KR100255827B1 - Process for preparation of a particle reinforced super absorbent polymer - Google Patents

Process for preparation of a particle reinforced super absorbent polymer Download PDF

Info

Publication number
KR100255827B1
KR100255827B1 KR1019970049793A KR19970049793A KR100255827B1 KR 100255827 B1 KR100255827 B1 KR 100255827B1 KR 1019970049793 A KR1019970049793 A KR 1019970049793A KR 19970049793 A KR19970049793 A KR 19970049793A KR 100255827 B1 KR100255827 B1 KR 100255827B1
Authority
KR
South Korea
Prior art keywords
polymer
superabsorbent polymer
solution
polymerization
weight
Prior art date
Application number
KR1019970049793A
Other languages
Korean (ko)
Other versions
KR19990027352A (en
Inventor
권오식
김재륜
진영섭
김기범
고희찬
Original Assignee
이종학
한화석유화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종학, 한화석유화학주식회사 filed Critical 이종학
Priority to KR1019970049793A priority Critical patent/KR100255827B1/en
Publication of KR19990027352A publication Critical patent/KR19990027352A/en
Application granted granted Critical
Publication of KR100255827B1 publication Critical patent/KR100255827B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • C08F2/08Organic solvent with the aid of dispersing agents for the polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/72Fillers; Inorganic pigments; Reinforcing additives

Abstract

PURPOSE: A process for preparing the titled highly water-absorbable polymer by adding an inorganic or organic filler having a melting point higher than that of a highly water-absorbable polymer to a monomer solution, polymerizing and subjecting to capture in highly water-absorbable polymer gel is provided. Whereby, the obtained polymer has excellent physical properties such as absorption power and salt absorption power as well as maintaining basic physical properties without lowering absorption power. CONSTITUTION: This titled polymer is prepared by the process consisting of: mixing 1 to 40% by weight of an inorganic or organic filler having a melting point higher than that of a highly water-absorbable polymer and a particle size of 50 to 1,000 micrometer with 0.01 to 10% by weight of a dispersing agent having an HLB value of 5 to 20 and a monomer; dispersing in a monomer solution having high fluidization; solution-polymerizing at 90 to 140deg.C for 5 to 60 min, subjecting to capture in a highly water-absorbable polymer; drying; and pulverizing.

Description

필러 함유 고흡수성 고분자의 제조방법Manufacturing method of filler-containing superabsorbent polymer

본 발명은 필러(filler) 함유 고흡수성 고분자의 제조방법에 관한 것으로, 좀 더 상세하게는 흡수능 및 염흡수능 등의 수지물성이 우수하고 흡수능의 저하없이 기본물성을 유지하면서 흡수속도가 기존제품보다 월등히 빠른 고흡수성 고분자(이하 “고흡수성 수지”로도 표기함)의 제조방법에 관한 것이다.The present invention relates to a method for preparing a filler-containing superabsorbent polymer, and more particularly, has excellent resin properties such as absorbency and salt absorption ability, and the absorption rate is much higher than that of existing products while maintaining the basic properties without degrading the absorption ability. It relates to a method for producing a fast super absorbent polymer (hereinafter also referred to as "super absorbent polymer").

고흡수성 수지는 기저귀, 여성용 생리대, 위생용품, 토양보수제, 공업용 실링제, 전선용 투습방지제, 및 유기용매중의 수분제거제 등으로 광범위하게 사용되고 있다.Superabsorbent polymers are widely used as diapers, feminine sanitary napkins, hygiene products, soil repair agents, industrial sealing agents, wire moisture barriers, and moisture removal agents in organic solvents.

특히, 최종제품에서 흡수속도는 응용상 매우 중요한 물성 중의 하나인데 흡수속도가 열악할 경우 유체가 순간적으로 유입될 때 흡수속도보다 유동속도가 크기 때문에 착용감이 떨어져 불쾌한 느낌이 들기도 하고 착용물체 사이로 유체가 흐르기도하기 때문에 좋지않다. 그러나 흡수속도가 충분히 빠를 경우 유체가 유입될 때 단시간내에 유체를 흡수하므로써 착용감이 매우 부드럽고 누수의 위험이 적다. 따라서 고흡수성 고분자의 응용에서 흡수속도는 기타 흡수능, 겔강도와 더불어 매우 중요한 평가 항목이 된다.Particularly, the absorption rate is one of the important properties for the final product. If the absorption rate is poor, the flow rate is larger than the absorption rate when the fluid is instantaneously flowed, so the feeling of wearing is poor and the object is uncomfortable. Not good because it also flows. However, if the absorption rate is fast enough, it is very comfortable to wear by absorbing the fluid within a short time when the fluid is introduced, and there is little risk of leakage. Therefore, the rate of absorption in the application of superabsorbent polymer is a very important evaluation item along with other absorption capacity and gel strength.

이러한 흡수속도의 향상의 위해서 고흡수성 고분자 입자의 표면적을 중가시키기 위한 많은 시도가 이루어져 왔는데, 미국특허 제 4,649,164호에서는 발포제로 소듐바이카보네이트, 암모늄카보네이트 등을 사용하여 단량체의 산을 중화시키는 역할과 동시에 이산화탄소의 발생으로 중합중에 고분자내에서 기포가 발생하여 결과적으로 고흡수성 고분자의 기질의 표면적을 중대시키고, 따라서 흡습속도 등의 물성을 개선시키는 효과가 있다고 하였다. 그러나, 상기 방법은 단량체의 중화반응과 발포가 동시에 일어나는 카보네이트 화합물을 사용함으로써 발포제의 특성상 발포를 균일하게 조절하는 조건이 까다롭기 때문에 기술적으로 균일한 물성의 제품을 제조하기 어렵다. 또한, 국제공개특허 제 WO88/09801호에서는 상기 특허의 단점을 해결하기 위하여 발포제로 유기 발포제를 사용하는 기술을 개발하였다. 상기 특허에 따르면, 유기용 발포제를 사용하므로써 열분해로 질소가 발생하고, 따라서 고흡수성 고분자의 매질자체에고밀도의 기포가 발생하기 때문에 표면적이 매우 커지는 장점이 있다. 그러나 유기발포제의 분해에 의하여 저분자량의 화합물이 발생하고, 이러한 저분자량의 화합물은 최종사용시 물의 흡수에 의해 용출되거나 증발되어 인체에 흡수될 경우 인체에 좋지 않은 영향을 줄 수 있는 단점이 있으며, 또한 발포된 고흡수성 고분자를 파우더로 만드는 공정인 분쇄공정에서 다량의 비산입자를 발생시키는 단점이 있다.In order to improve the absorption rate, many attempts have been made to increase the surface area of the superabsorbent polymer particles. US Pat. No. 4,649,164 uses sodium bicarbonate, ammonium carbonate, etc. as a blowing agent to neutralize the acid of the monomer. The generation of carbon dioxide caused bubbles in the polymer during polymerization, resulting in a significant surface area of the substrate of the superabsorbent polymer, thus improving the physical properties such as moisture absorption rate. However, the above method is difficult to manufacture a product of technically uniform physical properties because the conditions for uniformly controlling the foaming is difficult due to the characteristics of the blowing agent by using a carbonate compound which simultaneously occurs the neutralization reaction of the monomer and foaming. In addition, International Publication No. WO88 / 09801 has developed a technique of using an organic blowing agent as a blowing agent in order to solve the disadvantage of the patent. According to the above patent, nitrogen is generated by pyrolysis by using an organic blowing agent, and thus, a high density of bubbles is generated in the medium of the superabsorbent polymer, and thus the surface area is very large. However, low molecular weight compounds are generated by decomposition of the organic foaming agent, and these low molecular weight compounds may have a disadvantage in that they may adversely affect the human body when they are eluted or evaporated by absorption of water in the final use. There is a disadvantage in that a large amount of scattering particles are generated in the crushing process, which is a process of making a foamed superabsorbent polymer into a powder.

본 발명자들은 흡수속도를 증가시키기 위한 방법을 연구 수행한 결과, 기존의 열이나 화학적 반응에 의해 발생하는 휘발물질의 발포효과에 의한 표면적의 증대효과와는 전혀 다른 개념, 즉, 고흡수성 고분자의 매트릭스(Matrix)내에 무기물이나 유기필러, 특히 고분자 입자를 투입하여 흡수하는 물의 경로를 확보하므로써 흡수되는 물의 흡수속도를 증가시키는 방법으로 고흡수성 고분자의 흡수속도를 증가시킬 수 있는 방법을 개발하였다.The inventors of the present invention have studied a method for increasing the absorption rate, and as a result, the matrix of superabsorbent polymer is completely different from the effect of increasing the surface area due to the foaming effect of volatiles generated by the existing heat or chemical reaction. We have developed a method to increase the absorption rate of superabsorbent polymers by increasing the absorption rate of absorbed water by inserting inorganic or organic fillers, especially polymer particles, into the matrix.

따라서, 본 발명의 목적은 흡수능 및 염흡수능 등의 수지물성이 우수하고, 흡수능의 저하없이 기본물성을 유지하면서 흡수속도가 기존제품보다 월등히 빠른 고흡수성 고분자의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for preparing a superabsorbent polymer having excellent resin properties such as absorption capacity and salt absorption capacity, and having an extremely high absorption rate than existing products while maintaining basic physical properties without degrading the absorption capacity.

상기 목적을 달성하기 위한 본 발명의 방법은 고흡수성 고분자의 제조방법에 있어서, 고흡수성 고분자의 중합온도 이상의 녹는점을 갖는 무기물 또는 유기물 필러를 단량체 용액과 함께 첨가, 교반하여 유동성이 큰 단량체 용액내에 분산시키고, 이를 중합시켜 상기 필러를 유동성이 감소된 고흡수성 고분자겔내에 포획시킨 다음, 이를 건조시키고, 분쇄시키는 것으로 이루어진다.In the method of the present invention for achieving the above object, in the method of preparing a super absorbent polymer, an inorganic or organic filler having a melting point higher than the polymerization temperature of the superabsorbent polymer is added and stirred together with the monomer solution in a highly fluidizable monomer solution. Dispersing and polymerizing it to trap the filler in the superabsorbent polymer gel with reduced fluidity, which is then dried and ground.

이하 본 발명의 방법을 좀더 구체적으로 살펴보면 다음과 같다.Hereinafter, the method of the present invention will be described in more detail.

본 발명에 따른 새로운 고흡수성 수지는 기존의 고흡수성 수지 즉, 카르복실 또는 카르복실레이트그룹을 가지고 있는 단량체 또는 카르복실산 무수물 단량체의 50∼95몰%를 염으로 중화시켜 제조한 중합체인 고흡수성 고분자로부터 제조한다.The new superabsorbent polymer according to the present invention is a superabsorbent polymer which is a polymer prepared by neutralizing 50 to 95 mol% of an existing superabsorbent resin, that is, a monomer having a carboxyl or carboxylate group or a carboxylic anhydride monomer with a salt. Prepared from the polymer.

본 발명에 사용되는 적합한 수용성 단량체는 비닐카르복실산, 비닐설포닐산, 비닐아미드유도체 등이 사용되며, 이들은 대표적으로 아크릴산, 메타크릴산, 퓨마릭산(fumaric acid), 아크릴릭금속염, 메타크릴릭금속염, 아크릴아미도 메틸프로판(acryl amido methyl propane), 아릴설폰산(allyl sulfonic acid), 디메틸아민에틸메타크릴레이트(dimethyl aminiethyl methacrylate) 등을 포함한 단량체가 사용된다. 이들 단량체는 용매로 물과 섞여 중합계를 형성하는데 이때 수용액상에서의 농도는 일반적으로 25∼45wt% 사이, 바람직하게는 30∼40wt% 사이이다. 이들 농도보다 낮을 경우에는 반응시간이 길어지고, 45wt%이상에서는 단량체의 한계 용해도에 도달하여 단량체가 석출되는 수가 있다. 따라서 중합이 잘 진행되지 않을 수도 있다. 주로 사용되는 단량체는 아크릴산이다.Suitable water-soluble monomers used in the present invention include vinylcarboxylic acid, vinylsulfonyl acid, vinylamide derivatives and the like, which are typically acrylic acid, methacrylic acid, fumaric acid, acrylic metal salts, methacrylic metal salts, Monomers including acryl amido methyl propane, allyl sulfonic acid, dimethyl amine ethyl methacrylate, and the like are used. These monomers are mixed with water as a solvent to form a polymerization system in which the concentration in the aqueous phase is generally between 25 and 45 wt%, preferably between 30 and 40 wt%. If the concentration is lower than these concentrations, the reaction time is long, and at 45 wt% or more, the monomer may reach a limit solubility and precipitate the monomer. Therefore, the polymerization may not proceed well. The mainly used monomer is acrylic acid.

한편, 고흡수성 고분자의 중합온도 이상의 녹는점을 갖는 무기물이나 유기물 필러를 고흡수성 고분자 중합시에 단량체 용액과 함께 첨가, 교반하여 유동성이 큰 단량체 용액내에 분산시키고, 이를 열 또는 광 등의 중합수단에 의하여 중합시킴으로써 상기 필러를 유동성이 감소된 고흡수성 고분자겔내에 포획시킨다. 유기물 또는 무기물 필러를 포함한 고흡수성 고분자겔은 건조시킨후 분쇄하여 유기물 또는 무기물을 고르게 함유한 고흡수성 고분자 입자를 제조한다.On the other hand, an inorganic or organic filler having a melting point above the polymerization temperature of the superabsorbent polymer is added together with the monomer solution during the superabsorbent polymer polymerization and stirred to disperse it in a highly fluidizable monomer solution, which is then applied to polymerization means such as heat or light. The filler is entrapped in the superabsorbent polymer gel with reduced fluidity. The superabsorbent polymer gel including the organic or inorganic filler is dried and pulverized to produce superabsorbent polymer particles containing organic or inorganic evenly.

상기와 같이 제조한 고분자의 흡수속도는 일반적으로 무기물 또는 유기물 필러를 함유하지 않은 고흡수성 고분자에 비하여 흡수속도가 최대 60%까지 증대되었다. 특히, 흡수능의 저하가 크지 않고 염흡수능은 거의 유사한 값을 나타내는등 기존의 특성을 크게 저해하지 않으면서 매우 우수한 물 또는 염흡수속도를 갖는 고흡수성 고분자를 제조할 수 있었다.Absorption rate of the polymer prepared as described above is generally increased up to 60% compared to the superabsorbent polymer containing no inorganic or organic filler. In particular, it was possible to prepare a superabsorbent polymer having very good water or salt absorption rate without significantly impairing the existing properties, such as the decrease in absorption capacity and the salt absorption capacity being almost similar.

본 발명에서 사용 가능한 중합법은 용액중합법 또는 역상현탁중합법이며, 특히 용액중합법에서 탁월한 효과를 보여주고 있다. 용액중합시의 중합온도는 60℃∼200℃, 바람직하게는 90℃∼160℃, 더욱 바람직하게는 90℃∼140℃사이이다. 60℃ 미만에서는 반응시간이 지나치게 길고 중합방법에 따라서는 첨가한 무기물 또는 유기필러가 침전하는 문제가 발생하여 균일한 물성을 얻기가 힘들었으며, 경우에 따라서는 필러들이 뭉치는 현상이 나타났다. 200℃를 초과하면 중합시간이 지나치게 빠르고 이 경우 반응조절이 힘들어 고흡수성 고분자의 자체 가교반응이 지나치게 일어나 고흡수성 고분자의 물성이 열악하게 된다. 또한 반응시간은 2분에서 120분 사이에서 중합을 실시하는데 좋게는 5분에서 60분 사이에서 중합을 실시하고 60분보다 길 경우에는 열분해에 의한 변색 뿐만 아니라 자체 가교에 의한 가교밀도의 증가로 흡수능이 저하된다.The polymerization method usable in the present invention is a solution polymerization method or a reverse phase suspension polymerization method, and shows an excellent effect especially in the solution polymerization method. The polymerization temperature at the time of solution polymerization is 60 to 200 degreeC, Preferably it is 90 to 160 degreeC, More preferably, it is between 90 to 140 degreeC. Below 60 ° C., the reaction time was too long, and the addition of inorganic or organic fillers caused precipitation depending on the polymerization method, making it difficult to obtain uniform physical properties. In some cases, the fillers were agglomerated. If the temperature exceeds 200 ° C., the polymerization time is too fast, and in this case, the reaction control is difficult, so that the self-crosslinking reaction of the superabsorbent polymer is excessive, resulting in poor physical properties of the superabsorbent polymer. In addition, the reaction time is carried out for 2 to 120 minutes of polymerization, preferably 5 to 60 minutes for polymerization, and longer than 60 minutes, not only discoloration due to pyrolysis but also increase in crosslinking density due to self-crosslinking. Is lowered.

중합장치는 교반기를 장치한 반응기를 사용하여도 좋고 용기내에서 정치중합을 실시하여도 좋다. 또한 중합시 교반없이 무기물 또는 유기물 필러를 단량체용액과 잘 교반하여 균일하게 분산된 용액을 얕은 판상으로 제작한 용기에 넣고 질소치환하여 산소를 제거시키고 밀폐시킨 용기를 적외선오븐에 넣거나 열매속에 넣어 중합해도 좋고 컨베이어 벨트위에 중합액을 놓고 중합을 실시하여도 좋다. 이때 컨베이어 벨트는 구동시키면서 중합하고 중합물이 중합영역인 오븐속으로 들어갈 때 질소를 불어넣어 산소를 치환시킬 경우 더욱 중합속도가 빨라지게 된다. 또한 동일한 장치에서 자외선을 이용하여 저온에서 반응시킬 수도 있고 자외선에 의한 광중합과 적외선에 의한 열중합을 함께 사용하여도 좋다.The polymerization apparatus may use a reactor equipped with a stirrer or may perform stationary polymerization in a vessel. In addition, even when the inorganic or organic filler is stirred well with the monomer solution without polymerization, the uniformly dispersed solution is placed in a container made of a shallow plate, nitrogen-substituted to remove oxygen, and the sealed container is put in an infrared oven or polymerized in a fruit. The polymerization may be carried out by placing the polymerization liquid on the conveyor belt. At this time, the conveyor belt is polymerized while driving, and when the polymer is introduced into the oven, the polymerization rate is further increased when nitrogen is blown to replace oxygen. In the same apparatus, ultraviolet rays may be reacted at low temperature, or photopolymerization by ultraviolet rays and thermal polymerization by infrared rays may be used together.

본 발명에 사용한 무기물 또는 유기물은 고흡수성 고분자의 중합온도 이상의 녹는점을 갖는 모든 물질이 가능하며, 특히 무기물로는 표면을 망간다이옥사이드, 실리콘다이옥사이드, 티타니움다이옥사이드, 칼슘옥사이드, 마그네슘옥사이드, 또는 지르코니움옥사이드와 같은 산화금속물이다. 상기 산화금속물은 극성을 없애기 위해 표면처리한 산화금속을 사용하기도 하고, 표면처리하지 않은 산화금속을 사용하기도 한다. 유기물로서는 PMMA(polymethylmethacrylate), 폴리스티렌(polystyrene), PVC(polyvinylchloride), 폴리이소프렌(polyisoprene), 스티렌-아크릴레이트 공중합체(Styrene-acrylate copolymer), 스티렌 공중합체(styrene copolymer), 아크릴에스터 공중합체(acrylester copolymer), 또는 PVC 공중합체(polyvinyl chorde copolymer) 등과 같은 물에 녹지않는 고분자 입자 또는 라텍스 용액을 사용하기도 하고, 폴리에틸렌 또는 폴리프로필렌 등의 단일 및 공중합체의 플레이크 형태(Flake Type)를 사용할 수 있다.The inorganic or organic material used in the present invention may be any material having a melting point higher than the polymerization temperature of the superabsorbent polymer, and in particular, the inorganic material is manganese dioxide, silicon dioxide, titanium dioxide, calcium oxide, magnesium oxide, or zirconium. Metal oxides such as oxides. The metal oxide may use a metal oxide surface treated to remove polarity, or may use a metal oxide that is not surface treated. Organic materials include PMMA (polymethylmethacrylate), polystyrene (polystyrene), PVC (polyvinylchloride), polyisoprene, styrene-acrylate copolymer, styrene copolymer, acrylic ester (acrylester) Insoluble water polymer particles or latex solutions, such as copolymers or polyvinyl chorde copolymers, may be used, and single and copolymer flake types such as polyethylene or polypropylene may be used.

한편, 첨가되는 유기물 또는 무기의 필러의 크기는 크게 제한받지 않으나 50Å∼1000㎛크기의 필러를 사용할 수 있다. 바람직하게는 0.01∼500㎛이고, 좀 더 바람직하게는 0.1∼200㎛ 크기의 필러를 사용한다. 첨가되는 무기물 또는 유기물 필러의 함량은 중합에 사용되는 단량체의 140wt%정도, 바람직하게는 5∼25wt%정도를 사용하는 것이 고흡수성 고분자의 기본물성의 저하없이 흡수속도를 증가시킬 수 있다. 이때, 첨가량이 40wt%를 초과하면 중합단량체용액의 유동성이 열악해져 이들 필러를 단량체 용액에 고르게 분산시키기가 곤란하여 물성의 균일성을 확보하기 곤란하고, 또한 중합속도가 지나치게 느려져 정상적인 중합이 이루어지기가 곤란하다. 또한, 1wt% 미만이면 기대한 만큼의 흡수속도의 증가 특성이 발현되지 못하는 단점이 있다. 첨가하는 필러를 라텍스상으로 투입할 경우에는 물에 분산시켜 투입하는 것이 가장 좋으나, 유기용매에 분산된 라텍스를 사용하더라도 전혀 문제가 되지 않는다. 또한 첨가하는 무기물 및 유기물 필러가 중합용액에 분산이 잘되지 않을 경우에는 이의 분산을 돕기위하여 HLB(Hydrophilic Lipophilic Balance)값이 5∼20사이의 분산제를 사용할 수 있다. 이때, 사용되는 분산제로는 일반적으로 사용하는 현탁제를 사용하면 크게 문제가 없으나, 고분자내의 기능기(Functional Group)와 반응할 수 있는 기능기를 포함하고 있지 않아야 한다. 상기 조건을 만족하는 현탁제로는 수용성 또는 수분산성이면 되는데, 이러한 물질로는 솔비톨 지방산(sorbitol fatty acid), 또는 솔비톨 지방산 에테르(sorbitol fattyacid ether) 등이나, 소듐 라우릴벤젠 설포네이트(sodium laurylbenzene sulfonate), 또는 소듐 도데실벤젠 설포네이트(sodium dodecylbeazene sulfonate)등의 음이온계 계면활성체나 양이온계 계면활성제 등이 사용가능하다. 사용량은 크게 구애받지 않으나 단량체에 대하여 0.01 내지 10중량% 사이에서 사용가능하며, 바람직하게는 0.1 내지 5중량%이고, 더욱 바람직하게는 0.5 내지 2중량% 사이이다. 10중량%를 초과하면 고흡수성 수지의 성능이 저하되고, 0.01중량% 미만이면 사용하는 가교제의 분산능력이 떨어져 고흡수성 고분자의 성능이 불균일하게 된다.On the other hand, the size of the organic or inorganic filler to be added is not particularly limited, but may be a filler of 50 ~ 1000 ㎛ size. Preferably it is 0.01-500 micrometers, More preferably, the filler of 0.1-200 micrometers size is used. The amount of the inorganic or organic filler added may be increased by about 140 wt% of the monomer used in the polymerization, preferably about 5 to 25 wt%, without increasing the basic physical properties of the superabsorbent polymer. At this time, when the added amount exceeds 40wt%, the fluidity of the polymerized monomer solution is poor, and it is difficult to evenly disperse these fillers in the monomer solution, making it difficult to secure uniformity of physical properties, and the polymerization rate is too slow, resulting in normal polymerization. Is difficult. In addition, if less than 1wt% there is a disadvantage that the increase in the rate of absorption as expected is not expressed. When the filler to be added is added in the form of latex, it is best to disperse it in water, but even when using latex dispersed in an organic solvent, it is not a problem at all. In addition, when the inorganic and organic fillers to be added are not well dispersed in the polymerization solution, a dispersing agent having a HLB (Hydrophilic Lipophilic Balance) value of 5 to 20 may be used to assist the dispersion thereof. In this case, as a dispersant used, there is no problem in using a suspending agent which is generally used, but it should not include a functional group capable of reacting with a functional group in a polymer. Suspending agents that satisfy the above conditions may be water-soluble or water-dispersible, and such materials include sorbitol fatty acid, sorbitol fatty acid ether, and sodium laurylbenzene sulfonate. Or anionic surfactants or cationic surfactants such as sodium dodecylbeazene sulfonate. The amount to be used is not particularly limited but can be used in an amount of 0.01 to 10% by weight, preferably 0.1 to 5% by weight, and more preferably 0.5 to 2% by weight, based on the monomers. If it exceeds 10% by weight, the performance of the superabsorbent polymer is lowered. If it is less than 0.01% by weight, the dispersibility of the crosslinking agent to be used decreases, resulting in uneven performance of the superabsorbent polymer.

본 발명에 따른 중합반응에서 사용되는 개시제는 디알킬퍼옥사이드(dialkylperoxide), 알킬퍼에스터(alkylperester), 퍼옥사이드(peroxides), 레독스(redox)계 개시제, 또는 아조(Azo)계 개시제가 사용될 수 있다. 이러한 중합개시제는 단독으로도 사용가능하고 2개 이상의 조합으로 사용할 수 있다. 사용되는 함량은 단량체에 대하여 0.01 내지 1중량%까지 사용되나 일반적으로 사용하는 양은 0.1 내지 0.5중량% 사이이고, 매우 바람직하게는 0.2 내지 0.5중량%이다.The initiator used in the polymerization reaction according to the present invention may be a dialkylperoxide, alkylperester, peroxides, redox initiators, or azo initiators. have. These polymerization initiators may be used alone or in combination of two or more. The amount used is in the range of 0.01 to 1% by weight based on the monomer, but the amount generally used is between 0.1 and 0.5% by weight, very preferably 0.2 to 0.5% by weight.

본 발명에 사용한 가교제는 고흡수성 고분자의 흡수성능에 영향을 주므로 중요한 영향을 주는 인자인데 일반적으로 다기능성 비닐그룹을 가지는 단량체를 사용한다. 일반적으로 사용하는 가교제는 폴리비닐화합물로는 트리메틸프로판 트리메타크릴레이트(trimethylopropane trimethacrylate), 트리메틸올프로판 트리아크릴레이트(trimethylolpropane triacrylate), 에틸렌글리콜 디아크릴레이트(ethyleneglycol diacrylate), 에틸렌글리콜 디메타크릴레이트(ethylene glycol dimethacrylate), N,N-메틸렌비스아크릴아미드(N,N-methylenebisacrylamide) 등과 폴리글리시딜에테르류로 에틸렌글리콜 디글리시딜 에테르(ethylene glycol diglycidyl ether) 등을 주로 사용하며, 특히 좋은 것은 함량에 따른 민감도가 적은 폴리메타크릴레이트계 단량체를 주로 사용한다. 사용되는 함량은 종류에 따라 달라지나 사용하는 고흡수성 고분자 단량체의 0.001∼2몰% 사이를 사용하면 좋다. 이보다 더 많이 사용할 경우에는 고흡수성 고분자의 흡수특성이 열세이고 더 적게 사용할 경우 물에 녹은 비율이 증가하여 환경/위생상으로 좋지 않을 뿐만 아니라 흡수특성도 열세로 나타난다. 더욱 좋게는 단량체의 0.05∼0.2몰% 사이가 아주 좋다.The crosslinking agent used in the present invention is an important factor because it affects the absorption performance of the superabsorbent polymer. Generally, a monomer having a multifunctional vinyl group is used. Commonly used crosslinking agents include trimethylpropane trimethacrylate, trimethylolpropane triacrylate, ethyleneglycol diacrylate, ethylene glycol dimethacrylate (trimethylopropane trimethacrylate). Ethylene glycol dimethacrylate, N, N-methylenebisacrylamide, and polyglycidyl ethers are mainly used such as ethylene glycol diglycidyl ether. Polymethacrylate monomers having low sensitivity depending on the content are mainly used. The amount used varies depending on the type, but may be used between 0.001 and 2 mol% of the super absorbent polymer monomer to be used. If used more than this, the absorption characteristics of the superabsorbent polymer is inferior, and if it is used less, the water-soluble ratio is increased, which is not good for the environment / hygiene, and also the absorption characteristic is inferior. More preferably, between 0.05 and 0.2 mol% of the monomers are very good.

이하 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다. 한편, 본 발명에 따른 고흡수성 고분자의 물성평가방법은 다음과 같다Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples. On the other hand, the physical property evaluation method of the super absorbent polymer according to the present invention is as follows.

[물성평가방법][Property evaluation method]

물흡수능 : 물흡수능의 측정은 0.2g의 고흡수성 고분자를 부직포로 제조한 Tea-Bag에 넣은 탈이온수 1000ml에 침지시킨후 1시간동안 방지하고 물을 흡수한 Tea-Bag을 건져내어 30분간 공기중에 방치한후 무게를 측정하여 흡수배율을 측정한다.Water Absorption: The water absorption capacity was measured by dipping 0.2g of superabsorbent polymer in 1000ml of deionized water in Tea-Bag made of non-woven fabric, preventing it for 1 hour, and taking out Tea-Bag that absorbed water. After standing, the weight is measured to determine the absorption ratio.

물흡수능 = (흡수한 Tea-Bag의 전체무게 - Tea-Bag 무게) / 0.2Water Absorption = (Weight of Tea-Bag Absorbed-Tea-Bag Weight) / 0.2

염흡수능 : 0.9중량%의 염화나트륨수용액내에 0.5g의 고흡수성 수지를 넣은 Tea-Bag을 넣고 1시간동안 방치한후 이를 건져내어 공기중에 30분간 방치한후 이의 중량을 측정하여 염흡수배울을 측정한다.Salt absorption capacity: Tea-Bag containing 0.5 g of superabsorbent resin in 0.9 wt% aqueous sodium chloride solution, and left for 1 hour, then taken out and left in air for 30 minutes, and then measured its weight to measure salt absorption learning. .

염흡수능 = (흡수한 전체 Tea-Nag의 무게 - Tea-Bag의 무게) / 0.5Salt absorption capacity = (weight of total Tea-Nag absorbed-weight of Tea-Bag) / 0.5

흡수속도 : 0.5g의 고흡수성 고분자를 정확기 무게를 달아서 100ml의 탈염순수를 넣은 250ml 비이커에 1000rpm으로 교반하면서 고흡수성 수지를 일괄 투입하여 흡수에 의해 더 이상 유동특성이 사라지는 시점의 시간을 측정하여 흡수속도를 측정하였다(방법 1). 또한 특별히 상기 Tea-Bag을 넣어 10초간격으로 흡수한 유체의 양을 측정하여 흡수배율을 구하여 흡수속도를 측정할 수도 있다(방법 2).Absorption rate: 0.5g superabsorbent polymer is weighed accurately and the superabsorbent polymer is added to a 250ml beaker containing 100ml of demineralized pure water at 1000rpm. Absorption rate was measured (method 1). In addition, the absorption rate may be determined by measuring the amount of fluid absorbed at 10 second intervals by inserting the Tea-Bag in particular (Method 2).

[실시예 1]Example 1

탈이온수 590g에 수산화나트륨 170g을 용해한 가성소다 용액을 제조하여 이용액의 온도를 상온으로 냉각시킨후 320g의 아크릴산을 천천히 적하하면서 아크릴산을 중화하였고, 중화반응을 완료한후 아크릴산 90g을 더 투입하였다. 상기 과정에서 용액의 온도는 모두 상온 이하에서 진행하여 열중합의 가능성을 방지하였다. 상기 용액에 가교제로 트리메틸프로판 트리메타크릴레이트 1wt% 수용액을 21% 투입하였고, 솔비탄 모노라우레이트 10wt% 수용액 26g을 투입하고, 수분간 교반을 실시하였다. 교반을 진행하면서 암모니아로 훈증한 실리카(fumed silica, 0.011마이크론) 40g을 서서히 투입하였다. 이를 상기 용액에 완전히 분산시킨후 종합 개시제로 소디움 소듐 바이설파이트 1wt% 수용액 13g과 암모늄퍼설페이트 1wt% 수용액 15g을 투입하여 교반한 후, 이를 25cm × 25cm × 3cm 용기에 일괄 부운후 이를 컨베이어 벨트위에 놓고 적외선 히터를 통과시켰다. 이때, 적외선 히터의 온도는 100℃를 유지하여UT으며 컨베이어 밸트의 속도를 조절하여 적외선 히터내에 30분 채류하게 하여 중합을 완료시켰다. 중합을 질소분위기하에서 실험을 실시하였다. 제조한 시료는 작은 시편으로 잘라 진공건조기에서 건조시킨후 분쇄를 실시하여 100∼1000um사이의 입자를 분리하였다. 이를 이용한 고흡수성 고분자의 물성평가를 실시한 결과, 건조시료 단위 중량당 물흡수능은 635배, 염흡수능은 63배, 1분후 염용액흡수능은 36배이고 10분후의 염흡수능은 56배였다.A caustic soda solution in which 170 g of sodium hydroxide was dissolved in 590 g of deionized water was prepared. After cooling the temperature of the solution to room temperature, 320 g of acrylic acid was slowly added to neutralize the acrylic acid. In the above process, the temperature of the solution was all lower than room temperature to prevent the possibility of thermal polymerization. 21% of 1 wt% trimethylpropane trimethacrylate aqueous solution was added to the solution as a crosslinking agent, and 26 g of 10 wt% sorbitan monolaurate aqueous solution was added thereto, followed by stirring for several minutes. While stirring, 40 g of fumed silica (fumed silica, 0.011 micron) was slowly added thereto. After completely dispersing it in the above solution, 13 g of sodium bisulfite 1wt% aqueous solution and 15 g of 1wt% ammonium persulfate aqueous solution were added as a total initiator, followed by stirring. Place and pass the infrared heater. At this time, the temperature of the infrared heater was maintained at 100 ℃ UT to adjust the speed of the conveyor belt was allowed to stay in the infrared heater for 30 minutes to complete the polymerization. The polymerization was carried out under a nitrogen atmosphere. The prepared sample was cut into small specimens, dried in a vacuum dryer, and ground to separate particles between 100 and 1000 μm. As a result of evaluating the physical properties of the superabsorbent polymer, the water absorption capacity per unit weight of the dry sample was 635 times, the salt absorption capacity was 63 times, and the salt solution absorption capacity was 36 times after 1 minute and the salt absorption capacity was 56 times after 10 minutes.

[실시예 2]Example 2

실시예 1과 동일하나 첨가한 실리카의 함량을 80g 투입하였다. 그 결과, 물흡수능은 543배, 염흡수능은 61배, 1분후의 염흡수배율은 21배이고, 10분후의 염흡수배율은 60배이었다.Same as Example 1, but 80g of the added silica content. As a result, the water absorption capacity was 543 times, the salt absorption capacity was 61 times, the salt absorption rate was 21 times after 1 minute, and the salt absorption rate was 10 times after 10 minutes.

[비교예 1]Comparative Example 1

실시예 1과 동일한 처방과 동일한 조건으로 실험을 실시하였으나, 실리카를 첨가하지 않고 중합 실험을 실시하였다. 건조 및 분쇄한후 물성을 평가한 결과 물흡수능은 627배, 염흡수능은 67배이었으며, 1분후의 염흡수배율은 17배, 10분후의 염흡수 배율은 62배이었다(상기 방법 2로 측정).The experiment was carried out under the same conditions as in Example 1, but the polymerization experiment was conducted without adding silica. As a result of evaluating the physical properties after drying and pulverizing, the water absorption capacity was 627 times and the salt absorption capacity was 67 times, and the salt absorption ratio after 1 minute was 17 times, and the salt absorption ratio after 10 minutes was 62 times (measured by Method 2). .

[실시예 3]Example 3

실시예 1과 동일한 처방으로 실시하였으나 사용한 첨가제를 실리카 대신에 PVC(HCC사 EM2070 Grade) 라텍스를 사용하여 실험하였고, 첨가량을 사용한 아크릴산의 5중량%(라텍스내의 수지 무게기준)를 사용하였으며 중합용액을 실시예 1과 같이 제조한후 이를 무한궤도 컨베이어 벨트위에 부어 120℃의 적외선전기로 통과시켜 연속적으로 중합을 실시하였다. 중합과정은 질소분위기하에서 실시되었다. 그결과, 물흡수능은 558배, 염흡수능은 69배, 흡수속도는 26초였다.The additive was used in the same manner as in Example 1, but the additives were tested using PVC (HCC EM2070 Grade) latex instead of silica, and 5 wt% of acrylic acid (based on the weight of resin in latex) using the added amount was used. After the preparation as in Example 1, it was poured onto a crawler conveyor belt and passed through an infrared electric machine at 120 ° C. to perform polymerization continuously. The polymerization process was carried out under a nitrogen atmosphere. As a result, the water absorption was 558 times, the salt absorption was 69 times, and the absorption rate was 26 seconds.

[실시예 4]Example 4

사용한 첨가제인 PVC(HCC사 EM2070 Grade) 라텍스를 사용한 아크릴산 대비 10중량%(라텍스내의 수지 무게기준)를 첨가한 것 이외에는 실시예 3과 동일한 조건으로 실험을 실시하였다. 그 결과 물흡수능은 465배, 염흡수능은 69배, 흡수속도는 23초였다.The experiment was carried out under the same conditions as in Example 3, except that 10% by weight (based on the weight of the resin in the latex) compared to acrylic acid using PVC (HCC EM2070 Grade) latex, which was an additive used. As a result, the water absorption was 465 times, the salt absorption was 69 times, and the absorption rate was 23 seconds.

[실시예 5]Example 5

사용한 첨가제를 사용된 아크릴산의 20중량%를 사용한 것이외에는 실시예 3과 동일하다. 그 시료를 평가한 결과 물흡수능은 523배, 염흡수능은 57배, 흡수속도는 22초였다.It is the same as Example 3 except using the used additive 20 weight% of acrylic acid. As a result of evaluating the sample, the water absorption capacity was 523 times, the salt absorption capacity was 57 times, and the absorption rate was 22 seconds.

[실시예 6]Example 6

사용한 첨가제를 폴리염화비닐(HCC 사 P-1300 Grade)를 사용하고 아크릴산 단량체의 5중량%를 사용한 것을 제외하고는 실시예 3과 동일하게 실험을 진행하였다. 그 결과 물흡수능은 584배, 염흡수능은 67배, 흡수속도는 28초였다.The experiment was conducted in the same manner as in Example 3, except that polyvinyl chloride (P-1300, manufactured by HCC) and 5% by weight of the acrylic acid monomer were used as the additive. As a result, the water absorption was 584 times, the salt absorption was 67 times, and the absorption rate was 28 seconds.

[실시예 7]Example 7

사용한 첨가제를 폴리염화비닐(HCC사 P-1300 Grade)을 아크릴산 대비 20중량%로 사용한 것을 제외하고는 실시예 3과 동일하게 실험을 실시하였다. 그 결과, 물흡수능은 644배, 염흡수능은 75배, 흡수속도는 30초였다.The experiment was carried out in the same manner as in Example 3, except that polyvinyl chloride (P-1300 Grade, HCC Co., Ltd.) was used at 20% by weight relative to acrylic acid. As a result, the water absorption capacity was 644 times, the salt absorption capacity was 75 times, and the absorption rate was 30 seconds.

[비교예 2]Comparative Example 2

실시예 3과 동일한 실험을 실시하였으나 첨가제를 사용하지 않았다. 그 결과 물흡수능은 621배, 염흡수능은 64배, 흡수속도는 48초였다(상기 방법 1로 측정).The same experiment as in Example 3 was conducted, but no additives were used. As a result, the water absorption capacity was 621 times, the salt absorption capacity was 64 times, and the absorption rate was 48 seconds (measured by the method 1).

[실시예 8]Example 8

첨가제로 자체제조한 스티렌-아크릴레이트 공중합체 분말을 5wt% 사용하고, 90℃의 오븐에서 40분간 정치중합을 실시한 것 이외에는 실시예 3과 동일한 방법으로 실시하였다. 제조한 고흡수성 고분자를 평가한 결과 물흡수능은 573배, 염흡수능은 63배, 흡수속도는 21초였다.5 wt% of a styrene-acrylate copolymer powder produced by itself as an additive was used, and the polymerization was carried out in the same manner as in Example 3, except that stationary polymerization was performed for 40 minutes in an oven at 90 ° C. As a result of evaluating the prepared superabsorbent polymer, the water absorption capacity was 573 times, the salt absorption capacity was 63 times, and the absorption rate was 21 seconds.

[실시예 9]Example 9

첨가제의 함량을 15중량% 사용한 것 이외에는 실시예 8과 동일하게 실험을 실시하였다. 그 결과, 물흡수능은 549배, 염흡수능은 61배, 흡수속도는 26초였다.The experiment was conducted in the same manner as in Example 8 except that the content of the additive was used by 15 wt%. As a result, the water absorption capacity was 549 times, the salt absorption capacity was 61 times, and the absorption rate was 26 seconds.

[비교예 3]Comparative Example 3

첨가제를 전혀 넣질않은 것을 제외하고는 실시예 8과 동일한 실험을 실시하였다. 그 결과 물흡수능은 601배, 염흡수능은 65배, 흡수속도는 39초였다.The same experiment as in Example 8 was conducted except that no additives were added. As a result, the water absorption capacity was 601 times, the salt absorption capacity was 65 times, and the absorption rate was 39 seconds.

[실시예 10]Example 10

실시예 8과 동일한 실험을 실시하였으나 첨가제를 단시간에 중합용액에 분산시키기 위하여 현탁제로 3중량%의 솔비탄모노스테아레이트를 사용한 것 이외에는 실시예 8과 동일하게 실험을 실시하였다. 그 결과, 물흡수능은 497배, 염흡수능은 59배, 흡수속도는 32초였다.The same experiment as in Example 8 was carried out, except that 3 wt% of sorbitan monostearate was used as a suspending agent to disperse the additive in the polymerization solution in a short time. As a result, the water absorption capacity was 497 times, the salt absorption capacity was 59 times, and the absorption rate was 32 seconds.

본 발명에 따라 제조된 고습수성 고분자는 다양한 장점을 갖는데, 첫째는 흡수속도가 기존제품과 비교할 때 최대 60%정도 빠르기 때문에 유체가 일시에 쏟아질 때 이를 신속히 흡수하므로써 유체의 누수없이 모두 흡수할 수 있기 때문에 착용감이 우수한 제품을 만들 수 있다. 둘째로는 중합중 첨가한 필러는 반응에 참여하지 않거나 최소한의 반응에만 참여하므로 반응 조절이 용이하기 때문에 공정상 안정적일 수 있고, 셋째로는 반응에 거의 참여하지 않기 때문에 기존의 발포기술에서와 같이 저분자량의 화합물이 발생하지 않으므로써 더욱 위생적으로 환경친화적이다. 넷째는 고흡수성 수지 제조시에 첨가하는 무기 또는 유기물을 선택적으로 사용하므로써 고흡수성 고분자를 더욱 경제적으로 제조할 수 있기 때문에 기존의 고흡수성 고분자에 비하여 가격 경쟁력이 우수하다. 또한, 본 발명에 의해 제조된 고흡수성 고분자의 제조시 분쇄공정에서 발생하는 미세분산 입자의 함량도 최소화시킬 수 있는 효과가 있다.The high-moist water-based polymer prepared according to the present invention has various advantages. First, since the absorption rate is up to 60% faster than that of the conventional product, it can absorb all the fluids without leaking the fluid when it is poured at a time. Because of this, you can make products with excellent fit. Secondly, the filler added during polymerization does not participate in the reaction or only participates in the minimum reaction, so it is easy to control the reaction, and thirdly, since it is rarely involved in the reaction, as in the conventional foaming technology, It is more hygienic and environmentally friendly by not generating low molecular weight compounds. Fourth, since the superabsorbent polymer can be produced more economically by selectively using inorganic or organic substances added in the preparation of the superabsorbent polymer, the price is superior to the existing superabsorbent polymer. In addition, there is an effect that can also minimize the content of the finely dispersed particles generated in the grinding process in the production of the super absorbent polymer prepared by the present invention.

Claims (4)

고흡수성 고분자의 제조방법에 있어서, 고흡수성 고분자의 중합온도 이상의 녹는점을 가지며, 입자크기 50Å∼1000㎛인 무기물 또는 유기물 필러 1∼40중량%를 HLB값이 5∼20사이의 분산제 0.01 내지 10중량% 및 나머지를 단량체 용액과 함께 첨가, 교반하여 유동상이 큰 단량체 용액내에 분산시키고, 90∼140℃에서 5∼60분동안 용액중합시켜 상기 필러를 유동성이 감소된 고흡수성 고분자내에 포획시킨 다음, 이를 건조시키고, 분쇄시키는 것을 특징으로 하는 고흡수성 고분자의 제조방법.In the method for producing a super absorbent polymer, 1 to 40% by weight of an inorganic or organic filler having a melting point equal to or higher than the polymerization temperature of the superabsorbent polymer and having a particle size of 50 μm to 1000 μm, and a HLB value of 0.01 to 10 of a dispersant of 5 to 20. The weight percent and the remainder are added together with the monomer solution and stirred to disperse in the large fluidized fluid solution, and the solution is polymerized at 90 to 140 ° C. for 5 to 60 minutes to trap the filler in the superabsorbent polymer having reduced fluidity. Drying and grinding the method for producing a super absorbent polymer, characterized in that. 제1항에 있어서, 상기 무기물이 망간다이옥사이드, 실리콘다이옥사이드, 티타니움다이옥사이드, 칼슘옥사이드, 마그네슘옥사이드, 또는 지르코니움옥사이드임을 특징으로 하는 고흡수성 고분자의 제조방법.The method of claim 1, wherein the inorganic material is manganese dioxide, silicon dioxide, titanium dioxide, calcium oxide, magnesium oxide, or zirconium oxide. 제1항에 있어서, 상기 유기물이 PMMA, 폴리스티렌, PVC, 폴리이소프렌, 스티렌-아크릴레이트 공중합체, 스티렌 공중합체, 아크릴에스터 공중합체 또는 PVC 공중합체의 고분자 입자 또는 라텍스용액, 또는 폴리에틸렌 또는 폴리프로필렌의 단일 및 공중합체의 플레이크 형태임을 특징으로 하는 고흡수성 고분자의 제조방법.The method of claim 1, wherein the organic material is a polymer particle or latex solution of PMMA, polystyrene, PVC, polyisoprene, styrene-acrylate copolymer, styrene copolymer, acrylic copolymer or PVC copolymer, or polyethylene or polypropylene Method for producing a superabsorbent polymer, characterized in that the flake form of the single and copolymer. 제1항에 있어서, 상기 분산제가 솔비톨 지방산, 솔비톨 지방산 에테르, 소듐라우릴벤젠 설포네이트, 또는 소듐 도데실벤젠 설포네이트임을 특징으로 하는 고흡수성 고분자의 제조방법.The method of claim 1, wherein the dispersant is sorbitol fatty acid, sorbitol fatty acid ether, sodium laurylbenzene sulfonate, or sodium dodecylbenzene sulfonate.
KR1019970049793A 1997-09-29 1997-09-29 Process for preparation of a particle reinforced super absorbent polymer KR100255827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970049793A KR100255827B1 (en) 1997-09-29 1997-09-29 Process for preparation of a particle reinforced super absorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970049793A KR100255827B1 (en) 1997-09-29 1997-09-29 Process for preparation of a particle reinforced super absorbent polymer

Publications (2)

Publication Number Publication Date
KR19990027352A KR19990027352A (en) 1999-04-15
KR100255827B1 true KR100255827B1 (en) 2000-05-01

Family

ID=19521926

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970049793A KR100255827B1 (en) 1997-09-29 1997-09-29 Process for preparation of a particle reinforced super absorbent polymer

Country Status (1)

Country Link
KR (1) KR100255827B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
WO2018117548A1 (en) 2016-12-23 2018-06-28 주식회사 엘지화학 Method for producing porous superabsorbent polymer and porous superabsorbent polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320426A (en) * 1992-05-20 1993-12-03 Bando Chem Ind Ltd Water-swellable elastomer composition
JPH0753884A (en) * 1993-08-17 1995-02-28 Mitsubishi Chem Corp Highlywater absobing polymer composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320426A (en) * 1992-05-20 1993-12-03 Bando Chem Ind Ltd Water-swellable elastomer composition
JPH0753884A (en) * 1993-08-17 1995-02-28 Mitsubishi Chem Corp Highlywater absobing polymer composition

Also Published As

Publication number Publication date
KR19990027352A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
EP0827753B1 (en) Water-absorbent resin and method for production thereof
TWI450906B (en) Water-absorbing polymer structures of improved colour stability
US6831122B2 (en) Water-absorbing agent, method for the production and the utilization thereof
TWI405776B (en) Water-absorbing polymer structure surface-treated with polycations
EP0450922B1 (en) Method for production of fluid stable aggregate
US7183456B2 (en) Water-absorbent resin and production process therefor
EP2277557B1 (en) Coated superabsorbent polymer particles and processes therefore
US10807067B2 (en) Method for producing super absorbent polymer and super absorbent polymer
JP5270921B2 (en) Method for producing water-absorbing agent
JPH04214734A (en) Method for carrying out surface treatment of water-absorbing resin
EP1856194A1 (en) Hydrolytically stable postcrosslinked superabsorbents
JP2013511612A (en) Method for producing foamed water-absorbing polymer particles
MXPA01003429A (en) Hydrophilic hydrogels, with high swelling capacity, their preparation and use
CN108884240B (en) Method for producing superabsorbent polymer and superabsorbent polymer
CN103068861B (en) There is the water-absorbing polymer particles of the color stability of improvement
CN110372891A (en) The manufacturing method of polyacrylic water-absorbing resin
MX2008003086A (en) An absorbent member comprising a water absorbing agent.
JPH10251310A (en) Production of hydrophilic polymer
KR100255827B1 (en) Process for preparation of a particle reinforced super absorbent polymer
JP3461860B2 (en) Manufacturing method of absorbent material
JP2009185117A (en) Water-retaining agent and water-absorbing gel composition excellent in light resistance
CN113754809B (en) Super water-absorbing polymer and preparation method and application thereof
TWI466933B (en) Process for the production of a superabsorbent polymer
US20240100506A1 (en) Process for producing superabsorbent particles
JPH10251308A (en) Production of water-absorbing resin having high water-absorbing rate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040203

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee