KR100253841B1 - Termally insulating jacket and related process - Google Patents
Termally insulating jacket and related process Download PDFInfo
- Publication number
- KR100253841B1 KR100253841B1 KR1019940703428A KR19940703428A KR100253841B1 KR 100253841 B1 KR100253841 B1 KR 100253841B1 KR 1019940703428 A KR1019940703428 A KR 1019940703428A KR 19940703428 A KR19940703428 A KR 19940703428A KR 100253841 B1 KR100253841 B1 KR 100253841B1
- Authority
- KR
- South Korea
- Prior art keywords
- wall
- jacket
- getter material
- thermal insulation
- container
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0119—Shape cylindrical with flat end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0133—Shape toroidal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0157—Polygonal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/054—Size medium (>1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0391—Thermal insulations by vacuum
- F17C2203/0395—Getter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0629—Two walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/068—Special properties of materials for vessel walls
- F17C2203/0685—Special properties of materials for vessel walls flexible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/238—Filling of insulants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
- F17C2221/017—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0376—Localisation of heat exchange in or on a vessel in wall contact
- F17C2227/0383—Localisation of heat exchange in or on a vessel in wall contact outside the vessel
- F17C2227/0386—Localisation of heat exchange in or on a vessel in wall contact outside the vessel with a jacket
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/013—Reducing manufacturing time or effort
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/031—Dealing with losses due to heat transfer
- F17C2260/033—Dealing with losses due to heat transfer by enhancing insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/036—Avoiding leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/042—Reducing risk of explosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0509—"Dewar" vessels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/231—Filled with gas other than air; or under vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/237—Noninterengaged fibered material encased [e.g., mat, batt, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/237—Noninterengaged fibered material encased [e.g., mat, batt, etc.]
- Y10T428/238—Metal cover or casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/239—Complete cover or casing
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
본 발명은 보온용기(1)의 단열 재킷(5)을 진공상태로 만들기 위한 방법을 제공하려는 것이다. 보온 용기(1)는 내벽(2), 외벽(4), 및 내벽과 외벽의 사이에 제공된 내부 공간으로 구성된다. 내부 공간은 단열재(9)로 부분적으로 또는 전체적으로 채워지며, 흡습재(10) 및 게터재(getter material)(11)를 포함한다. 흡습제는 화학적인 건조제이며, 게터재는 Ba-Li 합금이다.The present invention seeks to provide a method for vacuuming the thermal insulation jacket 5 of the thermal insulation container 1. The thermal insulation container 1 is comprised from the inner wall 2, the outer wall 4, and the inner space provided between the inner wall and the outer wall. The interior space is partially or wholly filled with the heat insulator 9 and comprises a hygroscopic material 10 and a getter material 11. The moisture absorbent is a chemical drying agent and the getter material is a Ba-Li alloy.
Description
[발명의 명칭][Name of invention]
저온성 장치의 단열 재킷 및 그의 제조 방법Insulation jacket of low temperature device and its manufacturing method
[도면의 간단한 설명][Brief Description of Drawings]
제1도는 본 발명에 따른 단열 재킷을 갖춘 액화 가스 저장용 금속 저온성 장치의 개략적인 단면도이다.1 is a schematic cross-sectional view of a metal low temperature device for liquefied gas storage with a thermal insulation jacket according to the invention.
제2도는 제1도의 장치에 대하여 수행된 시험들의 결과를 나타내는 그래프이다.FIG. 2 is a graph showing the results of tests performed on the apparatus of FIG.
제3도는 진공 재킷 내에 위치하는 건조제와 게터재의 바람직한 배열을 나타낸 도면이다.3 is a view showing a preferred arrangement of the desiccant and getter material located in the vacuum jacket.
제4도는 본 발명에 따른 단열 재킷을 갖춘 액화 가스 운반용 금속관의 개략적인 단면도이다.4 is a schematic cross-sectional view of a metal tube for liquefied gas delivery with an insulating jacket according to the present invention.
제5도는 제4도의 금속관에 대하여 수행된 시험 결과들을 나타내는 그래프이다.5 is a graph showing test results performed on the metal tube of FIG.
* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
1: 저온성 장치 2: 내벽1: low temperature device 2: inner wall
3 : 내부 공간 4 : 외벽3: inside space 4: outer wall
5 : 재킷 6 : 목부분5: jacket 6: neck
7,20 : 밸브 8 : 연결 피팅7,20: valve 8: connection fitting
9 : 단열재 10 : 흡습재9: heat insulating material 10: moisture absorbing material
11: 게터재 12: 콘테이너11: getter material 12: container
13 : 다공성 격벽 14 : 내부 지역13: porous bulkhead 14: internal area
15 : 외부 지역 16 : 게터재 격벽15: outside area 16: getter material bulkhead
17 : 열신축성 콘테이너 18 : BaO17: thermally flexible container 18: BaO
19 : 패킷19: packet
[발명의 상세한 설명]Detailed description of the invention
[발명의 분야][Field of Invention]
본 발명은 단열 재킷(insulating jacket), 특히 상온보다 낮은 온도를 유지하는데 필요한 질소, 산소, 수소, 헬륨, 아르곤 등과 같은 저온성 가스들 또는 상온 이하로 유지될 필요가 있는 다른 물질들을 저장하거나 운반하는데 사용되는, 예컨대 배관 등의 저온성 장치 또는 보온 용기의 단열 재킷 및 이러한 단열 재킷을 제조하는 방법에 관한 것이다. 단열 재킷의 단열 특성은 진공과 단열재에 의해서 달성된다.The present invention provides for the storage or transport of insulating jackets, especially low temperature gases such as nitrogen, oxygen, hydrogen, helium, argon, etc. required to maintain temperatures below room temperature or other materials that need to be kept below room temperature. It relates to a heat insulating jacket for use in, for example, a low temperature device such as a pipe or a thermal insulation container, and a method for producing such a heat insulating jacket. The insulation properties of the insulation jacket are achieved by vacuum and insulation.
본 발명에 따른 방법은 재킷을 단시간내에 작동 상태에 놓이도록 하는데 있어서 특히 바람직하다.The method according to the invention is particularly preferred for putting the jacket in an operational state in a short time.
적당한 단열을 달성하기 위해서 진공 재킷을 갖춘 보온 용기나 배관을 사용하는 것을 널리 알려져 있다. 단열효과를 배가시키기 위해서, 통상적으로 유리 솜(glass wool), 팽창된 유기 중합체(즉, 여러 성분으로 이루어진 합성 수지 및 폴리우레탄), 및 소위 "다층물(multi-layers)" 등과 같은 단열재를 재킷내에 삽입한다. 이러한 다층물은 유기 중합체(폴리올레핀 등)로 이루어진 시이트들이 겹쳐져서 형성되며, 이러한 시이트들은 바람직하게 교차 결합된 구조를 갖는다. 또한, 다층물은 예컨대 진공하에서 증발에 의해 플라스틱 필름에 알루미늄을 피복함으로써 얻어지는 알루미늄 코팅된 플라스틱으로 형성된다.It is well known to use a thermally insulating vessel or pipe with a vacuum jacket to achieve adequate insulation. In order to double the thermal insulation effect, jackets are usually jacketed with insulating materials such as glass wool, expanded organic polymers (i.e., multi-component synthetic resins and polyurethanes), and so-called "multi-layers". Insert in. Such multilayers are formed by overlapping sheets of organic polymers (polyolefins, etc.), which sheets preferably have a crosslinked structure. The multilayers are also formed of aluminum coated plastics obtained by coating aluminum on plastic films, for example by evaporation under vacuum.
재킷내의 진공은 시간이 지남에 따라 약화되는 경향이 있는 것으로 알려져 있다. 다시 말하면, 내부 부품의 가스 방출, 심지어는 벽들의 가스 방출(즉, CO, N2, H2, H2O, O2등과 같은 가스종의 방출), 및 누설(즉, 대기압 가스의 침투)에 의해서 진공상태가 약화된다. 이러한 진공상태를 유지하기 위해서, 가스 흡수재, 즉 흡기재를 이용하는 것이 공지되어 있는데, 이러한 흡기재는 재킷내에 설치되며, 일반적으로 제오라이트, 분자 체(molecular sieve), 실리카 겔, 활성탄(숯) 및 물리적으로 작용하는 기타 흡기재로 구성된다. 이러한 물질들은 대부분의 가스종들을 흡수할 수 있도록, 매우 낮은 온도, 즉 액체 질소의 온도 또는 그 이하의 온도로 유지되어야 한다. 또한, 물리적으로 작용하는 흡기재는 수소를 효과적으로 흡수하지 못한다. 따라서, 종래 기술에서는 영국 특허 제921273 호에 개시된 바와 같이, 재킷내에 산화팔라듐(PdO)을 주입하게 되었다. 산화팔라듐은 다음의 반응식을 따라서 수소를 물로 변환시킨다.It is known that the vacuum in the jacket tends to weaken over time. In other words, outgassing of internal parts, even outgassing of walls (ie, outgassing of gas species such as CO, N 2 , H 2 , H 2 O, O 2, etc.), and leakage (ie, infiltration of atmospheric gas) The vacuum is weakened by In order to maintain such a vacuum state, it is known to use a gas absorber, that is, an intake material, which is installed in the jacket, and generally is zeolite, molecular sieve, silica gel, activated carbon (charcoal) and physical It consists of other intake materials acting. These materials must be maintained at very low temperatures, i.e., at or below the temperature of liquid nitrogen, to absorb most gas species. In addition, the intake material that acts physically does not absorb hydrogen effectively. Therefore, in the prior art, as disclosed in British Patent No. 921273, palladium oxide (PdO) was injected into the jacket. Palladium oxide converts hydrogen to water according to the following scheme.
PdO +H2→ Pd +H2O (∝)PdO + H 2 → Pd + H 2 O (∝)
이후, 물은 재킷내에 존재하는 제오라이트나 기타 물리적으로 작용하는 다른 흡기재에 의해서 물리적으로 흡수된다.The water is then physically absorbed by the zeolite or other physically acting intake material present in the jacket.
이러한 기술이 갖는 첫번째 문제점은 보온 용기나 배관의 단열 재킷을 준비하는데 매우 긴 시간이 요구된다는 점이다. 이는 물리적으로 작용하는 흡기재(제오라이트 등)의 활성화가 펌핑하에서 장시간의 열처리를 요구하기 때문이며, 이러한 열처리는 수일 동안 지속될 수도 있다.The first problem with this technique is that it takes a very long time to prepare a thermal insulation jacket or pipe insulation jacket. This is because the activation of physically acting intake materials (such as zeolites) requires a long heat treatment under pumping, and this heat treatment may last for several days.
공정 시간은 물리적으로 작용하는 흡기재와 단열재내에 잔류하는 물의 양을 줄이는데 필요한 시간에 따라서 결정된다. 장치의 열처리 온도를 급격하게 상승(150 내지 200℃이상)시키면, 매우 짧은 시간 내에 물의 양을 줄일 수 있다. 그러나, 이러한 처리는 사용되는 재료가 그와 같은 온도에서 견디지 못하거나, 실용성 또는 경제성이 없기 때문에 자주 행할 수가 없다.The process time is determined by the time required to reduce the amount of water remaining in the intake material and the heat insulator which acts physically. By rapidly increasing the heat treatment temperature of the apparatus (150 to 200 DEG C), the amount of water can be reduced in a very short time. However, this treatment cannot be done frequently because the materials used are not able to withstand such temperatures, or because they are not practical or economical.
흡기재의 물리적인 특성으로 인하여 발생되는 두번째 문제점은 반응을 가역적으로 만든다는 점이다. 예를 들면, 보온 용기가 비어 있고 그 내부의 온도가 상온인 경우, 흡수된 가스들은 재방출되어 재킷내에 소정의 압력을 발생시킨다. 그 결과, 내부 용기(보온 용기 또는 배관의 내부 용기)를 채우는 동안에 이러한 내부 용기 내의 온도가 이미 상온으로 복귀되면, 단열 상태가 악화되기 때문에 격렬한 끓음이 진행되어 가스가 손실됨을 알아내었다. 이러한 과정은 제오라이트가 저온으로 냉각되고, 가스들을 다시 흡수한 후 소정시간 후에 다시 일어난다. "기화 유출(boil-off) 또는 "재끓음(reboiling)" 으로 알려진 이와 같은 문제점은 낮은 증발열을 가지며 비교적 고가인 수소 또는 헬륨과 같은 액화 가스의 경우에 심각한 문제가 된다. 몇몇 공지된 재료는 용기에 균열이 형성되어 용기 내부로부터 누설되자마자 액화가스와 접촉하여 반응하게 된다는 점에 또한 주목해야 한다. 특히, 산화팔라듐은 용기의 내벽이 파열된 경우에 폭발할 위험성이 있기 때문에, 액화 수소와 함께 사용할 수 없다. 활성탄(숯)이 액화 산소와 함께 사용될 때에도 동일한 문제점이 발생된다.The second problem caused by the physical properties of the intake material is that it makes the reaction reversible. For example, if the thermal container is empty and the temperature therein is room temperature, the absorbed gases are re-emitted to generate a predetermined pressure in the jacket. As a result, it has been found that if the temperature in such an inner container has already returned to room temperature while filling the inner container (an insulating container or an inner container of a pipe), the boiling state proceeds and the gas is lost because the thermal insulation deteriorates. This process occurs again after a predetermined time after the zeolite is cooled to low temperature and absorbs the gases again. This problem, known as "boil-off" or "reboiling", is a serious problem in the case of liquefied gases, such as hydrogen or helium, which have a low heat of evaporation and are relatively expensive. It should also be noted that as soon as a crack is formed and leaks from the interior of the vessel, it will react with the liquefied gas and react with the liquefied hydrogen, especially since palladium oxide is at risk of explosion if the inner wall of the vessel is ruptured. The same problem occurs when activated carbon (charcoal) is used with liquefied oxygen.
영국 특허 출원 제2,043,691호에 개시된 Zr-V-Fe 합급으로 구성되는 게터재(getter material)를 이용하는 것이 "씨. 보피토(C. Boffito)" 등에 의해서 "J. Vac. Sci. Techno. A5(6), 3442(1987)" 에 제안된 바 있다. 이러한 게터재는 앞에서 언급한 문제점들 중 일부를 해소시키는데, 즉 진공 상태를 악화시키는 서로 다른 여러 가지 가스들, 특히 수소를 화학적으로 흡수한다.The use of a getter material composed of the Zr-V-Fe alloy disclosed in British Patent Application No. 2,043,691 is described by "C. Boffito" et al. In "J. Vac. Sci. Techno. A5 ( 6) 3442 (1987). This getter material solves some of the problems mentioned above, that is, it chemically absorbs several different gases, in particular hydrogen, which exacerbate vacuum.
그러나, 단열재는 제조과정 동안에 심각한 누수를 야기시키는데, 이는 다른 가스종들에 대한 흡수효율을 크게 저하시켜서 장치의 수명을 단축시킨다.However, the insulation causes severe leakage during the manufacturing process, which greatly reduces the absorption efficiency for other gas species, which shortens the life of the device.
미합중국 특허 제3,144,469 호에는 흡습재와 게터재를 조립하여 사용하는 방법이 개시되어 있는데, 여기서는 최상의 게터재로서 미세 분말로 이루어진 바륨을 제시하고 있다. 흡습재는 실리카 겔이 될 수 있으며, 또는 제오라이트 분자 체(zeolite molecular sieve)도 바람직하다. 그러나, 흡습재와 게터재를 조합하여 사용하는 것으로는 온도 증가에 따른 가역적인 수분 흡수로부터 야기되는 상기한 문제점들을 극복할 수가 없다.U.S. Patent No. 3,144,469 discloses a method of assembling and using a hygroscopic material and a getter material, which present barium made of fine powder as the best getter material. The hygroscopic material may be silica gel, or zeolite molecular sieve is also preferred. However, using a combination of a hygroscopic material and a getter material cannot overcome the above problems caused by reversible water absorption with increasing temperature.
한편, 에이치. 에프. 마크(H.F.Mark)등이 "Kirk Othmer Encyclopedia of Chemical Technology)" 의 3번째 발행판, 제8권 114 내지 120쪽에서 흡습재의 물리적(가역적) 또는 화학적(비가역적)인 수분 흡수 특성을 나타내는 목록을 개시하고 있다.H. Meanwhile. F. HFMark et al., 3rd edition of "Kirk Othmer Encyclopedia of Chemical Technology," Vol. 8, pp. 114-120, discloses a list showing the physical (reversible) or chemical (reversible) water absorption properties of the absorbent material. Doing.
따라서, 본 발명의 목적은 단시간내에 진공 상태가 형성될 수 있는, 액화 가스를 저장하거나 운반하기 위한 보온 용기나 저온성 장치의 단열 재킷 및 이러한 단열 재킷을 제조하는 방법을 제공하는데 있다.It is therefore an object of the present invention to provide a thermal insulation container or a thermal insulation jacket for storing or transporting a liquefied gas in which a vacuum state can be formed in a short time and a method for manufacturing such thermal insulation jacket.
본 발명의 다른 목적은 용기가 비워지고 용기 내의 온도가 상온이 된 상태에서 용기를 액화가스로 채우는 동안에 상기한 "기화 유출(boil-off)"의 문제점을 발생시키지 않는 방법을 제공하는데 있다.It is another object of the present invention to provide a method which does not cause the above-mentioned "boil-off" while filling the container with liquefied gas while the container is emptied and the temperature in the container is at room temperature.
본 발명의 또다른 목적은 진공을 유지하는데 사용되는 재료 중 일부, 특히 산화팔라듐 및 활성탄(숯)이 가지는 위험성을 제거할 수 있는 방법을 제공하는데 있다. 이들 재료는 단열된 용기에 수소 및 산소 중 어느 하나가 액화된 상태로 존재하거나 용기가 파열되는 경우에, 수소 및 산소와 반응하여 폭발할 수 있다.It is another object of the present invention to provide a method which can eliminate the dangers of some of the materials used to maintain a vacuum, in particular palladium oxide and activated charcoal (charcoal). These materials can react with hydrogen and oxygen and explode if either of the hydrogen and oxygen are present in a liquefied state in the insulated vessel or if the vessel ruptures.
본 발명의 또다른 목적은 바람직하지 않은 가스들을 화학적으로 펌핑해 낼 수 있고 단열 장치(보온 용기 또는 배관)의 수명을 연장시킬 수 있는 방법을 제공하는데 있다.It is yet another object of the present invention to provide a method that can chemically pump undesirable gases and extend the life of a thermal insulation device (thermal container or piping).
상기한 목적을 달성하기 위해, 본 발명에 따른 저온성 장치의 단열 재킷은, 내벽, 외벽, 및 내벽과 외벽의 사이로 단열재로 전체적으로 또는 부분적으로 채워져 있는 내부 공간을 갖추고 있으며, 내부 공간이 흡습재 및 게터재를 포함하고 있는 저온성 장치의 단열 재킷에 있어서, 흡습재 및 게터재가 다공성 격벽에 의해서 내부지역과 외부지역으로 분할된 콘테이너내에 배열되어 있고, 내부지역이 게터재를 포함하고 있으며, 외부지역이 단열재를 포함하고 있는 내부 공간과 연통되어 있고, 외부지역은 수증기가 격벽을 통해서 게터재로 이동하는 것을 방지하는 흡습재를 포함하고 있는 것을 특징으로 한다.In order to achieve the above object, the thermal insulation jacket of the low-temperature device according to the present invention has an inner wall, an outer wall, and an inner space that is entirely or partially filled with a heat insulating material between the inner wall and the outer wall, and the inner space is a hygroscopic material and In a thermally insulating jacket of a low temperature device comprising a getter material, the moisture absorbent material and the getter material are arranged in a container divided into an inner region and an outer region by a porous partition, and the inner region includes the getter material, and the outer region. It is in communication with the interior space containing this heat insulating material, and the outside area is characterized by including the moisture absorbing material which prevents water vapor from moving to the getter material through the partition wall.
진공이 조성될 재킷의 내부 또는 외부에 액체 수소가 존재하지 않는 경우, 외부 지역이 예를 들어 소수의 귀금속(팔라듐, 이리듐, 오스뮴, 로듐, 루테늄) 산화물과 같은 수소 변환제를 바람직하게 포함한다. 가장 바람직한 수소 변환제는 산화팔라듐(PdO)이다.If no liquid hydrogen is present inside or outside the jacket on which the vacuum is to be established, the outer region preferably comprises a hydrogen converting agent, for example, a few precious metals (palladium, iridium, osmium, rhodium, ruthenium) oxide. Most preferred hydrogen converting agent is palladium oxide (PdO).
또한, 본 발명에 따른 단열 재킷의 제조 방법은, 내벽, 외벽, 및 내벽과 외벽의 사이로 단열재를 포함하는 내부 공간을 포함하고, 내부 공간이 흡습재 및 게터재를 포함하며, 흡습재가 상온에서 1Pa 미만의 수증기압을 갖는 흡습재로 구성된, 저온성 장치의 단열 재킷을 제조 방법에 있어서, 단열 재킷의 내부 공간과 연결되는 연결부를 갖춘 진공 펌프를 사용하여 상기 단열 재킷의 내부 공간을 100Pa 미만의 압력으로 배출하는 단계(A)와, 게터재를 비활성화된 형태로 유지하는 동시에 상기 내부 공간을 상기 흡습재에 노출시키는 단계(B)와, 상기 진공 펌프를 이용하여 상기 내부 공간을 5Pa 미만의 압력으로 더 배출하는 단계(C)와, 상기 게터재를 활성화시키는 단계(D)와, 그리고 상기 단열 재킷의 내부 공간과 상기 진공 펌프 사이의 상기 연결부를 밀봉시킴으로써 상기 단열 재킷을 진공 펌프로부터 단절시키는 단계(E)로 구성되는 것을 특징으로 한다.In addition, the method of manufacturing a thermal insulation jacket according to the present invention includes an inner space including an inner wall, an outer wall, and an insulating material between the inner wall and the outer wall, the inner space includes a hygroscopic material and a getter material, and the hygroscopic material is 1 Pa at room temperature. A method of manufacturing a thermal insulation jacket of a low temperature device, comprising a hygroscopic material having a water vapor pressure of less than, wherein the internal space of the thermal insulation jacket is subjected to a pressure of less than 100 Pa using a vacuum pump having a connection to the internal space of the thermal insulation jacket. Discharging (A), maintaining the getter material in an inactive form, and simultaneously exposing the internal space to the hygroscopic material (B), and using the vacuum pump to further reduce the internal space to a pressure of less than 5 Pa. Discharging (C), activating the getter material (D), and sealing the connection between the vacuum space and the internal space of the thermal insulation jacket. As a result, the insulating jacket is characterized in that it comprises a step (E) of disconnecting from the vacuum pump.
상기 단계(A)하에서 펌핑은 상기 단계(B)가 진행되는 동안에 선택적으로 중단될 수 있다. 또한, 상기 단계(A) 및 단계(B)가 진행되는 동안에 보온 용기나 저온성 장치의 내벽은 150℃ 이하의 온도, 바람직하게는 120℃ 이하의 온도로 유지되는데, 이에 의해 단열재로부터의 탈수가 증진된다.Pumping under step (A) can optionally be stopped while step (B) is in progress. In addition, during the above steps (A) and (B), the inner wall of the insulating container or the low temperature device is maintained at a temperature of 150 ° C. or lower, preferably 120 ° C. or lower, whereby dehydration from the heat insulating material is achieved. Promoted.
단계(B)는 종래 기술에서 수일이 소모되었던 것과는 달리 48시간 이내, 바람직하게는 2시간 내지 48시간 동안 지속된다.Step (B) lasts for less than 48 hours, preferably 2 to 48 hours, in contrast to days spent in the prior art.
또한, 화학적인 건조제와 게터재는 종래 기술과는 달리, 보온 용기나 저온성 장치의 외벽에서 서로 떨어져서 위치된다.In addition, the chemical desiccant and the getter material, unlike the prior art, are located away from each other on the outer wall of the thermal container or low temperature device.
게터재는 비교적 저온에서 활성화될 수 있는 바륨 및/또는 지르코늄계 합금으로 구성될 수도 있으며, 바람직하게는 동일 출원인에 의해서 출원된 유럽 특허 출원 제92-830186 호에 개시된 Ba-Li 합금으로 구성될 수도 있다. 이 합금은 BaLi4를 기초 화학식으로 한다.The getter material may be composed of barium and / or zirconium-based alloys that can be activated at relatively low temperatures, and preferably may be composed of Ba-Li alloys disclosed in European Patent Application No. 92-830186 filed by the same applicant. . This alloy is based on BaLi 4 .
본 발명을 보다 상세하게 설명하면, 본 발명의 방법은 상온 이외의 온도, 특히 저온에서 유지되어야 하는 원료를 저장하거나 운반하기 위한 저온성 장치(보온 용기, 변환기 또는 저장용 배관등)의 재킷을 진공상태 및 단열상태로 만들 수 있는 개선된 방법을 제공하는 것이다. 이러한 방법은 처음 단계에서 우세하게 작용하는 특정의(화학적인) 흡습제의 작용과 예를들어 O2, N2, CO, H2등과 같이 물과는 다른 가스들에 대해 작용하는 화학적인 흡수제로서 후반 단계 동안에 우세하게 작용하는 게터재의 작용을 조합함으로써, 본 발명에 따라 진행되는 공정 및 저온성 장치의 부수적인 작동과정 동안에 발생한 가스들을 흡수할 수 있다.DETAILED DESCRIPTION OF THE INVENTION In more detail, the method of the present invention vacuums a jacket of a low temperature device (thermal container, converter or storage piping, etc.) for storing or transporting raw materials that must be maintained at temperatures other than room temperature, especially at low temperatures. It is to provide an improved way to make the state and insulation. This method works by the action of certain (chemical) humectants that prevail in the first stage and later by chemical absorbents that act on gases other than water, such as O 2 , N 2 , CO, H 2, etc. By combining the action of the getter material predominantly during the step, it is possible to absorb the gases generated during the process proceeding according to the invention and the incidental operation of the low temperature device.
이하, 첨부된 도면들을 참조하여 본 발명을 보다 상세히 설명하는데, 이는 단지 본 발명을 예시하는 것일 뿐 결코 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, which are merely illustrative of the present invention and by no means limit the scope of the present invention.
[실시예]EXAMPLE
이하에, 제1도에 도시된 저온성 장치(1)를 참조하여, 본 발명에 따른 방법을 상세하게 설명한다.In the following, the method according to the present invention will be described in detail with reference to the cryogenic device 1 shown in FIG.
공지된 바와 같이, 저온성 장치(1)는 내부 용기, 즉 내벽(2)을 포함하는데, 이러한 내벽(2)은 바람직하게는 금속, 즉 강으로 제조되고, 액화 가스를 수용하기에 적합한 내부 체적 또는 유용한 내부 공간(3)을 형성한다. 이러한 내부 공간(3)은 목부분(6)을 통해서 주위와 연통될 수 있다. 목부분(6)은 보통은 닫혀 있지만 밀봉되지는 않는다. 저온성 장치(1)의 외벽(4)은 내벽(2)과 함께 재킷(5)을 형성하는데, 이러한 재킷(5)의 내부에서 내벽(2)의 적어도 일부분이 단열재(9)로 둘러싸여 있다. 단열재는 바람직하게는 다층물 형태를 가진다. 재킷(5)은 연결 피팅(8)과 밸브(7)를 통해서 외부 펌핑 장치(도시되지 않음)와 연결될 수 있다.As is known, the low temperature device 1 comprises an inner container, i.e. an inner wall 2, which inner wall 2 is preferably made of metal, i.e. steel, an inner volume suitable for containing liquefied gas. Or to form a useful internal space 3. This interior space 3 can communicate with the surroundings through the neck 6. The neck 6 is normally closed but not sealed. The outer wall 4 of the low temperature device 1 forms a jacket 5 together with the inner wall 2, in which at least a portion of the inner wall 2 is surrounded by a heat insulator 9. The insulation preferably has the form of a multilayer. The jacket 5 can be connected with an external pumping device (not shown) via a connection fitting 8 and a valve 7.
본 발명에 따르면, 재킷(5) 내에는 화학적인 흡습재(10) 및 게터재(11)(및 선택적으로 전술한 소정의 경우에는, 수소 변환제)가 외벽(4)에 서로 떨어진 위치로 삽입되어 있다. 이는 게터재가 저온인 내벽에 위치되어 있는 종래 기술과는 상이하다.According to the present invention, the chemically absorbent material 10 and the getter material 11 (and optionally the hydrogen conversion agent in the above-described cases, hydrogen conversion agent) are inserted into the jacket 5 at positions away from each other. It is. This is different from the prior art in which the getter material is located on the inner wall at low temperature.
제킷(5)의 제1펌핑 단계가 개시되면, 관형상의 연결 피팅(8)을 통해서 단지 수분 만에 100Pa 또는 그 이하의 압력이 재킷내로 가해진다. 이후, 밸브(7)가 닫히면 저온성 장치(1)의 외벽(4)이 펌핑 장치와 단절되고, 흡습재(10)가 2시간 내지 48시간 동안에 단열재(9)로부터 방출된 수증기에 대하여 선택적인 펌핑 작용을 행하게 된다.When the first pumping step of the jacket 5 is initiated, a pressure of 100 Pa or less is applied into the jacket in just a few minutes via the tubular connection fitting 8. Then, when the valve 7 is closed, the outer wall 4 of the low temperature device 1 is disconnected from the pumping device, and the hygroscopic material 10 is selective for water vapor released from the heat insulator 9 for 2 to 48 hours. The pumping action is performed.
이 단계에서, 상기 흡습 시간 동안에 밸브(7)가 개방된 상태로 유지될 수도 있다. 그러나, 이러한 경우에도, 흡습재(10)는 항상 대부분의 수증기를 흡수하게 되는데, 이는 펌프의 작용이 연결 피팅(8)을 통해서 이루어지는 유동의 전도도에 의하여 제한되기 때문이다. 이러한 수증기를 흡수하는 단계(외부로부터의 펌핑작용이 있거나 없거나 간에)에서, 내벽(2)은 단열재(9)의 다른 층들 보다도 내벽(2) 가까이에 위치한 층, 특히 최내부층으로부터 수증기를 한층 더 제거할 수 있도록, 예컨대 고온 공기 또는 고온수를 내부 공간(3) 내로 분사하여 150℃ 이하의 온도로 가열된다.In this step, the valve 7 may be kept open during the moisture absorption time. However, even in this case, the absorbent material 10 always absorbs most of the water vapor, because the action of the pump is limited by the conductivity of the flow through the connection fitting 8. In the step of absorbing this water vapor (whether with or without pumping from the outside), the inner wall 2 is further layered with water vapor from the layer located closer to the inner wall 2 than the other layers of the insulation 9, in particular the innermost layer. For removal, for example, hot air or hot water is injected into the internal space 3 and heated to a temperature of 150 ° C. or less.
상기 흡습 시간 후에, 밸브(7)가 다시 개방시킴으로써 펌핑이 다시 시작되고, 이에 의해 재킷(5)내의 압력이 5Pa 이하로 저하되는데, 이때 게터재(11)가 활성화된다. 즉, 게터재는 내부에 위치된 게터재의 위치에 대응하는 외벽 외부의 위치에 배열된 가열 장치에 의해서 활성화된다. 게터재의 활성화는 불꽃, 고온송풍건, 전기저항기 또는 다른 유사한 수단을 사용하여 가열함으로써 간단하게 이루어진다. 이러한 가열에 의해서 도달되는 온도는 사용되는 게터재의 종류에 의존한다. 저온 또는 극저온에서도 활성화될 수 있는 게터재가 바람직한데, 이러한 게터재의 예로서는 유럽 특허 출원과 동일한 출원인이 출원한 유럽 특허 출원 제92-830186호에 개시된 바 있는 Ba-Li합금들이 있다. 상기 유럽 특허 출원과 동일한 출원한 유럽 특허 출원 제92-830185 호에 따르면, 이러한 게터재는 열신축성 덮개를 갖춘 블리스터(blister) 내에 삽입된다. 이러한 종류의 게터재는 활성화를 위해 120℃ 이상의 온도로 가열할 필요가 없다.After the moisture absorption time, the pump 7 starts again by opening the valve 7 again, whereby the pressure in the jacket 5 drops to 5 Pa or less, at which time the getter material 11 is activated. That is, the getter material is activated by a heating device arranged at a position outside the outer wall corresponding to the position of the getter material located therein. Activation of the getter material is accomplished simply by heating using a flame, hot air gun, electrical resistor or other similar means. The temperature reached by such heating depends on the kind of getter material used. Getter materials that can be activated at low or cryogenic temperatures are preferred. Examples of such getter materials include Ba-Li alloys disclosed in European Patent Application No. 92-830186 filed by the same applicant as the European Patent Application. According to the same European Patent Application No. 92-830185, which is identical to the European Patent Application, this getter material is inserted into a blister with a heat stretchable cover. This kind of getter material does not need to be heated to a temperature above 120 ° C. for activation.
본 발명에 따른 방법의 마지막 단계 동안에, 재킷(5)은 밸브(7)가 폐쇄됨으로써 외부 및 펌프와 단절되며, 관형상의 연결 피팅(8)에 대응하여 밀봉된다{"핀치-오프(pinch-off)"에 의해}.During the last step of the method according to the invention, the jacket 5 is disconnected from the outside and the pump by closing the valve 7 and sealed in correspondence with the tubular connection fitting 8 {"pinch-off off) ".
만약 흡수된 가스가 물을 폼함하지 않으면, 동일한 게터재보다 양호한 방식으로 작용할 수 있다. 이것은 가스들을 BaO(선택적으로 수소 변환제)와 같은 강력한 건조제와 먼저 접촉시키고, 이후 서로 떨어져서 위치된 BaLi4와 같은 게터재와 접촉시킬 것을 제안하게 된 근거가 된다.If the absorbed gas does not foam water, it may work in a better way than the same getter material. This is the basis for suggesting that the gases be first contacted with a strong desiccant such as BaO (optionally a hydrogen converting agent) and then with a getter material such as BaLi 4 located apart from each other.
제3도에 도시된 실시예를 참조하여 보다 상세하게 설명하면, 화학적인 건조제(10) 및 게터재(11)는 다공성 격벽(13)에 의해서 내부지역(14) 및 외부지역(15)으로 분할되어 콘테이너(12)내에 배열될 수 있다. 여기에서, 내부지역(14)은 게터재를 포함하고 있으며, 외부지역(15)은 화학적인 건조제(10)를 포함하며 단열재(9)를 포함하는 공간과 연결되어 있다. 건조제는 수증기가 격벽(13)을 지나서 게터재(11) 쪽으로 이동하는 것을 방지한다.In more detail with reference to the embodiment shown in FIG. 3, the chemical desiccant 10 and the getter material 11 are divided into an inner region 14 and an outer region 15 by a porous partition 13. Can be arranged in the container 12. Here, the inner region 14 includes a getter material, and the outer region 15 includes a chemical desiccant 10 and is connected to a space including the heat insulator 9. The desiccant prevents water vapor from moving past the partition 13 toward the getter material 11.
콘테이너(12)는 편평한(즉, 수평) 격벽과 상부에 개구부를 갖춘 수직형 상자로 구성되거나, 또는 저온성 배관이나 저온성 장치의 내부를 에워싸며 방사상 또는 편평한(즉, 수평) 격벽을 갖춘 환상의 상자로 구성될 수도 있다.Container 12 may consist of a flat (i.e. horizontal) bulkhead and a vertical box with an opening at the top, or an annulus with radial or flat (i.e. horizontal) bulkheads enclosing the interior of the low temperature piping or low temperature device. It may also consist of a box of.
콘테이너는 강체 상자, 반강체 상자 또는 가요성 상자일 수 있으며, 수분을 함유하지 않은 재료, 즉 금속, 유리 세라믹 또는 이들의 혼합재료로 제조될 수 있다. 콘테이너는 환상의 형상을 가지게 되지만, 각기 상이한 단면적의 형상들이 채택될 수 있다. 즉, 원형, 정사각형, 직사각형, 삼각형, 타원형, 둥근 돌출부형 및 이들과 유사한 형상의 단면적을 갖는 상자로서 구성될 수 있다.The container may be a rigid box, a semi-rigid box or a flexible box, and may be made of a material that does not contain moisture, ie metals, glass ceramics or mixtures thereof. The container will have an annular shape, but shapes of different cross-sectional areas can be adopted. That is, it can be configured as a box having a cross-sectional area of a circle, square, rectangle, triangle, oval, round protrusion and similar shapes.
다음의 실시예들은 본 발명을 설명하기 위한 것이며, 본 발명의 영역을 제한하지 않는다.The following examples are intended to illustrate the invention and do not limit the scope of the invention.
[실시예 1:비교예]Example 1: Comparative Example
이 실시예는 본 발명에 따른 기술을 이용하지 않고 준비된 진공 재킷을 갖는 제1도의 저온성 장치의 거동을 설명하기 위한 것이다.This example is intended to illustrate the behavior of the low temperature device of FIG. 1 with a vacuum jacket prepared without using the technique according to the invention.
진공 재킷은 36 리터의 체적을 가지며, 500g의 다층 단열재를 포함한다. 다층 단열재는 알루미늄 코팅된 폴리에스테르 테이프(MYLAR 테이프)와 폴리올레핀 테이프가 교대로 겹쳐져서 구성된 것이다. 진공 재킷은 5시간 동안에 걸쳐서 펌핑하는 동안에 회전식 또는 터보모레큘러(turbomolecular)형 외부진공 펌프에 연결된다. 연속하여, 저온성 장치는 단절되고, 시간에 따라서 압력이 증가하게 된다.The vacuum jacket has a volume of 36 liters and includes 500 g of multilayer insulation. Multilayer insulation consists of alternating aluminum coated polyester tape (MYLAR tape) and polyolefin tape. The vacuum jacket is connected to a rotary or turbomolecular external vacuum pump while pumping over 5 hours. Subsequently, the low temperature device is disconnected and the pressure increases with time.
이러한 시험을 통해서 얻어진 결과가 제2도의 선1로 표시되어 있다. 반면에, 선 2는 단순히 저온성 장치 내에서 존재하는 누설 구멍을 통해 공기가 재킷내로 침투함으로써 압력이 증가된 것을 보여준다. 선 2로 표시되는 압력의 증가를 질량 분광계로 측정하면, 그 값은 6×10-7Pa ㎥/s이다. 시험된 장치는 실제적으로 사용되는 장치들을 매우 잘 나타낸다. 그러나, 가속 시험을 수행하기 위해서는 상기한 바와 같이 공기 누설을 발생시켜야 한다. 즉, 허용 가능한 이용치(보통은 10-10Pa ㎥/s) 보다 적어도 5,000배 이상 큰 공기 누설을 필요로 한다. 따라서, 단시간 동안에 장시간의 누설지속 효과를 재생할 수 있다. 선 1과 선 2의 차이는 수분을 함유한 가스들이 내부 단열재를 통해서 배출되는데 기인한다.The results obtained through these tests are indicated by line 1 in FIG. Line 2, on the other hand, shows an increase in pressure as air penetrates into the jacket simply through leaking holes present in the low temperature device. When the increase in pressure represented by line 2 is measured with a mass spectrometer, the value is 6 × 10 −7 Pa m 3 / s. The device tested very well represents the devices actually used. However, in order to perform the acceleration test, air leakage must be generated as described above. That is, it requires at least 5,000 times greater air leakage than the allowable usage value (usually 10 -10 Pa m3 / s). Therefore, it is possible to reproduce the long-lasting leakage effect in a short time. The difference between lines 1 and 2 is due to the release of moisture-containing gases through the internal insulation.
[실시예 2]Example 2
제1실시예의 시험을 반복하며, 진공 재킷내에서 건조제(10)와 게터재(11)에 대응하는 지역에 BaO 10g 및 BaLi4합금 10g을 삽입하였다. 이것은 유럽 특허 출원 제92-830186 호에 따른 것이며, 이는 유럽 특허 출원 제92-830185 호에 개시된 바와 같이 열신축성 콘테이너(용기)내에 과립 형태(작은 펠렛)로 삽입된다.The test of the first embodiment was repeated, and 10 g of BaO and 10 g of BaLi 4 alloy were inserted into a region corresponding to the desiccant 10 and the getter material 11 in the vacuum jacket. This is in accordance with European Patent Application No. 92-830186, which is inserted in granular form (small pellets) into a thermo-stretchable container (container) as disclosed in European Patent Application No. 92-830185.
진공 재킷은 외부 펌프에 연결되며, 10분간의 짧은 펌프작용을 받는다. 이후, 장치는 밸브(7)를 닫음으로써 펌프와 단절된다. 이러한 조건하에서, 24시간의 흡습 시간이 주어지고, 이후 밸브(7)를 개방하기 전까지 제2단계(장치의 재펌핑화)가 진행된다. 즉, 게터재의 내부위치에 대응하는 외부위치에 배열된 가열장치에 의해서 게터재가 120℃의 온도로 일시적으로 활성화된다. 가열 장치로는 고온송풍건이 이용된다. 25분 동안의 활성화 시간이 경과한 후, 장치는 외부와 단절되고, 시간에 따른 압력의 변화가 기록된다. 이 시험의 결과는 제2도의 선 3으로 표시된다.The vacuum jacket is connected to an external pump and subjected to a short pumping action of 10 minutes. The device is then disconnected from the pump by closing the valve 7. Under these conditions, a moisture absorption time of 24 hours is given, and then a second stage (re-pumping of the device) proceeds before opening the valve 7. That is, the getter material is temporarily activated to a temperature of 120 ° C by a heating device arranged at an external position corresponding to the internal position of the getter material. As a heating device, a hot air blowing gun is used. After 25 minutes of activation time has elapsed, the device is disconnected from the outside and the pressure change over time is recorded. The results of this test are indicated by line 3 in Figure 2.
[실시예 3]Example 3
이 실시예는 제4도에 도시된 바와 같이 본 발명의 기술에 따라 배출된 진공 재킷을 통해 단열되어 있는 액체 질소의 운반에 사용되는 스테인레스 강관의 거동을 나타내기 위한 것이다.This embodiment is intended to show the behavior of a stainless steel pipe used for the transport of liquid nitrogen insulated through a evacuated vacuum jacket according to the technique of the present invention as shown in FIG.
진공 재킷은 20리터의 체적을 가지며, 50g의 다층 단열재를 포함하고 있다. 다층 단열재는 폴리올레핀 테이프들과 알루미늄 코팅된 폴리에테르 테이프(MILAR)가 교대로 겹쳐져서 구성되며, 내부관 주위를 둘러싸고 있다.The vacuum jacket has a volume of 20 liters and contains 50 g of multilayer insulation. Multilayer insulation consists of alternating overlaps of polyolefin tapes and aluminum coated polyether tape (MILAR) and surrounds the inner tube.
다음의 재료들이 재킷내에 또한 포함된다.The following materials are also included in the jacket.
먼저, 유럽 특허 출원 제92-830186 호에 따른 BaLi4합금 10g이 포함된다. 이 합금은 유럽 특허 출원 제92-830185 호에 개시된 열신축성 콘테이너(17){게터재 격벽(16)내에 위치됨} 내에 과립(작은 펠렛)의 형태로 배열된다.First, 10 g of BaLi 4 alloy according to European Patent Application No. 92-830186 is included. This alloy is arranged in the form of granules (small pellets) in a thermo-stretchable container 17 (located in the getter material partition 16) disclosed in European Patent Application No. 92-830185.
다음에는 BaO(18) 20g이 재킷내에 자유로이 분산된다.Next, 20 g of BaO 18 is freely dispersed in the jacket.
그 다음에는, 0.75g의 산화팔라듐(PdO) 과립이 다공성 패킷(19)에 싸여서 포함된다. 패킷(19)은 게터재 격벽(16) 상에 고정되어 있다.Next, 0.75 g of palladium oxide (PdO) granules are included and wrapped in the porous packet 19. The packet 19 is fixed on the getter material partition 16.
진공 재킷은 밸브(20)에 의해서 확산 및 회전식 펌프인 외부 펌핑 장치에 연결된다. 다음에는 5×10-12Pa ㎥/s의 민감도를 갖는 누설 탐지기에 의해서 기밀성이 탐지된다.The vacuum jacket is connected by an valve 20 to an external pumping device, which is a diffusion and rotary pump. The airtightness is then detected by a leak detector with a sensitivity of 5 × 10 −12 Pa m 3 / s.
그후, 15시간 동안 펌핑이 유지되고, 다층 단열재료의 탈가스화를 증진시키기 위해서 약 100 내지 120℃의 고온 송풍이 내부관내로 제공된다. 끝으로 게터재 격벽(16)이 외부 테이프 가열기에 의해서 120℃의 온도로 가열되며, 이에 의해 게터재가 활성화된다.Thereafter, pumping is maintained for 15 hours, and hot air blowing at about 100 to 120 ° C. is provided into the inner tube to promote degassing of the multilayer insulating material. Finally, the getter material partition wall 16 is heated to a temperature of 120 ° C. by an external tape heater, whereby the getter material is activated.
게터재의 활성화가 달성되고 30분이 지난 후에, 재킷은 밸브(19)의 폐쇄에 의해서 펌핑장치와 단절된다. 이후, 시간에 따른 압력변화가 기록된다. 그 결과가 제5도에 그래프로 표시되어 있다.30 minutes after activation of the getter material is achieved, the jacket is disconnected from the pumping device by the closing of the valve 19. The pressure change over time is then recorded. The results are shown graphically in FIG.
[결론][conclusion]
제2도의 선 1과 3을 비교하면, 본 발명에 따른 기술을 적용함으로써, 밀봉후에 저온성 장치에서 발생하는 압력의 증가를 상당히 줄일 수 있음을 알 수 있다. 질량 분광계에 의해서 수행된 분석 시험에 따르면, 두 재료인 건조제와 게터재를 조합하여 이용함으로써 단열재를 통해서 배출된 물을 흡수할 수 있을 뿐만 아니라 장치내의 누설을 방지할 수 있음을 알 수 있다. 또한, 시험들은 대기압 가스에 대하여 가속 조건, 즉 실제로 발생하는 것에 비하여 보다 극심한 조건에서 수행되었다. 그러므로, 360 시간(15일) 동안의 가속 시험은 적어도 20년 동안의 실제적인 작동과 동등한 것으로 간주할 수 있다.Comparing lines 1 and 3 of FIG. 2, it can be seen that by applying the technique according to the invention, the increase in pressure occurring in the low temperature device after sealing can be significantly reduced. According to an analytical test performed by a mass spectrometer, it can be seen that by using a combination of two materials, a desiccant and a getter material, it can not only absorb the water discharged through the heat insulating material but also prevent leakage in the apparatus. In addition, the tests were carried out on atmospheric gases under accelerated conditions, i.e. more extreme conditions than actually occurring. Therefore, an accelerated test for 360 hours (15 days) can be considered equivalent to actual operation for at least 20 years.
저온성 장치의 경우에 있어서, 누설률은 실제로 낮으며, 보통은 10-10Pa×㎥/s 미만이 된다. 게터재에 의해서 발휘되는 펌핑작용은 제5도의 선으로 나타낸 바와 같이 재킷의 밀봉후에 상당한 압력 저하를 야기한다.In the case of low temperature devices, the leak rate is actually low, usually less than 10 −10 Pa × m 3 / s. The pumping action exerted by the getter material causes a significant pressure drop after sealing of the jacket, as indicated by the line in FIG.
해당 기술분야의 숙련된 당업자는 본 발명의 영역 및 사상을 벗어나지 않는 범위내에서 상기의 작동 조건들을 임의로 수정 및 변경할 수 있음을 이해할 수 있을 것이다.Those skilled in the art will appreciate that the above operating conditions may be arbitrarily modified and changed without departing from the scope and spirit of the invention.
Claims (5)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI92A001416 | 1992-06-08 | ||
ITMI921416A IT1258958B (en) | 1992-06-08 | 1992-06-08 | PROCESS PERFECTED FOR THE CREATION OF THERMALLY INSULATING INSULATION THROUGH VACUUM AND INSULATING MATERIALS |
WOPCT/IT92/00141 | 1992-11-09 | ||
PCT/IT1992/000141 WO1993025842A1 (en) | 1992-06-08 | 1992-11-09 | Process for evacuating a thermally insulating jacket in particular the jacket of a dewar or of another cryogenic device |
PCT/IT1993/000007 WO1993025843A1 (en) | 1992-06-08 | 1993-02-01 | Process for evacuating a thermally insulating jacket, in particular the jacket of a dewar or of another cryogenic device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950701056A KR950701056A (en) | 1995-02-20 |
KR100253841B1 true KR100253841B1 (en) | 2000-04-15 |
Family
ID=11363477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940703428A KR100253841B1 (en) | 1992-06-08 | 1993-02-01 | Termally insulating jacket and related process |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR100253841B1 (en) |
CN (1) | CN1029154C (en) |
IT (1) | IT1258958B (en) |
WO (1) | WO1993025842A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012015095A1 (en) | 2010-07-29 | 2012-02-02 | 주식회사 엑스엘 | Vacuum thermal insulation panel |
KR102303797B1 (en) * | 2020-03-23 | 2021-09-17 | 한국과학기술원 | Liquid hydrogen reservoir apparatus for controlling liquid hydrogen boil-off rate |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1264692B1 (en) * | 1993-07-08 | 1996-10-04 | Getters Spa | GETTER COMBINATION SUITABLE FOR REVERSIBLE VACUUM INSULATING SHIRTS |
JPH08159377A (en) * | 1994-12-02 | 1996-06-21 | Matsushita Refrig Co Ltd | Vacuum heat insulator |
US7854236B2 (en) * | 2007-06-19 | 2010-12-21 | Praxair Technology, Inc. | Vacuum insulated piping assembly method |
CN102205228B (en) * | 2010-05-27 | 2013-05-08 | 福建赛特新材股份有限公司 | Composite getter for maintaining medium and low vacuum environment and preparation method thereof |
KR20130141543A (en) | 2010-10-27 | 2013-12-26 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Liner-based assembly for removing impurities |
US10295110B2 (en) * | 2012-05-11 | 2019-05-21 | Evatec Ag | Adapter for vacuum-insulated lines |
CN102913749A (en) * | 2012-10-23 | 2013-02-06 | 西安轨道交通装备有限责任公司 | Vacuum-pumping system and vacuum-pumping method for large-capacity low-temperature thermal insulating container |
US10241014B2 (en) | 2017-07-10 | 2019-03-26 | Cem Corporation | Instrument for analytical sample preparation |
US10295447B2 (en) | 2017-07-10 | 2019-05-21 | Cem Corporation | Rapid energized dispersive solid phase extraction (SPE) for analytical analysis |
US10330573B2 (en) | 2017-07-10 | 2019-06-25 | Cem Corporation | Rapid sample preparation for analytical analysis using dispersive energized extraction |
JP7273508B2 (en) * | 2018-12-28 | 2023-05-15 | 川崎重工業株式会社 | vessel |
GB2584443A (en) * | 2019-06-03 | 2020-12-09 | Linde Kryotechnik Ag | Vacuum insulated equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3114469A (en) * | 1963-02-20 | 1963-12-17 | Union Carbide Corp | Means for improving thermal insulation space |
FR1422353A (en) * | 1964-11-13 | 1965-12-24 | Thomson Houston Comp Francaise | Insulated enclosure with substantially constant internal temperature |
NL7412693A (en) * | 1974-09-26 | 1976-03-30 | Philips Nv | GETTER HOLDER AND ELECTRICAL DISCHARGE TUBE FITTED WITH SUCH A HOLDER. |
DE2657904A1 (en) * | 1975-12-30 | 1977-07-14 | Osaka Oxygen Ind | THERMAL CONTAINER FOR LIQUID GASES AND FACING ALLOY FOR IT |
DE2902623A1 (en) * | 1979-01-24 | 1980-07-31 | Messer Griesheim Gmbh | METHOD AND GRID ARRANGEMENT FOR MAINTAINING A VACUUM |
US4997124A (en) * | 1988-04-20 | 1991-03-05 | Zojirushi Corporation | Vacuum-insulated, double-walled metal structure and method for its production |
-
1992
- 1992-06-08 IT ITMI921416A patent/IT1258958B/en active IP Right Grant
- 1992-11-09 WO PCT/IT1992/000141 patent/WO1993025842A1/en active Application Filing
- 1992-11-30 CN CN92113646A patent/CN1029154C/en not_active Expired - Fee Related
-
1993
- 1993-02-01 KR KR1019940703428A patent/KR100253841B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012015095A1 (en) | 2010-07-29 | 2012-02-02 | 주식회사 엑스엘 | Vacuum thermal insulation panel |
KR102303797B1 (en) * | 2020-03-23 | 2021-09-17 | 한국과학기술원 | Liquid hydrogen reservoir apparatus for controlling liquid hydrogen boil-off rate |
Also Published As
Publication number | Publication date |
---|---|
ITMI921416A0 (en) | 1992-06-08 |
KR950701056A (en) | 1995-02-20 |
ITMI921416A1 (en) | 1993-12-08 |
CN1029154C (en) | 1995-06-28 |
IT1258958B (en) | 1996-03-11 |
CN1080039A (en) | 1993-12-29 |
WO1993025842A1 (en) | 1993-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2694576B2 (en) | Improved process for venting heat insulating jackets, in particular dewar or other cryogenic jackets | |
KR100253841B1 (en) | Termally insulating jacket and related process | |
US5505810A (en) | Getter system for vacuum insulation panel | |
US5600957A (en) | Device for maintaining a vacuum in a thermally insulating jacket and method of making such device | |
US7562534B2 (en) | Cryogenic aerogel insulation system | |
RU2108148C1 (en) | Combination of gas-absorption materials, gas-absorption apparatus, and heat-insulation housing | |
US5160769A (en) | Thermal insulation: co2 filled foam | |
US3114469A (en) | Means for improving thermal insulation space | |
JP4565385B2 (en) | Vacuum insulation tube | |
JPH0326320B2 (en) | ||
US4492725A (en) | Composite thermal insulator | |
JP4752422B2 (en) | Method for manufacturing vacuum insulator | |
US4272259A (en) | Gas gettering system | |
US5399397A (en) | Calcium silicate insulation structure | |
US3695050A (en) | Liquid propellant storage tank | |
US4704068A (en) | Process for introducing an adsorption agent | |
JPH09506317A (en) | Vacuum stabilizer and manufacturing method thereof | |
US3818715A (en) | Heat-insulating constructions | |
RU2102650C1 (en) | Heat-insulating casing for cryogenic device | |
JPH0278281A (en) | Cryostat provided with adsorber | |
Manini | Recent developments in the open cell foam-filled vacuum insulated panels for appliances applications | |
CN115435182B (en) | Vacuum pipeline and preparation process thereof | |
JPH0243954B2 (en) | ||
Rüdiger et al. | Long life vacuum dewar technology for columbus freezer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100119 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |