KR100250627B1 - Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis - Google Patents

Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis Download PDF

Info

Publication number
KR100250627B1
KR100250627B1 KR1019970067605A KR19970067605A KR100250627B1 KR 100250627 B1 KR100250627 B1 KR 100250627B1 KR 1019970067605 A KR1019970067605 A KR 1019970067605A KR 19970067605 A KR19970067605 A KR 19970067605A KR 100250627 B1 KR100250627 B1 KR 100250627B1
Authority
KR
South Korea
Prior art keywords
citric acid
acid
pga
medium
production
Prior art date
Application number
KR1019970067605A
Other languages
Korean (ko)
Other versions
KR19990048816A (en
Inventor
윤성호
이상엽
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019970067605A priority Critical patent/KR100250627B1/en
Publication of KR19990048816A publication Critical patent/KR19990048816A/en
Application granted granted Critical
Publication of KR100250627B1 publication Critical patent/KR100250627B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: Provided is a method for producing polyglutamic acid with low production cost through fed batch culture of Bacillus licheniformis by controlling substrates of citric acid and maintaining low viscosity of the acid until the strain grows. CONSTITUTION: A method for producing polyglutamic acid is comprised of the next steps of: i) cultivating Bacillus licheniformis in E medium lacking citric acid, but having 40g/L of glycerol, 125g/L of L-glutamic acid, 250g/L of citric acid, 3g/L of CaCl2 2H2O, 3g/L of MnSO4 5H2O, 500g/L of glycerol, and 3g/L of MgSO4 7H2O at 37 deg.C at pH 6.5-6.7; ii) adding citric acid to the medium; and iii) measuring the production of glutamic acid and cell condensation 9 hours later. Wherein, pH is controlled by 25% ammonia and 2M HCL while dissolved oxygen is changed by increasing the speed of a stirrer from 400 to 1000rpm. And cell growth is measured by spectrophotometer at 660nm.

Description

바실러스 리케니포미스의 유가식 배양에 의한 폴리글루탐산의 고농도 생산방법High concentration production method of polyglutamic acid by fed-batch culture of Bacillus rickeniformis

본 발명은 시트르산의 기질 조절을 통한 바실러스 리케니포미스(Bacillus licheniformis)의 유가식 배양으로 폴리글루탐산(polyglutamic acid, γ-PGA)을 고농도로 생산하는 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 시트르산이 없는 초기배지에서 바실러스 리케니포미스 균주를 고농도로 성장시킨 다음, 시트르산이 함유된 영양배지를 공급하는 유가식 배양에 의해, 고농도의 γ-PGA를 효율적으로 생산하는 방법에 관한 것이다.The present invention relates to a method for producing polyglutamic acid (γ-PGA) at high concentration by fed-batch culture of Bacillus licheniformis through substrate control of citric acid. More specifically, the present invention efficiently grows high concentration γ-PGA by fed-batch culture in which Bacillus rickeniformis strains are grown in high concentration in an initial medium without citric acid, and then fed nutrient medium containing citric acid. It is about how to produce.

폴리글루탐산은 D와 L형태의 글루탐산 단량체로 이루어진 수용성 고분자이다. 미생물에 의해 폴리글루탐산이 합성될 경우, γ 위치의 카르복실기가 아미노 결합을 한 γ-폴리글루탐산(γ-PGA)을 생산하는 것으로 밝혀졌다(참조: Thorne et al, J. Bacteriol. 68, 307-315(1954)). γ-PGA는 비생분해성 수용성 고분자의 대체물로서, 식품, 화장품, 도료, 기름제거제, 합성세제, 계면활성제 등의 용도로 이용될 수 있으며, 또한 생체재료, 기능성 담체, 막재료, 전기재료 등의 기능성 고분자로의 이용에 관한 연구도 진행되고 있다.Polyglutamic acid is a water-soluble polymer composed of glutamic acid monomers of the D and L forms. When polyglutamic acid is synthesized by microorganisms, it has been found that the carboxyl group at the γ position produces γ-polyglutamic acid (γ-PGA) having an amino bond (see Thorne et al, J. Bacteriol. 68, 307-315). (1954)). γ-PGA is a substitute for non-biodegradable water-soluble polymers and can be used for food, cosmetics, paints, oil removers, synthetic detergents, surfactants, and the like, and also includes biomaterials, functional carriers, membrane materials, and electrical materials. Research on the use as a functional polymer is also in progress.

γ-PGA에 대한 연구는 1950년대 초기에서 1970년대 초기까지 활발히 이루어졌으나, 잠시 주춤하다가 80년대 후반부터 다시 주목받기 시작하였다. γ-PGA가 처음으로 알려진지 75년이 지났음에도 합성경로와 고분자 합성에서의 기본 기질 등은 명확히 밝혀지지 않고 있다. γ-PGA는 α-아미노기와 γ-카르복실산의 작용기 간의 결합으로 중합되는데, 중합 방식이 일반 단백질 합성방법과 다르게 진행되며, 그 결과 γ-PGA는 구조적으로도 일반 단백질과는 상이하다(참조: Thorne et al, J. Bacteriol. 68, 307-315(1954)).The research on γ-PGA was active from the early 1950s to the early 1970s. 75 years after γ-PGA was first known, the synthesis pathway and basic substrates of polymer synthesis are not clear. γ-PGA is polymerized by a bond between an α-amino group and a functional group of γ-carboxylic acid, and the polymerization process proceeds differently from general protein synthesis. As a result, γ-PGA is structurally different from general protein. Thorne et al, J. Bacteriol. 68, 307-315 (1954).

지금까지 γ-PGA 합성에 대한 연구는 주로 바실러스속 균주인, B. anthracis, B. licheniformis, B. megaterium, B. subtilis(natto)에 의해 이루어져 왔다. 이들 생산균주에 따라 γ-PGA 생산에 필요한 영양분도 달라진다. 이중 Bacillus subtilis var. polyglutamicum만이 포도당 등의 탄소원과 무기염류만으로 된 배지중에서 성장하면서 γ-PGA를 생산하고, 그 외의 균은 γ-PGA 생산에 L-글루탐산을 필요로 하는 것으로 보고되었다(참조: Thorne et al, J. Bacteriol. 68, 307-315(1954)). 이는 γ-PGA가 주로 L-글루탐산에 의해 γ-D-PGA로 합성되기 때문이다. 또한, γ-PGA에 포함되는 L-글루탐산의 비율은 배양배지의 Mn(II) 농도에 영향을 받는 것으로 보고되었다(참조: Leonard, C.G. et al, J. Bacteriol., 76, 499(1958)).Until now, research on γ-PGA synthesis has been carried out mainly by B. anthracis, B. licheniformis, B. megaterium and B. subtilis (natto). These production strains also vary the nutrients needed to produce γ-PGA. Double Bacillus subtilis var. Only polyglutamicum grows in medium containing only carbon sources such as glucose and inorganic salts, producing γ-PGA, and others have been reported to require L-glutamic acid for γ-PGA production (see Thorne et al, J. Bacteriol. 68, 307-315 (1954). This is because γ-PGA is mainly synthesized by γ-D-PGA by L-glutamic acid. In addition, the proportion of L-glutamic acid in γ-PGA has been reported to be affected by the concentration of Mn (II) in culture media (Leonard, CG et al, J. Bacteriol., 76, 499 (1958)). .

그 이후 γ-PGA의 생산성을 높이기 위해, 필요한 영양분에 대한 연구와 L-글루탐산을 필요로 하지 않는 미생물을 분리하기 위한 연구가 시도되기도 하였다(참조: Moraine, R. A. and Fogovin, P., Biotechnol. Bioeng., 13, 381(1971)). 또한, B. subtilis IFO3335를 이용한 연구에서, L-글루탐산, 시트르산 및 황산암모늄이 포함된 배지에서 많은 많은 양의 γ-PGA가 합성되는 보고도 있었다(참조: Goto, A. and Kunioka, Biosci. Biotech. Biochem., 56(7), 1031-1035(1992)).Since then, in order to increase the productivity of γ-PGA, studies have been made on the nutrients required and to isolate microorganisms that do not require L-glutamic acid (Morine, RA and Fogovin, P., Biotechnol. 13, 381 (1971). In addition, studies using B. subtilis IFO3335 have been reported to synthesize large amounts of γ-PGA in medium containing L-glutamic acid, citric acid and ammonium sulfate (Goto, A. and Kunioka, Biosci. Biotech Biochem., 56 (7), 1031-1035 (1992).

지금까지의 γ-PGA에 대한 연구는 주로 합성경로와 특성 등에 관한 것이었으며(참조: Goto, A. and Kunioka, Biosci. Biotech. Biochem., 56(7), 1031-1035 (1992); Kunioka and Goto, A., Appl. Microbiol. Biotechnol., 40, 867-872(1994); Cromwick and Gross, Can. J. Microbiol., 41:902-909(1995); Yokoi et al, J. Fermen. Bioeng, 82(1), 84-87(1996)), γ-PGA의 생산방법에 관한 연구는 pH나 교반속도 등의 발효조건을 조절하여 생산성을 증진시키려는 시도로서, 이렇게 생산된 γ-PGA의 농도는 매우 저조하였다(참조: Cromwick et al, Biotech. Bioeng., 50, 222-227(1996); Giannos et al, E.A. Dawes(ed), Novel Biodegradable Microbial Polymers, 457-460(1990)).Previous studies on γ-PGA have been mainly related to synthetic pathways and characteristics (see Goto, A. and Kunioka, Biosci. Biotech. Biochem., 56 (7), 1031-1035 (1992); Kunioka and Goto, A., Appl. Microbiol.Biotechnol., 40, 867-872 (1994); Cromwick and Gross, Can.J. Microbiol., 41: 902-909 (1995); Yokoi et al, J. Fermen.Bioeng , 82 (1), 84-87 (1996)), a study on the production method of γ-PGA is an attempt to improve productivity by adjusting fermentation conditions such as pH or stirring speed, and thus the concentration of γ-PGA produced Was very poor (Cromwick et al, Biotech. Bioeng., 50, 222-227 (1996); Giannos et al, EA Dawes (ed), Novel Biodegradable Microbial Polymers, 457-460 (1990)).

따라서, 산업화에 직접 적용될 수 있는 γ-PGA의 대량생산 방법이 당업계에서 절실히 요구되었다.Therefore, there is an urgent need in the art for a mass production method of γ-PGA that can be directly applied to industrialization.

이에, 본 발명자들은 고농도의 γ-PGA를 효율적으로 생산할 수 있는 방법을 개발하고자 예의 연구노력한 결과, γ-PGA 생산균주의 선정, 선정된 생산균주에 대한 성장특성, γ-PGA 합성 및 축적 특성 등에 대한 기초실험을 통하여, γ-PGA 고생산능을 가지는 바실러스 리케니포미스의 유가식 배양시, 초기 배지에 시트르산을 배제하고 균주를 성장시킨 후, 영양분 공급시에 시트르산를 공급하면, 고농도의 γ-PGA가 효율적으로 생산되는 것을 확인하고, 본 발명을 완성하게 되었다. 또한, 이러한 방식으로 γ-PGA를 생산할 경우, γ-PGA의 초기 생성이 억제되어 일정 균체 성장 전까지 낮은 점도를 유지하여, 공정 초기의 교반속도와 통기량을 낮출 수 있어, 생산비용을 크게 절감할 수 있음을 확인하였다.Accordingly, the present inventors have made intensive studies to develop a method capable of efficiently producing high concentration of γ-PGA, and as a result, the selection of γ-PGA production strain, growth characteristics for the selected production strain, γ-PGA synthesis and accumulation characteristics, etc. Through the basic experiments, when cultivation of Bacillus liqueniformis having high production capacity of γ-PGA, strains were removed without citric acid in the initial medium, and when citric acid was supplied during nutrient supply, high concentration of γ-PGA It was confirmed that is produced efficiently, to complete the present invention. In addition, when γ-PGA is produced in this manner, the initial production of γ-PGA is suppressed to maintain a low viscosity until constant cell growth, thereby lowering the agitation speed and aeration rate at the beginning of the process, thereby greatly reducing the production cost. Confirmed that it can.

결국, 본 발명의 목적은 시트르산의 기질 조절을 통한 바실러스 리케니포미스(Bacillus licheniformis)의 유가식 배양으로, γ-PGA를 고농도로 생산하는 방법을 제공하는 것이다.After all, it is an object of the present invention to provide a method for producing γ-PGA at a high concentration in a fed-batch culture of Bacillus licheniformis by controlling the substrate of citric acid.

제1도는 플라스크 배양시의 배지 내 각 성분이 세포성장과 폴리글루탐산의 생산에 미치는 영향을 나타내는 그래프이다.1 is a graph showing the effect of each component in the medium in the culture of the flask on cell growth and production of polyglutamic acid.

제2도는 플라스크 배양시 배지 내의 최종 글리세롤(glycerol), 글루탐산(L-glutamic acid) 및 시트르산(citrate)의 농도를 나타내는 그래프이다.Figure 2 is a graph showing the concentration of final glycerol (L-glutamic acid) and citric acid (citrate) in the culture medium in the flask culture.

제3도는 시트르산이 없는 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 건조균체농도와 폴리글루탐산의 농도를 나타내는 그래프이다.3 is a graph showing the dry cell concentration and the concentration of polyglutamic acid when the cells were grown in an initial medium without citric acid and then fed with a nutrient solution containing citric acid.

제4도는 시트르산이 없는 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 배지 내의 최종 글리세롤, 글루탐산 및 시트르산의 농도를 나타내는 그래프이다.4 is a graph showing the concentrations of the final glycerol, glutamic acid and citric acid in the medium when the cells were grown in an initial medium without citric acid and then fed with nutrient solution containing citric acid.

제5도는 시트르산 12 g/L을 함유한 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 건조균체농도와 폴리글루탐산의 농도를 나타내는 그래프이다.5 is a graph showing the dry cell concentration and the concentration of polyglutamic acid when the cells were grown in an initial medium containing 12 g / L citric acid and then fed with a nutrient solution containing citric acid.

이하, 본 발명을 보다 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 기초실험으로 우선, γ-PGA를 효율적으로 생산하는 균주는 바실러스 리케니포미스(Bacillus licheniformis)로 선정하고, 선정된 생산균주에 대한 성장특성, γ-PGA 합성 및 축적 특성 등에 대한 실험을 수행하였다. 이에 대한 결과를 기초로, 본 발명에서는 γ-PGA의 합성경로를 고려하여 배양중의 기질 조건을 달리한 유가식 배양으로 γ-PGA의 생산성을 획기적으로 증진시키고자 하였다.As a basic experiment of the present invention, first, a strain that efficiently produces γ-PGA is selected as Bacillus licheniformis, and experiments on growth characteristics, γ-PGA synthesis, and accumulation characteristics of the selected production strains are performed. Was performed. On the basis of the results, the present invention was to considerably improve the productivity of γ-PGA by fed-batch culture with different substrate conditions in the culture in consideration of the synthetic pathway of γ-PGA.

즉, 시트르산이 없는 초기배지(L-글루탐산 20.0 g/L, 글리세롤 40.0 g/L, NH4Cl 7.0 g/L, K2HPO40.5 g/L, MgSO4ㆍ7H2O 0.5 g/L, FeCl3ㆍ6H2O 0.04 g/L, CaCl2ㆍ2H2O 0.15 g/L, MnSO4ㆍH2O 0.104 g/L로 구성된 조성물)에서 바실러스 리케니포미스 균주를 고농도로 성장시킨 다음, 시트르산이 함유된 영양 배지를 공급하는 유가식 배양으로 γ-PGA를 고농도로 생산한다.That is, the initial medium without citric acid (L- glutamic acid 20.0 g / L, glycerol 40.0 g / L, NH 4 Cl 7.0 g / L, K 2 HPO 4 0.5 g / L, MgSO 4 7H 2 O 0.5 g / L, Bacillus rickeniformis strains were grown in high concentration in FeCl 3 .6H 2 O 0.04 g / L, CaCl 2 .2H 2 O 0.15 g / L, MnSO 4 .H 2 O 0.104 g / L), Γ-PGA is produced at high concentration in a fed-batch culture that supplies a nutrient medium containing citric acid.

상기에서, 시트르산이 함유된 영양배지는 L-글루탐산 125g/L, 시트르산 250 g/L, CaCl2ㆍ2H2O 3 g/L, MnSO4ㆍ5H2O 3 g/L, 글리세롤 500 g/L, MgSO4ㆍ7H2O 3 g/L로 구성되며, 발효액의 pH가 7.0 이상이 될 때 발효조에 첨가한다.In the above, the nutrient medium containing citric acid is 125g / L L- glutamic acid, 250 g / L citric acid, CaCl 2 2H 2 O 3 g / L, MnSO 4 5H 2 O 3 g / L, glycerol 500 g / L , MgSO 4 · 7H 2 O 3 g / L, when the pH of the fermentation broth is at least 7.0 is added to the fermenter.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

[실시예 1]Example 1

[플라스크 배양을 통한 배지 각 성분이 균체성장과 γ-PGA 합성에 미치는 영향][Effects of Media Components on Cell Growth and γ-PGA Synthesis by Flask Culture]

바실러스 리케니포미스(Bacillus licheniformis ATCC 9945A) 균주는 MnSO4와 CaCl2가 제외된 E 배지(후술하는 내용 참조)에서 47시간 동안 배양하여 30 % 글리세롤 스탁(glycerol stock)으로 -70℃에 보관하였다. 이 보관 균주를 37 ℃ 수조에서 급속 해동한 후, 그 균주액 0.2 ㎖을, 50 ㎖의 배지를 담은 250 ㎖ 삼각 플라스크에 접종하여 3일간 배양하였다. 이때, 배양은 37 ℃, 250 rpm, 초기 pH 6.5에서 행하였다.Bacillus licheniformis ATCC 9945A strain was incubated for 47 hours in E medium without MnSO 4 and CaCl 2 (see below) and stored at -70 ° C with 30% glycerol stock. . After the thaw was rapidly thawed in a 37 ° C. water bath, 0.2 ml of the strain solution was inoculated into a 250 ml Erlenmeyer flask containing 50 ml of medium and cultured for 3 days. At this time, the culture was carried out at 37 ℃, 250 rpm, initial pH 6.5.

상기 플라스크 배양을 통하여 배지 각 성분이 균체성장과 γ-PGA 합성에 미치는 영향을 조사하였다. 이를 위하여 E 배지(L-글루탐산, 20.0(g/L); 시트르산, 12.0(g/L); 글리세롤, 80.0(g/L); NH4Cl, 7.0(g/L); K2HPO4, 0.5(g/L); MgSO4ㆍ7H2O, 0.5(g/L); FeCl3ㆍ6H2O 0.04(g/L); CaCl2ㆍ2H2O, 0.15(g/L); MnSO4ㆍH2O, 0.104(g/L)와 Ca++, Mn++, L-글루탐산, 시트르산을 각각 제외한 E 배지, 그리고 E 배지에 시트르산을 첨가하여 시트르산의 농도가 3 또는 6 g/L되게 한 배지를 사용하였다.Through the flask culture, the effect of each medium on cell growth and γ-PGA synthesis was investigated. For this purpose E medium (L-glutamic acid, 20.0 (g / L); citric acid, 12.0 (g / L); glycerol, 80.0 (g / L); NH 4 Cl, 7.0 (g / L); K 2 HPO 4 , 0.5 (g / L); MgSO 4 7H 2 O, 0.5 (g / L); FeCl 3 6H 2 O 0.04 (g / L); CaCl 2 2H 2 O, 0.15 (g / L); MnSO 4 H 2 O, 0.104 (g / L) and Ca ++ , Mn ++ , L-glutamic acid, E medium excluding citric acid, and citric acid were added to E medium so that the concentration of citric acid was 3 or 6 g / L. One medium was used.

각 성분의 세포 성장과 γ-PGA 생산에 미치는 영향은 제1도에, 배지내의 최종 글리세롤, L-글루탐산, 시트르산의 농도는 제2도에 각각 나타내었다.The effect of each component on cell growth and γ-PGA production is shown in FIG. 1, and the concentrations of final glycerol, L-glutamic acid and citric acid in the medium are shown in FIG.

제1도 및 제2도에서, E는 E 배지에서 균체를 성장시켰을 경우; E w/o Ca는 칼슘이온을 제외한 E 배지에서 균체를 성장시켰을 경우; E w/o Mn은 망간이온을 제외한 E 배지에서 균체를 성장시켰을 경우; E w/o L-glu는 L-글루탐산을 제외한 E 배지에서 균체를 성장시켰을 경우; E w/o Citrate는 시트르산을 제외한 E 배지에서 균체를 성장시켰을 경우; E w/ Cit. 3g/L는 3g/L의 시트르산을 첨가한 E 배지에서 균체를 성장시켰을 경우; 및, E w/ Cit. 6g/L는 6g/L의 시트르산을 첨가한 E 배지에서 균체를 성장시켰을 경우를 각각 나타낸다.In Figures 1 and 2, E is when cells are grown in E medium; E w / o Ca is when the cells were grown in E medium excluding calcium ions; E w / o Mn is when cells were grown in E medium excluding manganese ions; E w / o L-glu was grown in E medium except for L-glutamic acid; E w / o Citrate is when cells were grown in E medium except citric acid; E w / Cit. 3 g / L when the cells were grown in E medium to which 3 g / L citric acid was added; And, E w / Cit. 6 g / L represents the case where the cells were grown in E medium to which 6 g / L citric acid was added.

제1도 및 제2도에서 보듯이, γ-PGA 생산은 E 배지에서 3.01 g γ-PGA/L로 가장 높았으며, 최종 균체 농도는 시트르산이 없는 E 배지에서 2.67 g 건조균체/L로 가장 높았다. 또한, 배지 내 L-글루탐산과 시트르산을 각각 제외한 배지와 3 g/L의 시트르산을 포함한 배지에서는 미량의 γ-PGA만이 생산되었으나, 최종 균체 농도는 모든 성분이 다 포함된 E 배지에서 배양하였을 경우보다 높았다. 이는 L-글루탐산과 시트르산이 γ-PGA 합성에 필수적이긴 하지만, 세포성장에 커다란 영향을 미치지 않음을 나타낸다. γ-PGA 생산량과 최종 균체농도는 서로 반비례하였는데, 이는 배양조건에 따라 탄소원으로부터의 균체와 γ-PGA 수율의 변화와, γ-PGA가 생산됨에 따라 배지 내 점도가 증가함에 따라 산소전달이 어려워지기 때문이다.As shown in FIGS. 1 and 2, γ-PGA production was highest at 3.01 g γ-PGA / L in E medium, and final cell concentration was highest at 2.67 g dry cell / L in E medium without citric acid. . In addition, only a small amount of γ-PGA was produced in a medium excluding L-glutamic acid and citric acid, and a medium containing 3 g / L citric acid, but the final cell concentration was higher than that in the case of culturing in E medium containing all the components. High. This indicates that L-glutamic acid and citric acid are essential for γ-PGA synthesis but do not significantly affect cell growth. The production of γ-PGA and the final cell concentration were inversely proportional to each other, which caused the change of the yield of cells and γ-PGA from the carbon source according to the culture conditions and the difficulty of oxygen transfer as the viscosity in the medium increased as γ-PGA was produced. Because.

[실시예 2]Example 2

[시트르산이 없는 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하는 유가식 배양에 의한 균체성장과 γ-PGA 합성][Cell Growth and γ-PGA Synthesis by Feeding Cultivation of Citric Acid after Feeding Cells in Citric Acid-Free Medium]

유가식 배양에 의한 γ-PGA의 고효율 생산을 위하여, 종균배양과 발효조에서의 초기배지는 E 배지에서 시트르산을 제외하고 40g/L의 글리세롤을 첨가한 배지를 사용하였다. 이는 배양 초기에서의 γ-PGA 생성을 억제시켜 균체의 성장을 촉진시키고, 나중에 공급영양액에 시트르산을 첨가시켜 γ-PGA 생성 시기를 조절하기 위함이었다.For high-efficiency production of γ-PGA by fed-batch culture, the seed medium culture and the initial medium in the fermenter used a medium to which 40 g / L glycerol was added except for citric acid in the E medium. This was to inhibit the production of γ-PGA at the beginning of the culture to promote the growth of the cells, and later to add the citric acid to the feed nutrient solution to control the timing of γ-PGA production.

유가식 배양실험은 5 L 발효조(BioFlo 3000 fermentor, New Brunswick Scientific, Edison, NJ, USA)를 이용하였으며, 배양조건은 37 ℃, 3 vvm, pH 6.5~6.7로 유지하였다. pH는 25% 암모니아수와 2M 염산용액으로 조절하였다. 용존산소량은 교반속도를 400에서 1000 rpm까지 변화시키고, 필요할 경우 순수 산소를 공급하여 포화용존산소량의 50%로 조절하였다. 접종균은 초기배지와 동일한 조성의 배지 200 ㎖를 담은 1000 ㎖ 플라스크에서 초기 지수증식기까지 배양 후(37 ℃, 250 rpm), 800 ㎖의 초기배지가 들어있는 발효조에 접종하였다. 이때, 세포의 성장은 분광광도계(spectrophotometer)를 이용하여 660 ㎚ 파장에서의 흡광도로 측정하였다.The fed-batch culture experiment was performed using a 5 L fermenter (BioFlo 3000 fermentor, New Brunswick Scientific, Edison, NJ, USA), the culture conditions were maintained at 37 ℃, 3 vvm, pH 6.5 ~ 6.7. pH was adjusted with 25% aqueous ammonia and 2M hydrochloric acid. The amount of dissolved oxygen was changed from 400 to 1000 rpm and, if necessary, adjusted to 50% of saturated dissolved oxygen by supplying pure oxygen. The inoculum was inoculated into a fermenter containing 800 ml of the initial medium after incubation in a 1000 ml flask containing 200 ml of medium having the same composition as the initial medium until the initial exponential growth period (37 ° C., 250 rpm). At this time, the growth of the cells was measured by absorbance at 660 nm wavelength using a spectrophotometer.

유가식 배양에서의 초기배지는 시트르산이 포함되지 않은 E 배지에 40g/L의 글리세롤을 첨가하였고, 영양공급액의 조성은 L-글루탐산 125g/L, 시트르산 250 g/L, CaCl2ㆍ2H2O 3 g/L, MnSO4ㆍ5H2O 3 g/L, 글리세롤 500 g/L, MgSO4ㆍ7H2O 3 g/L이었다. 건조균체농도는 4 ~ 8 ㎖ 시료를 14,000 rpm에서 15분 동안 원심분리하여 침전물을 수득하고 증류수로 세척한 후, 무게감소가 없을 때까지 95 ℃ 오븐에서 건조시켜, 균체의 중량을 저울로 측정하였다. γ-PGA의 정제는 종래의 방법에 따라 수행하였다(참조: Kunioka and Goto, Appl. Microbiol. Biotechnol., 40, 867-872(1994)). 제3도는 시트르산이 없는 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 건조균체농도와 γ-PGA의 농도를 나타내는 그래프이다.The initial medium in fed-batch culture was added 40 g / L glycerol to E medium without citric acid, and the composition of the nutrient supply solution was 125 g / L L-glutamic acid, 250 g / L citric acid, CaCl 2 ㆍ 2H 2 O 3 g / L, MnSO 4 5H 2 O 3 g / L, glycerol 500 g / L, MgSO 4 7H 2 O 3 g / L. The dry cell concentration was obtained by centrifuging 4 ~ 8 ㎖ samples at 14,000 rpm for 15 minutes to obtain a precipitate, washed with distilled water and dried in an oven at 95 ℃ until no weight loss, the weight of the cells was measured on a balance . Purification of γ-PGA was performed according to conventional methods (Kunioka and Goto, Appl. Microbiol. Biotechnol., 40, 867-872 (1994)). 3 is a graph showing the dry cell concentration and the concentration of γ-PGA when the cells were grown in an initial medium without citric acid and then fed with a nutrient solution containing citric acid.

발효조에 균주를 접종하고 9시간 경과한 후(발효액의 pH 7.0, 건조균체 농도 4.23 g/L)에 영양액 150 ㎖를 공급하고 γ-PGA 생성과 균체농도를 관찰하였다(참조: 제4도). 또한, 배지 내의 글리세롤, 시트르산, L-글루탐산의 농도도 측정하였다(참조: 제5도). 제4도 및 제5도에서 보듯이, 급격한 γ-PGA 생성시점과 시트르산의 감소시점이 일치하는 것으로 보아, 생성된 γ-PGA는 대부분 시트르산의 대사에 의해 생성된 것을 알 수 있었다.After 9 hours of inoculation of the strain into the fermenter (pH 7.0, fermentation broth concentration 4.23 g / L) 150 ml of nutrient solution was supplied and γ-PGA production and cell concentration was observed (see Fig. 4). In addition, the concentrations of glycerol, citric acid and L-glutamic acid in the medium were also measured (see Fig. 5). As shown in FIGS. 4 and 5, the point of abrupt γ-PGA production coincides with that of citric acid, indicating that the generated γ-PGA is mostly produced by metabolism of citric acid.

본 실험결과 영양분 공급 시점까지 γ-PGA 생성은 5 g/L 이하로 억제되었으며, 기질공급후 약 17시간 후(접종 후 26시간)에 34.9 g/L의 γ-PGA가 생성되었다. 이는 회분식 배양에서 얻어진 것보다 2.5배 높은 양이다(참조: Cromwick et al., Biotech. Bioeng., 50: 222(1996)). 또한, 생산성은 1.34 g γ-PGA/L/h로서, 종래에 보고된 유가식 배양에 의한 γ-PGA 생산방법보다 5배 가량 향상되었다(참조: Cromwick et al, E.A. Dawes(ed), Novel Biodegradable Microbial Polymers, 457-460(1990)).As a result, γ-PGA production was inhibited to 5 g / L or less until the nutrient supply point, and 34.9 g / L of γ-PGA was produced about 17 hours after substrate feeding (26 hours after inoculation). This is 2.5 times higher than that obtained in batch culture (Cromwick et al., Biotech. Bioeng., 50: 222 (1996)). In addition, the productivity was 1.34 g γ-PGA / L / h, which was about five times better than the conventionally reported method of γ-PGA production by fed-batch culture (Cromwick et al, EA Dawes (ed), Novel Biodegradable). Microbial Polymers, 457-460 (1990).

[실시예 3]Example 3

[시트르산 12 g/L을 함유한 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 균체성장과 γ-PGA 합성][Bacterial Growth and γ-PGA Synthesis When Cells were Grown in an Initial Medium Containing Citric Acid 12 g / L and Feeded with Citric Acid-Containing Liquid]

실시예 2의 대조 실험으로서, 시트르산 12 g/L을 함유한 초기배지에서 균체를 성장시킨 후, 시트르산이 함유된 영양액을 공급하였을 때의 균체성장과 γ-PGA 합성을 관찰하였다(참조: 제5도). 실시예 2와 같은 방법으로 영양액을 공급하였을 경우, 건조균체농도는 최대 7.20 g/L, γ-PGA는 5.30 g/L까지 생산되었다.As a control experiment of Example 2, after growing the cells in the initial medium containing 12 g / L citric acid, cell growth and γ-PGA synthesis was observed when the nutrient solution containing citric acid was supplied (see: Fifth Degree). When the nutrient solution was supplied in the same manner as in Example 2, the dry cell concentration was produced up to 7.20 g / L, γ-PGA up to 5.30 g / L.

이는 실시예 2의 결과에 비해 현격히 적은 생산량이며, 이로 보아 초기 배지에서는 시트르산을 제외하고 균체를 성장시킨 후, 시트르산이 포함된 영양액을 공급하는 것이 γ-PGA의 생산에 적합하다고 결론지을 수 있다.This is a significantly lower production compared to the results of Example 2, it can be concluded that it is suitable for the production of γ-PGA after the growth of the cells except citric acid in the initial medium, and supplying nutrient solution containing citric acid.

이상에서 상세히 설명하고 입증하였듯이, 일단 γ-PGA 생산을 억제시킨 조건에서 원하는 농도까지 바실러스 리케니포미스 균체를 배양한 후, γ-PGA를 생성시키는 본 발명의 유가식 배양으로 고농도의 γ-PGA를 효율적으로 생산할 수 있었다. 또한, 이러한 방식으로 γ-PGA를 생산할 경우, γ-PGA의 초기 생성이 억제되어 일정 균체 성장 전까지 낮은 점도를 유지하여 공정 초기의 교반속도와 통기량을 낮출 수 있어 생산 비용이 절감된다.As described and demonstrated in detail above, once culturing Bacillus rickenomyces cells to the desired concentration under the conditions of inhibiting γ-PGA production, high concentration γ-PGA in the fed-batch culture of the present invention to generate γ-PGA Could be produced efficiently. In addition, in the production of γ-PGA in this manner, the initial production of γ-PGA is suppressed to maintain a low viscosity until a certain cell growth, lowering the agitation speed and the aeration amount of the process to reduce the production cost.

Claims (4)

시트르산이 없는 초기배지에서 바실러스 리케니포미스(Bacillus licheniformis) 균주를 고농도로 성장시킨 다음, 시트르산이 함유된 영양배지를 공급하는 유가식 배양에 의한, γ-폴리글루탐산(γ-polyglutamic acid)의 생산방법.Production of γ-polyglutamic acid by growth of Bacillus licheniformis strain in high concentration in an initial medium without citric acid, followed by fed-batch culture supplying nutrient medium containing citric acid Way. 제1항에 있어서, 초기배지는 L-글루탐산 20.0 g/L, 글리세롤 40.0 g/L, NH4Cl 7.0 g/L, K2HPO40.5 g/L, MgSO4ㆍ7H2O 0.5 g/L, FeCl3ㆍ6H2O 0.04 g/L, CaCl2ㆍ2H2O 0.15 g/L, MnSO4ㆍH2O 0.104 g/L로 구성된 조성물인 것을 특징으로 하는 γ-폴리글루탐산(γ-polyglutamic acid)의 생산방법.According to claim 1, the initial medium is L- glutamic acid 20.0 g / L, glycerol 40.0 g / L, NH 4 Cl 7.0 g / L, K 2 HPO 4 0.5 g / L, MgSO 4 7H 2 O 0.5 g / L , Γ-polyglutamic acid, characterized in that the composition consisting of FeCl 3 · 6H 2 O 0.04 g / L, CaCl 2 ㆍ 2H 2 O 0.15 g / L, MnSO 4 ㆍ H 2 O 0.104 g / L ) Production method. 제1항에 있어서, 시트르산이 함유된 영양배지는 L-글루탐산 125 g/L, 시트르산 250 g/L, CaCl2ㆍ2H2O 3 g/L, MnSO4ㆍ5H2O 3 g/L, 글리세롤 500 g/L, MgSO4ㆍ7H2O 3 g/L로 구성된 조성물인 것을 특징으로 하는 γ-폴리글루탐산(γ-polyglutamic acid)의 생산방법.The nutrient medium according to claim 1, wherein the nutrient medium containing citric acid is 125 g / L L-glutamic acid, 250 g / L citric acid, CaCl 2 2H 2 O 3 g / L, MnSO 4 5H 2 O 3 g / L, glycerol Production method of γ-polyglutamic acid (γ-polyglutamic acid), characterized in that the composition consisting of 500 g / L, MgSO 4 · 7H 2 O 3 g / L. 제1항에 있어서, 시트르산이 함유된 영양배지는 발효액의 pH가 7.0 이상일 때 첨가되는 것을 특징으로 하는 γ-폴리글루탐산(γ-polyglutamic acid)의 생산방법.The method of producing γ-polyglutamic acid according to claim 1, wherein the nutrient medium containing citric acid is added when the pH of the fermentation broth is at least 7.0.
KR1019970067605A 1997-12-10 1997-12-10 Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis KR100250627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067605A KR100250627B1 (en) 1997-12-10 1997-12-10 Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067605A KR100250627B1 (en) 1997-12-10 1997-12-10 Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis

Publications (2)

Publication Number Publication Date
KR19990048816A KR19990048816A (en) 1999-07-05
KR100250627B1 true KR100250627B1 (en) 2000-04-01

Family

ID=19526985

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067605A KR100250627B1 (en) 1997-12-10 1997-12-10 Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis

Country Status (1)

Country Link
KR (1) KR100250627B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063495A (en) * 2016-12-02 2018-06-12 우일주식회사 The landscape architecture system for a road space using manures by fermentation of oil cake

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363434B1 (en) * 2000-05-20 2002-12-05 한국과학기술원 A Method for Manufacturing Highly-Concentrated Polyglutamic Acid with Additional Supply of Saccharides
CN114276952B (en) * 2021-12-06 2023-08-18 湖北工业大学 Method for improving bacillus licheniformis spore formation efficiency
CN114395503B (en) * 2021-12-06 2023-08-22 湖北工业大学 Fermentation method of bacillus licheniformis with high cell density and/or high spore amount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063495A (en) * 2016-12-02 2018-06-12 우일주식회사 The landscape architecture system for a road space using manures by fermentation of oil cake

Also Published As

Publication number Publication date
KR19990048816A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US8492127B2 (en) Bacillus coagulans strains and their applications in L-lactic acid production
US20100297715A1 (en) Method for producing succinic acid
KR20100109902A (en) Large scale microbial culture method
CN101792778A (en) Method for fermentation production of succinic acid by circulating utilization of recombinant Bacillus coli cells
Jang et al. Effect of levulinic acid on cell growth and poly-β-hydroxyalkanoate production by Alcaligenes sp. SH-69
CA1313635C (en) Copolymer production
CN109609408B (en) Gamma-polyglutamic acid high-yield strain and method for preparing gamma-polyglutamic acid by using strain for liquid fermentation
WO2001090395A1 (en) A method for manufacturing highly-concentrated polyglutamic acid with additional supply of saccharides
KR100250627B1 (en) Method for producing polyglutamic acid by fed-batch culture of bacillus licheniformis
Ebrahimzadeh Kouchesfahani et al. Improving poly-γ-glutamic acid production by Bacillus licheniformis ATCC 9945a strain under citrate and glutamate pulsed feedings and biopolymer characteristic evaluation
WO2009048202A1 (en) Method for preparing succinic acid using glycerol as carbon source
CN109161507B (en) Corynebacterium glutamicum capable of producing L-ornithine at high yield and application thereof
US8927236B2 (en) Process for producing poly-γ-glutamic acid having high optical purity
CN101029316B (en) Production of succinate from colon bacillus
NO147927B (en) AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other
NZ233296A (en) Process of producing polymers microbially; microbially produced polymers; and bacterial strains
KR100316467B1 (en) Process for manufacturing curdlan by microbial culture
KR102084501B1 (en) Mudium composition for the fermentation of microorganism producing phas comprising enzymatic hydrolysates of lees
KR102202694B1 (en) Novel methylotrophic bacteria variant with overexpression of ftfL gene and method for producing PHB using the same
Qiu et al. Engineering functional homopolymeric amino acids: from biosynthesis to design
US20060270004A1 (en) Fermentation processes with low concentrations of carbon-and nitrogen-containing nutrients
Son et al. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from structurally unrelated single carbon sources by newly isolated Pseudomonas sp. EL-2
KR100376537B1 (en) Microorganism Corynebacterium glutamicum producing L-lysine and process for producing L-lysine by use thereof
KR100199995B1 (en) Process for preparing phb by cultivation of alcaligenus latus with nitrogen source limitation
KR20050051186A (en) Variant of lumen bacteria and process for preparing succinic acid employing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071203

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee