KR100250753B1 - Fabrication method of flash memory cell - Google Patents

Fabrication method of flash memory cell Download PDF

Info

Publication number
KR100250753B1
KR100250753B1 KR1019960054381A KR19960054381A KR100250753B1 KR 100250753 B1 KR100250753 B1 KR 100250753B1 KR 1019960054381 A KR1019960054381 A KR 1019960054381A KR 19960054381 A KR19960054381 A KR 19960054381A KR 100250753 B1 KR100250753 B1 KR 100250753B1
Authority
KR
South Korea
Prior art keywords
gate
polysilicon layer
silicon substrate
memory cell
flash memory
Prior art date
Application number
KR1019960054381A
Other languages
Korean (ko)
Other versions
KR19980035925A (en
Inventor
손광식
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019960054381A priority Critical patent/KR100250753B1/en
Publication of KR19980035925A publication Critical patent/KR19980035925A/en
Application granted granted Critical
Publication of KR100250753B1 publication Critical patent/KR100250753B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE: A method for manufacturing a flash memory cell is provided to simplify a manufacturing process by patterning simultaneously a floating gate and a select gate. CONSTITUTION: A gate oxide layer(12) and the first polysilicon layer are formed on a silicon substrate(11). A floating gate(13A) and a select gate(13B) are formed by patterning the first polysilicon layer. An insulating layer spacer(16) is formed at both sidewalls of the floating gate(13A) and the select gate(13B). A dielectric layer(14) and the second polysilicon layer are laminated sequentially on an upper portion of the whole structure. A control gate(15A) is formed on the floating gate by patterning the second polysilicon layer. A junction region(19) is formed by implanting dopant ions into the silicon substrate(11).

Description

플래쉬 메모리 셀의 제조 방법Method for manufacturing flash memory cell

본 발명은 플래쉬 메모리 셀의 제조 방법에 관한 것으로, 특히 제조 공정을 단순화시킬 수 있도록 한 플래쉬 메모리 셀의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a flash memory cell, and more particularly, to a method of manufacturing a flash memory cell capable of simplifying a manufacturing process.

일반적으로 전기적인 프로그램(Program) 및 소거(Erasure) 기능을 가지는 플래쉬(Flash) 메모리 소자의 메모리 셀은 게이트 전극의 형태에 따라 적층-게이트형(Stack-gate type)과 스프리트-게이트 형(Split-gate type)으로 나누어진다. 그러면 스프리트-게이트 형의 게이트 전극을 갖는 종래 플래쉬 메모리 셀의 제조 방법을 도1a 내지 도1d를 통해 설명하면 다음과 같다.In general, a memory cell of a flash memory device having an electric program and an erasure function has a stack-gate type and a split-gate type according to the shape of a gate electrode, gate type). A method of manufacturing a conventional flash memory cell having a split-gate type gate electrode will now be described with reference to FIGS. 1A to 1D.

도1a는 실리콘 기판(1)상에 터널 산화막(2), 제1폴리실리콘층(3), 유전체막(4) 및 제2폴리실리콘층(5)을 순차적으로 형성한 상태의 단면도로서, 상기 제1 및 제2폴리실리콘층(3 및 5)은 폴리실리콘을 증착한 후 불순물 이온을 주입 또는 도핑하여 형성한다. 그리고 상기 유전체막(4)은 질화막으로 형성하거나, 산화막, 질화막 및 산화막이 적층된 ONO 구조로 형성한다.1A is a cross-sectional view of a state in which a tunnel oxide film 2, a first polysilicon layer 3, a dielectric film 4 and a second polysilicon layer 5 are sequentially formed on a silicon substrate 1, The first and second polysilicon layers 3 and 5 are formed by implanting or doping impurity ions after depositing polysilicon. The dielectric film 4 is formed of a nitride film or an ONO structure in which an oxide film, a nitride film, and an oxide film are laminated.

도1b는 상기 제2폴리실리콘층(5), 유전체막(4), 제1폴리실리콘층(3) 및 터널 산화막(2)을 순차적으로 패터닝하여 상기 실리콘 기판(1)상에 터널 산화막(2), 플로팅 게이트(3A), 유전체막(4) 및 콘트롤 게이트(5A)가 적층된 구조의 게이트 전극을 형성한 후 상기 게이트 전극의 양측벽에 절연막 스페이서(6)를 형성한 상태의 단면도이다.1B is a plan view of the tunnel oxide film 2 on the silicon substrate 1 by successively patterning the second polysilicon layer 5, the dielectric film 4, the first polysilicon layer 3 and the tunnel oxide film 2, ), The floating gate 3A, the dielectric film 4, and the control gate 5A are formed on the gate insulating film 5, and then the insulating film spacers 6 are formed on both side walls of the gate electrode.

도1c는 전체 상부면에 셀렉트 게이트 산화막(7) 및 제3폴리실리콘층(8)을 순차적으로 형성한 상태의 단면도이고, 도1d는 상기 제3폴리실리콘층(8)을 패터닝하여 셀렉트 게이트(8A)를 형성하고 노출된 부분의 상기 실리콘 기판(1)에 불순물 이온을 주입하여 접합영역(9)을 형성한 상태의 단면도이다.1C is a cross-sectional view in which a select gate oxide film 7 and a third polysilicon layer 8 are sequentially formed on the entire upper surface. FIG. 1D is a cross-sectional view of the third polysilicon layer 8, 8A are formed on the silicon substrate 1 and impurity ions are implanted into the silicon substrate 1 of the exposed portion to form a junction region 9.

그런데 상기와 같은 메모리 셀의 제조 방법은 상기 터널 산화막, 셀렉트 게이트 산화막과 같이 질(Quality)을 제어하기 어려운 산화막 형성 과정을 포함하며 공정의 단계도 복잡하여 수율이 낮아지는 단점을 갖는다. 또한 최상부에 형성되는 상기 셀렉트 게이트(8A)의 폭은 사진 장비의 임계치수와 무관하게 설정되기 때문에 전체적인 메모리 셀의 크기를 감소시키기 어려우며, 따라서 고집적 소자의 제조에 상기와 같은 메모리 셀 제조 방법을 적용하기 어려운 실정이다.However, the above-described method of manufacturing a memory cell has a disadvantage in that it involves an oxide film formation process which is difficult to control quality, such as the tunnel oxide film and the select gate oxide film, and the process is complicated and the yield is low. In addition, since the width of the select gate 8A formed at the uppermost portion is set independent of the critical number of the photographic equipment, it is difficult to reduce the size of the entire memory cell. Therefore, This is a difficult situation.

따라서 본 발명은 폴리실리콘층을 형성한 후 패터닝하여 플로팅 게이트와 셀렉트 게이트 동시에 형성하므로써, 제조 공정을 단순화하고 셀의 크기를 감소시킬 수 있는 플래쉬 메모리 셀의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, it is an object of the present invention to provide a method of manufacturing a flash memory cell that can simplify a manufacturing process and reduce a size of a cell by simultaneously forming a floating gate and a select gate after forming a polysilicon layer and patterning the polysilicon layer.

상술한 목적을 달성하기 위한 본 발명에 따른 플래쉬 메모리 셀의 제조 방법은 실리콘 기판상에 게이트 산화막 및 제1폴리실리콘층을 순차적으로 형성한 후 상기 제1폴리실리콘층을 패터닝하여 플로팅 게이트 및 셀렉트 게이트를 각각 형성하는 제1단계와, 상기 플로팅 게이트 및 셀렉트 게이트의 양측벽에 절연막 스페이서를 형성한 후 전체 상부면에 유전체막 및 제2폴리실리콘층을 순차적으로 형성하는 제2단계와, 상기 제2폴리실리콘층을 패터닝하여 상기 플로팅 게이트 상부에 콘트롤 게이트를 형성한 후 노출된 상기 실리콘 기판에 불순물 이온을 주입하여 접합영역을 형성하는 제3단계로 이루어지는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of fabricating a flash memory cell, including: forming a gate oxide layer and a first polysilicon layer on a silicon substrate in sequence; patterning the first polysilicon layer; A second step of sequentially forming a dielectric film and a second polysilicon layer on the entire upper surface after forming insulating film spacers on both side walls of the floating gate and the select gate, And a third step of patterning the polysilicon layer to form a control gate on the floating gate, and then implanting impurity ions into the exposed silicon substrate to form a junction region.

도1a 내지 도1d는 종래 플래쉬 메모리 셀의 제조 방법을 설명하기 위한 소자의 단면도.1A to 1D are cross-sectional views of a device for explaining a method of manufacturing a conventional flash memory cell.

도2a 내지 도2e는 본 발명에 따른 플래쉬 메모리 셀의 제조 방법을 설명하기 위한 소자의 단면도.FIGS. 2A to 2E are sectional views of a device for explaining a method of manufacturing a flash memory cell according to the present invention.

* 도면의 주요부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS

1 및 11 : 실리콘 기판 2 : 터널 산화막1 and 11: Silicon substrate 2: Tunnel oxide film

3 및 13 : 제1폴리실리콘층 3A 및 13A : 플로팅 게이트3 and 13: first polysilicon layers 3A and 13A: floating gate

4 및 14 : 유전체막 5 및 15 : 제2폴리실리콘층4 and 14: dielectric films 5 and 15: second polysilicon layer

5A 및 15A : 콘트롤 게이트 6 및 16 : 절연막 스페이서5A and 15A: control gates 6 and 16: insulating film spacer

7 : 셀렉트 게이트 8 : 제3폴리실리콘층7: select gate 8: third polysilicon layer

8A 및 13B : 셀렉트 게이트 12 : 게이트 산화막8A and 13B: select gate 12: gate oxide film

9 및 19 : 접합영역9 and 19: joint regions

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도2a 내지 도2e는 본 발명에 따른 플래쉬 메모리 셀의 제조 방법을 설명하기 위한 소자의 단면도이다.2A to 2E are cross-sectional views of a device for explaining a method of manufacturing a flash memory cell according to the present invention.

도2a는 실리콘 기판(11)상에 게이트 산화막(12) 및 제1폴리실리콘층(13)을 순차적으로 형성한 상태의 단면도이고, 도2b는 상기 제1폴리실리콘층(13)을 패터닝하여 서로 인접된 플로팅 게이트(13A) 및 셀렉트 게이트(13B)를 각각 형성한 후 상기 플로팅 게이트(13A) 및 셀렉트 게이트(13B)의 양측벽에 절연막 스페이서(16)를 형성한 상태의 단면도로서, 상기 제1폴리실리콘층(13)을 패터닝한 후 상기 플로팅 게이트(13A) 및 셀렉트 게이트(13B) 사이의 상기 실리콘기판(11)에 불순물 이온을 주입하여 채널(Channel) 영역의 채널 저항값을 조절하면 전자의 주입 효율을 향상시킬 수 있다.FIG. 2A is a cross-sectional view of a state in which a gate oxide film 12 and a first polysilicon layer 13 are sequentially formed on a silicon substrate 11, FIG. 2B is a cross-sectional view of the first polysilicon layer 13, Sectional view of a state in which insulating gate spacers 16 are formed on both side walls of the floating gate 13A and the select gate 13B after the adjacent floating gates 13A and select gates 13B are formed, After the polysilicon layer 13 is patterned and impurity ions are implanted into the silicon substrate 11 between the floating gate 13A and the select gate 13B to adjust the channel resistance value of the channel region, The injection efficiency can be improved.

도2c는 전체 상부면에 유전체막(14) 및 제2폴리실리콘층(15)을 순차적으로 형성한 상태의 단면도로서, 상기 제1 및 제2 폴리실리콘층(13 및 15)은 폴리실리콘을 증착한 후 불순물 이온을 주입 또는 도핑하여 형성한다. 그리고 상기 유전체막(14)은 질화막으로 형성하거나, 산화막, 질화막 및 산화막이 적층된 ONO구조로 형성한다.FIG. 2C is a cross-sectional view showing a state in which the dielectric film 14 and the second polysilicon layer 15 are sequentially formed on the entire upper surface, and the first and second polysilicon layers 13 and 15 are formed by depositing polysilicon And then impurity ions are implanted or doped. The dielectric film 14 is formed of a nitride film or an ONO structure in which an oxide film, a nitride film, and an oxide film are stacked.

도2d는 상기 제2폴리실리콘층(15)을 패터닝하여 상기 플로팅 게이트(13A) 상부에 콘트롤 게이트(15A)를 형성한 후 노출된 상기 실리콘 기판(11)에 불순물 이온을 주입하여 접합영역(19)을 형성한 상태의 단면도로서, 이때 도2e에 도시된 바와 같이 상기 콘트롤 게이트(15A)는 상기 플로팅 게이트(13A)의 상부로부터 상기 셀렉트 게이트(13B)의 가장자리까지 연장되도록 즉, 상기 셀렉트 게이트(13B)와 중첩되지 않도록 형성된다.The second polysilicon layer 15 is patterned to form a control gate 15A on the floating gate 13A and impurity ions are implanted into the exposed silicon substrate 11 to form a junction region 19 The control gate 15A is formed so as to extend from the upper portion of the floating gate 13A to the edge of the select gate 13B as shown in FIG. 2E, 13B.

상술한 바와 같이 본 발명에 의하면, 폴리실리콘층 형성 후 플로팅 게이트와 셀렉트 게이트를 동시에 패터닝하여 형성하므로써 공정의 단계가 단순화되어 소자의 수율이 향상된다. 또한 상기 셀렉트 게이트의 폭을 감소시켜 전체적인 메모리 셀의 크기를 감소시킬 수 있으므로 고집적 메모리 소자의 제조가 가능해지는 탁월한 효과가 있다.As described above, according to the present invention, since the floating gate and the select gate are formed by patterning simultaneously after the polysilicon layer is formed, the step of the process is simplified and the yield of the device is improved. In addition, since the width of the select gate can be reduced to reduce the size of the entire memory cell, it is possible to manufacture a highly integrated memory device.

Claims (3)

플래쉬 메모리 셀의 제조 방법에 있어서, 실리콘 기판상에 게이트 산화막 및 제1 폴리실리콘층을 순차적으로 형성한 후 상기 제1 폴리실리콘층을 패터닝하여 플로팅 게이트 및 셀렉트 게이트를 각각 형성하는 제1단계와, 상기 플로팅 게이트 및 셀렉트 게이트의 양측벽에 절연막 스페이서를 형성한 후 전체 상부면에 유전체막 및 제2 폴리실리콘층을 순차적으로 형성하는 제2단계와, 상기 제2 폴리실리콘층을 패터닝하여 상기 플로팅 게이트 상부에 콘트롤 게이트를 형성한 후 노출된 상기 실리콘 기판에 불순물 이온을 주입하여 접합영역을 형성하는 제3단계로 이루어지는 것을 특징으로 하는 플래쉬 메모리 셀의 제조방법.A method of manufacturing a flash memory cell, comprising: a first step of sequentially forming a gate oxide film and a first polysilicon layer on a silicon substrate, and then patterning the first polysilicon layer to form a floating gate and a select gate, respectively; A second step of sequentially forming a dielectric film and a second polysilicon layer on the entire upper surface after forming an insulating film spacer on both sidewalls of the floating gate and the select gate and a second step of patterning the second polysilicon layer, And forming a junction region by implanting impurity ions into the exposed silicon substrate after the control gate is formed on the silicon substrate. 제1항에 있어서, 상기 제1단계 공정을 실시한 후 전자의 주입 효율을 증가시키기 위하여 상기 플로팅 게이트 및 셀렉트 게이트 사이의 상기 실리콘 기판에 불순물 이온을 주입하는 단계를 더 포함하는 것을 특징으로 하는 플래쉬 메모리 셀의 제조 방법.2. The method of claim 1, further comprising implanting impurity ions into the silicon substrate between the floating gate and the select gate to increase the electron injection efficiency after the first step, ≪ / RTI > 제1항에 있어서, 상기 콘트롤 게이트는 상기 셀렉트 게이트와 중첩되지 않도록 형성되는 것을 특징으로 하는 플래쉬 메모리 셀의 제조 방법.2. The method of claim 1, wherein the control gate is formed so as not to overlap with the select gate.
KR1019960054381A 1996-11-15 1996-11-15 Fabrication method of flash memory cell KR100250753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960054381A KR100250753B1 (en) 1996-11-15 1996-11-15 Fabrication method of flash memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960054381A KR100250753B1 (en) 1996-11-15 1996-11-15 Fabrication method of flash memory cell

Publications (2)

Publication Number Publication Date
KR19980035925A KR19980035925A (en) 1998-08-05
KR100250753B1 true KR100250753B1 (en) 2000-04-01

Family

ID=19482012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960054381A KR100250753B1 (en) 1996-11-15 1996-11-15 Fabrication method of flash memory cell

Country Status (1)

Country Link
KR (1) KR100250753B1 (en)

Also Published As

Publication number Publication date
KR19980035925A (en) 1998-08-05

Similar Documents

Publication Publication Date Title
US5070032A (en) Method of making dense flash eeprom semiconductor memory structures
US5872036A (en) Method of manufacturing a split-gate flash memory cell
US7081651B2 (en) Non-volatile memory device with protruding charge storage layer and method of fabricating the same
US6468864B1 (en) Method of fabricating silicon nitride read only memory
JPH04229654A (en) Method for manufacture of contactless floating gate memory array
US20050164457A1 (en) Non-volatile memory devices and methods of fabricating the same
US6306708B1 (en) Fabrication method for an electrically erasable programmable read only memory
KR20050007373A (en) Ultra small thin windows in floating gate transistors defined by lost nitride spacers
KR100348311B1 (en) Nonvolatile Memory Device and method for Fabricating the same
US6737700B1 (en) Non-volatile memory cell structure and method for manufacturing thereof
KR100199381B1 (en) Fabrication method of flash eeprom cell
US6251727B1 (en) Method of making select gate self-aligned to floating for split gate flash memory structure
US6624028B1 (en) Method of fabricating poly spacer gate structure
US7948022B2 (en) Flash memory device and method for manufacturing the same
US6791136B1 (en) Memory device structure and method of fabricating the same
KR100250753B1 (en) Fabrication method of flash memory cell
KR100665835B1 (en) Method for fabricating split gate type flash memory device
KR20010084243A (en) Non-volatile memory cell having bilayered structured floating gate and fabricating method thereof
KR20000046801A (en) Fabrication method of 3 ply polysilicon flash eeprom array
KR930008081B1 (en) Single poly eeprom cell and method for fabricating thereof
KR100621545B1 (en) Nonvolatile memory device and method for fabricating the same
KR100210857B1 (en) Non-volatile semiconductor memory and its manufacturing method
US6294431B1 (en) Process of manufacture of a non-volatile memory with electric continuity of the common source lines
KR950011030B1 (en) Making method eeprom
KR100444612B1 (en) Semiconductor memory fabrication method for improving productivity and electric characteristic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091222

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee