화물, (iii) 헤테로고리환에 질소원자를 포함한 금속이온 킬레이트화 헤테로고리 화합물에서 선택된 선구화합물을 선구화합물과 편광재료가 불용상태로 유지되는 비-수성 용매에든 고분자 안정제 용액의 존재하에서 반응시키는 단계를 포함하는 편광재료 입자 제조 방법에 있어서,A precursor is selected from (i) an elemental molecular iodine, (ii) a halogenated hydrofluoric acid, a halide of an ammonium or an alkali or alkaline earth metal, and (iii) a metal ion chelated heterocyclic compound containing a nitrogen atom in the heterocyclic ring. In the polarizing material particle production method comprising the step of reacting in the presence of a polymer stabilizer solution or a non-aqueous solvent in which the polarizing material is maintained in an insoluble state, 편광재료 입자를 형성시키지만 평균 입자길이가 1마이크론을 초과하는 편광재료입자를 형성시키지 못하도록 하는 양으로 물의 존재하에서 반응이 수행되며 형성된 입자가 1마이크론 미만인 평균길이를 가짐을 특징으로 하는 편광재료 입자 제조방법.Preparation of polarizing material particles, characterized in that the reaction is carried out in the presence of water in an amount that prevents the formation of polarizing material particles but an average particle length of more than 1 micron, and the formed particles have an average length of less than 1 micron Way. 제 3 항에 있어서, 선구화합물이 2,5-디카르복시 피라진인것을 특징으로 하는 편광재료 입자 제조방법.4. A method for producing a polarizing material particle according to claim 3, wherein the precursor compound is 2,5-dicarboxypyrazine. 제 3 항에 있어서, 반응이 메탄올 존재하에서 실행됨을 특징으로 하는 제조방법.4. A process according to claim 3, wherein the reaction is carried out in the presence of methanol. 제 3 항에 있어서, 비-수성용매가 이소펜틸 아세테이트임을 특징으로 하는 제조방법.4. A process according to claim 3 wherein the non-aqueous solvent is isopentyl acetate. 제 3 항에 있어서, 물의 양이 반응물 (i), (ii)과 (iii)의 중량에 대해 미량내지 20중량% 까지인 것을 특징으로 하는 제조방법.4. A process according to claim 3 wherein the amount of water is from traces up to 20% by weight relative to the weight of reactants (i), (ii) and (iii).
KR1019940017458A 1993-07-21 1994-07-20 Fabrication method of light polarizing particles KR100267143B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US9574693A 1993-07-21 1993-07-21
US095,746 1993-07-21
US095.746 1993-07-21
US268.412 1994-07-08
US268,412 1994-07-08
US08/268,412 US5516463A (en) 1993-07-21 1994-07-08 Method of making light-polarizing particles

Publications (2)

Publication Number Publication Date
KR950003861A KR950003861A (en) 1995-02-17
KR100267143B1 true KR100267143B1 (en) 2000-10-16

Family

ID=26790558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940017458A KR100267143B1 (en) 1993-07-21 1994-07-20 Fabrication method of light polarizing particles

Country Status (7)

Country Link
US (1) US5516463A (en)
EP (1) EP0635734A3 (en)
JP (1) JP3448354B2 (en)
KR (1) KR100267143B1 (en)
AU (1) AU682367B2 (en)
BR (1) BR9402876A (en)
CA (1) CA2128484C (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2336347C (en) * 1998-07-09 2004-11-23 Research Frontiers Incorporated Polyhalide particles and light valves comprising same
CA2336371C (en) * 1998-07-09 2005-01-04 Research Frontiers Incorporated Light-polarizing particles of improved particle size distribution
US6334967B1 (en) 1998-07-09 2002-01-01 Rsearch Frontiers Incorporated Light-polarizing particles of improved particle size distribution
US6517746B1 (en) 1998-07-09 2003-02-11 Research Frontiers Incorporated Polyhalide particles and light valves comprising same
US6987602B2 (en) * 1999-06-07 2006-01-17 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
US6529312B1 (en) 1999-06-07 2003-03-04 Research Frontiers Incorporated Anisometrically shaped carbon and/or graphite particles, liquid suspensions and films thereof and light valves comprising same
EP1206716A1 (en) * 1999-08-13 2002-05-22 California Institute Of Technology Optoelectronic device and method utilizing nanometer-scale particles
US6429961B1 (en) 2000-10-03 2002-08-06 Research Frontiers Incorporated Methods for retrofitting windows with switchable and non-switchable window enhancements
US6522446B2 (en) 2001-04-25 2003-02-18 Research Frontiers Incorporated Anisometrically shaped metal particles, liquid suspensions and films thereof and light valves comprising same
US6606185B2 (en) 2001-06-12 2003-08-12 Research Frontiers Incorporated SPD films and light valves comprising liquid suspensions of heat-reflective particles of mixed metal oxides and methods of making such particles
US6804040B2 (en) * 2003-02-13 2004-10-12 Research Frontiers Incorporated Method and device for controlling voltage provided to a suspended particle device
US7417785B2 (en) * 2005-01-18 2008-08-26 Research Frontiers Incorporated Methods and circuits for distributing power to SPD loads
WO2009139444A1 (en) * 2008-05-15 2009-11-19 日立化成工業株式会社 Light adjusting particle manufacturing method and smart film using light adjusting particles manufactured with said method
US20090241424A1 (en) * 2008-06-06 2009-10-01 Msa Aircraft Products Ltd. Modular Window For An Aircraft Including An SPD Lens And An Opaque Shade
KR102029548B1 (en) 2017-12-07 2019-10-07 삼성전기주식회사 Coil component
KR102430636B1 (en) 2018-03-08 2022-08-09 삼성전기주식회사 Coil component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425344A2 (en) * 1989-10-27 1991-05-02 Research Frontiers Incorporated Light polarizing materials and suspensions thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289712A (en) * 1937-12-04 1942-07-14 Polaroid Corp Process for the manufacture of polarizing materials
US4270841A (en) * 1978-10-31 1981-06-02 Research Frontiers Incorporated Light valve containing suspension of perhalide of alkaloid acid salt
US4407565A (en) * 1981-01-16 1983-10-04 Research Frontiers Incorporated Light valve suspension containing fluorocarbon liquid
JPS6270802A (en) * 1985-02-26 1987-04-01 Sumitomo Chem Co Ltd Polarizing film
US5130057A (en) * 1985-06-10 1992-07-14 Research Frontiers Incorporated Light polarizing materials and suspensions thereof
US4877313A (en) * 1986-09-30 1989-10-31 Research Frontiers Incorporated Light-polarizing materials and suspensions thereof
KR960014118B1 (en) * 1992-01-10 1996-10-14 한국유리공업 주식회사 Method for making film with polarized light-suspension

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425344A2 (en) * 1989-10-27 1991-05-02 Research Frontiers Incorporated Light polarizing materials and suspensions thereof

Also Published As

Publication number Publication date
AU682367B2 (en) 1997-10-02
EP0635734A3 (en) 1996-04-17
US5516463A (en) 1996-05-14
EP0635734A2 (en) 1995-01-25
BR9402876A (en) 1995-04-11
CA2128484A1 (en) 1995-01-22
CA2128484C (en) 2004-07-13
JPH07168211A (en) 1995-07-04
JP3448354B2 (en) 2003-09-22
KR950003861A (en) 1995-02-17
AU6758994A (en) 1995-02-02

Similar Documents

Publication Publication Date Title
KR100267143B1 (en) Fabrication method of light polarizing particles
Nancollas et al. Kinetics of crystal growth of calcium oxalate monohydrate
US6188505B1 (en) Color-stabilized electrochromic devices
JP2871837B2 (en) Polarizing material and liquid suspension for light valve containing the polarizing material
Down et al. Solutions of lithium salts in liquid lithium: preparation and X-ray crystal structure of the dilithium salt of carbodi-imide (cyanamide)
JPS62223019A (en) Crystalline tin-antimony oxide sol and production thereof
EP0532809B1 (en) Light-polarizing material based on ethylenediamine polyacetic acid derivatives
Lasser et al. Excited state pK values from fluorescence measurements
Linck Nonbridging ligand and temperature effects on the rate of reduction of bromocobalt (III) complexes by iron (II)
Erwin et al. The crystallization and dissolution of sodium urate
Bishop et al. Isoelectric point of a protein in the crosslinked crystalline state: β-Lactoglobulin
JPH09501099A (en) Crystallization reactions mediated by complexation reactions using complexing agents
JPH07230133A (en) Growth of particle for preparing ultrathin plate-shaped particle emulsion of high bromide
MXPA94005529A (en) Method for the preparation of polarizing particles of
Beekley et al. The Adsorption of Silver Salts by Silver Iodide
Giordano et al. Crystal structures of 2, 2-dimethyltriazanium chloride and 1, 1, 1-trimethylhydrazinium chloride
US5516462A (en) Enhanced cycle lifetime electrochromic systems
JP3187874B2 (en) Light-polarizing substances based on ethylenediaminepolyacetic acid
JPH07316125A (en) Production of aqueous solution of alkali metal 2-acrylamido-2-methylpropanesulfonate
Faigl et al. A combined DSC, X-ray diffraction, and molecular modelling study of chiral discrimination in the purification of enantiomeric mixtures of cis-permethrinic acid
Doxsee et al. Crystallization of ammonium nitrate from nonaqueous solvents
US5679281A (en) Gelled material compositions with modified halopolymer
EP0403711A1 (en) Light polarizing materials and suspensions thereof
JP2726724B2 (en) Polarizing material
JP3572508B2 (en) Silver halide photographic material and processing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120625

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140619

Year of fee payment: 15

EXPY Expiration of term