NO147927B - AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other - Google Patents

AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other Download PDF

Info

Publication number
NO147927B
NO147927B NO404872A NO404872A NO147927B NO 147927 B NO147927 B NO 147927B NO 404872 A NO404872 A NO 404872A NO 404872 A NO404872 A NO 404872A NO 147927 B NO147927 B NO 147927B
Authority
NO
Norway
Prior art keywords
glutamic acid
biotin
medium
polyethylene glycol
glycol monostearate
Prior art date
Application number
NO404872A
Other languages
Norwegian (no)
Other versions
NO147927C (en
Inventor
Carl Gustav Derman
Original Assignee
Forsheda Ideutveckling Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forsheda Ideutveckling Ab filed Critical Forsheda Ideutveckling Ab
Publication of NO147927B publication Critical patent/NO147927B/en
Publication of NO147927C publication Critical patent/NO147927C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)
  • Automatic Disk Changers (AREA)

Description

Fremgangsmåte for fremstilling av L-glutaminsyre Process for the production of L-glutamic acid

ved aerob dyrking av mikroorganismen Microbacterium ammoniaphilum. by aerobic cultivation of the microorganism Microbacterium ammoniaphilum.

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av L-glutaminsyre ved aerob dyrking av mikroorgansimen Microbacterium ammoniaphilum, hvor denne podes i et dyrkingsmedium inneholdende kilder for karbohydrater, nitrogen samt uorganiske salter, i nærvær av biotin i en mengde som er stbrre enn den mengde som trenges for veksten, samt en overflateaktiv aktivator, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at det som aktivator anvendes polyetylenglykol-monostearat. The present invention relates to a method for the production of L-glutamic acid by aerobic cultivation of the microorganism Microbacterium ammoniaphilum, where this is inoculated into a culture medium containing sources of carbohydrates, nitrogen and inorganic salts, in the presence of biotin in an amount that is greater than the amount needed for the growth, as well as a surface-active activator, and the peculiarity of the method according to the invention is that polyethylene glycol monostearate is used as an activator.

Det er tidligere kjent at mikro-organismer kan produsere og akkumulere L-glutaminsyre direkte i et dyrkingsmedium som'er sammensatt av karbohydrater, nitrogenkilder, uorganiske salter og andre næringsstoffer. De fleste av de stammer som benyttes industrielt for fremstilling av L-glutaminsyre trenger biotin for sin \écst. Det er derfor rimelig at styring av gjæringen ved hjelp av biotin spiller en vesentlig rolle. Dersom biotinmengden i dyrkingsmediet er mindre enn den mengde som trenges for optimal vekst, og biotinet således får virke under utilstrekkelige betingelser, vil det med god virkningsgrad fremstilles og akkumuleres L-glutaminsyre. Under betingelser hvor imidlertid biotinet er tilstede i overskudd i dyrkningsmediet, vil mikro-organismene formere seg i en slik grad åt det blir helt umulig å oppnå den onskede hensikt, det vil<*> si fremstilling av L-glutaminsyre. It is previously known that micro-organisms can produce and accumulate L-glutamic acid directly in a culture medium which is composed of carbohydrates, nitrogen sources, inorganic salts and other nutrients. Most of the strains used industrially for the production of L-glutamic acid need biotin for their production. It is therefore reasonable that control of the fermentation by means of biotin plays a significant role. If the amount of biotin in the culture medium is less than the amount needed for optimal growth, and the biotin is thus allowed to work under insufficient conditions, L-glutamic acid will be produced and accumulated with good efficiency. However, under conditions where the biotin is present in excess in the culture medium, the micro-organisms will multiply to such an extent that it becomes completely impossible to achieve the desired purpose, i.e. the production of L-glutamic acid.

I et vanlig anvendt syntetisk medium lar biotininnholdet seg lett kontrollere kvantitativt slik at det blir egnet for gjæring, men det syntetiske medium er som regel kostbart slik at det av okonomiske grunner ikke kan anbefales for industrielle prosesser. Som folge av dette er det blitt anvendt billige naturlige substanser som råmaterial for dyrkingsmediet. Disse har imidlertid forskjellig sammensetning fra parti til parti, og selv en liten mengde mais-stopvæske må analyseres omhyggelig dersom den skal kunne benyttes. Når avfallsmelasse (roe- eller rorsukker-melasse), enzymatisk og fra saccarose fremstilt råglukose etc. benyttes som karbohydratmaterial varierer dessuten disses sammensetning meget med behandlingsmåten av det rå plantematerial. Den store mengde biotin som frembringes av disse planter forårsaker dessuten en uhemmet vekst av mikro-organismene, hvilket forer til en nedsatt akkumlering av L-glutaminsyre. In a commonly used synthetic medium, the biotin content can be easily controlled quantitatively so that it is suitable for fermentation, but the synthetic medium is usually expensive so that for economic reasons it cannot be recommended for industrial processes. As a result, cheap natural substances have been used as raw material for the cultivation medium. However, these have a different composition from lot to lot, and even a small amount of corn-stop liquid must be carefully analyzed if it is to be used. When waste molasses (beet or cane sugar molasses), raw glucose produced enzymatically and from sucrose, etc. are used as carbohydrate material, their composition also varies greatly with the processing method of the raw plant material. The large amount of biotin produced by these plants also causes an unrestrained growth of the micro-organisms, which leads to a reduced accumulation of L-glutamic acid.

Av denne grunn er anvendelsen av avfalls-melasse' og enzymatisk For this reason, the use of waste molasses is enzymatic

og fra saccarose fremstilt råglukose som karbohydratmaterial, blitt ansett for å være umulig, til tross for at disse substanser dersom de kunne benyttes, klart viUe ha storre okonomiske fordeler enn ren glukose som hittil er benyttet. and raw glucose produced from sucrose as a carbohydrate material, has been considered to be impossible, despite the fact that these substances, if they could be used, would clearly have greater economic advantages than pure glucose which has been used up to now.

Foreliggende oppfinnelse har muliggjort fremstilling av L-glutaminsyre med hoyt utbytte selv når dyrkingsmediet inneholder et overskudd av biotin, ved anvendelse av mikroorganismen The present invention has enabled the production of L-glutamic acid with a high yield even when the culture medium contains an excess of biotin, by using the microorganism

Microbacterium ammoniaphilum. (Denne mikroorganisme betegnes Microbacterium ammoniaphilum. (This microorganism is designated

med ATCC 1535^ og er deponert i American Type Culture Collection, Washington, D.C., USA den 12. februar 196^). Ved tilsetning av polyetylenglykolmonostearat (C1^H^^COOCCH2CH20)nH), et ikke-ionisk overflateaktivt middel av estertype, til dyrkingsmediet er det blitt mulig å fremstille store mengder L-glutaminsyre selv når dyrkingsmediet inneholder biotin i overskudd. with ATCC 1535^ and is deposited in the American Type Culture Collection, Washington, D.C., USA on 12 February 196^). By adding polyethylene glycol monostearate (C1^H^^COOCCH2CH20)nH), a nonionic surfactant of the ester type, to the culture medium, it has become possible to produce large amounts of L-glutamic acid even when the culture medium contains biotin in excess.

Overflateaktive midler er benyttet tidligere ved gjæringsprosesser med forskjellige mikro-organismer. Det .er kjent at særlig ikke-ioniske overflateaktive midler er virksomme med hensyn til å forhindre sammenklumping av mikroorganismene eller til å stimulere veksten av disse. Det er fra det franske patentskrift 1.266.757 kjent å tilsette et antibiotikum (cetyl-trimetylammonium-bromid; CTAB) som veksthemmer, men dette forte ikke til noe tilfredsstillende utbytte av L-glutaminsyre. Surfactants have previously been used in fermentation processes with various micro-organisms. It is known that particularly non-ionic surface-active agents are effective with regard to preventing clumping of the microorganisms or to stimulate their growth. It is known from French patent document 1,266,757 to add an antibiotic (cetyl-trimethylammonium bromide; CTAB) as a growth inhibitor, but this did not lead to any satisfactory yield of L-glutamic acid.

Det har hittil ikke vært kjent at det ved tilsetning av It has so far not been known that by adding

ikke-ionisk overflateaktivt middel, nemlig polyetylenglykol-monostearat, til et dyrkingsmedium som inneholder et biotin-overskudd, kan det fremstilles og akkumuleres L-glutaminsyre med like hoyt utbytte som ved prosesser hvor biotininnholdet er mindre enn den mengde som trenges for optimal vekst. Fremgangsmåten i henhold til foreliggende oppfinnelse er derfor både ny og fordelaktig. Polyetylen-glykolmonostearat kan med fordel tilsettes ved begynnelsen av den logaritmiske fase av bakterieveksten, nemlig etter et intervall på 7-8 timer. nonionic surfactant, namely polyethylene glycol monostearate, to a culture medium containing an excess of biotin, L-glutamic acid can be produced and accumulated with the same high yield as in processes where the biotin content is less than the amount needed for optimal growth. The method according to the present invention is therefore both new and advantageous. Polyethylene glycol monostearate can advantageously be added at the beginning of the logarithmic phase of bacterial growth, namely after an interval of 7-8 hours.

Som karbo_hydratmaterial for gjæringen kan det brukes naturlige karbohydrater som avfallsmelasse (roe- og rorsukkermelasse), enzymatiske og sure stivelseshydrolysater og selvfolgelig slike kjemiske forbindelser som glukose, sukrose og fruktose. Natural carbohydrates such as waste molasses (beet and cane sugar molasses), enzymatic and acidic starch hydrolysates and naturally such chemical compounds as glucose, sucrose and fructose can be used as carbohydrate material for the fermentation.

Som kilde for nitrogen og uorganiske salter anvendes de forbindelser som anvendes ved den vanlige L-glutaminsyregjæringsprosess, f.eks. ammoniumklorid, ammoniumsulfat, urinstoff, ammoniakk, KH^PO^, I^HPO^, MgSO^^I^O, jernsalter, mangansalter o.l. As a source for nitrogen and inorganic salts, the compounds used in the usual L-glutamic acid fermentation process are used, e.g. ammonium chloride, ammonium sulphate, urea, ammonia, KH^PO^, I^HPO^, MgSO^^I^O, iron salts, manganese salts, etc.

Fremgangsmåten gjennomføres ved å pode en L-glutaminsyre-produserende mikro-organisme horende til Microbacterium ammoniaphilum i et dyrkingsmedium inneholdende det utvalgte karbohydrat, nitrogenkilden, uorganiske salter samt et ovaskudd av "biotin .(mer enn 10 p./ l), idet mikro-organismen dyrkes under aerobe betingelser ved pH 6 til 8, og idet det som aktivator tilsettes et overflateaktivt middel, nemlig det ikke-ioniske polyetylenglykolmonostearat, til dyrkingsmediet en viss tid etter at dyrkingen er begynt, for derved å fremstille en stor mengde L-glutaminsyre i dyrkingsmediet, uten å forstyrres av at biotin The method is carried out by inoculating an L-glutamic acid-producing micro-organism belonging to Microbacterium ammoniaphilum in a culture medium containing the selected carbohydrate, the nitrogen source, inorganic salts as well as an extra shot of "biotin" (more than 10 p./l), as the micro- the organism is cultivated under aerobic conditions at pH 6 to 8, and by adding a surface-active agent, namely the non-ionic polyethylene glycol monostearate, as an activator, to the culture medium a certain time after the culture has begun, thereby producing a large amount of L-glutamic acid in the culture medium, without being disturbed by that biotin

er tilstede i overskudd, idet den således fremstilte L-glutaminsyre til slutt fraskilles og utvinnes. is present in excess, as the L-glutamic acid thus produced is finally separated and recovered.

Blant de forskjellige betingelser for styring av dyrkingen er tidspunktet for tilsettingen av polyetylenglykolmonostearat (for å aksellerere fremstillingen av L-glutaminsyren) til mediet en viktig faktor og dominerer ofte det mengdemessige resulat man får av gjæringen. Among the various conditions for managing the cultivation, the time of adding polyethylene glycol monostearate (to accelerate the production of L-glutamic acid) to the medium is an important factor and often dominates the quantitative result obtained from the fermentation.

Selvom tidspunktet for tilsettingen av polyetylenglykolmonostearatet kan variere over et bredt område avhengig av den art råmaterialer, stammer og det forkultiveringsmedium som anvendes, er som nevnt det beste tidspunkt for tilsettingen et tidlig trinn i den logaritmiske vekstfase for mikro-organismen, det vil si den 7. til 8. time etter at dyrkingen har tatt til. Med andre ord tilsettes polyetylenglykolmonostearat til mediet når verdien for den optiske tetthet (O.D. Value) for dyrkingsbuljongen når 0,3 til 0,U- (den optiske tetthet bestemmes ved å oppslemme 1,0 ml av dyrkingsbuljongen i 9,0 ml destillert vann og måle absorpsjonsindeksen, dvs. -log T, av den resulterende fortynnede buljong ved hjelp av et foto-elektrisk fotometer i en 1 0 mm selle med bolgelengden 655 m p.). Mangden av polyetylenglykolmonostearat som tilsettes må også varieres i avhengighet av de typer av råmaterial som er tilstede og også Although the time for the addition of the polyethylene glycol monostearate can vary over a wide range depending on the type of raw materials, strains and the pre-cultivation medium used, as mentioned, the best time for the addition is an early stage in the logarithmic growth phase of the micro-organism, that is, the 7 . to the 8th hour after the cultivation has taken off. In other words, polyethylene glycol monostearate is added to the medium when the optical density (O.D. Value) value of the culture broth reaches 0.3 to 0.U- (the optical density is determined by suspending 1.0 ml of the culture broth in 9.0 ml of distilled water and measure the absorption index, ie -log T, of the resulting diluted broth using a photo-electric photometer in a 10 mm cell with a wavelength of 655 m p.). The amount of polyethylene glycol monostearate added must also be varied depending on the types of raw material present and also

i avhengighet av mengden av biotin som er tilstede i mediet, men i de fleste tilfelle vil en mengde av 0,05 til 0,^ g/dl være å foretrekke. depending on the amount of biotin present in the medium, but in most cases an amount of 0.05 to 0.5 g/dl will be preferred.

Ved fremstilling av L-glutaminsyre ved gjæring er det viktig å kontrollere pH i mediet, og ved utovelse av den foreliggende fremgangsmåte holdes pH i mediet fortrinnsvis innenfor området mellom 6 og 8 ved å tilsette stoffer som urinstoff, vandig ammoniakk og lignende. When producing L-glutamic acid by fermentation, it is important to control the pH in the medium, and when continuing the present method, the pH in the medium is preferably kept within the range between 6 and 8 by adding substances such as urea, aqueous ammonia and the like.

En temperatur innenfor området mellom 28 til 33°C foretrekkes opprettholdt under gjæringen og da med gode resultater. A temperature within the range between 28 to 33°C is preferably maintained during the fermentation and then with good results.

Ved anvendelse av foreliggende fremgangsmåte for syntetiske medier som inneholder overskudd av biotin eller ved halvsyntetiske medier som inneholder overskudd av mais-stopvæske og andre medietyper med biotinoverskudd, har fremgangsmåten den fordel at utbyttet og dyrkingsprosessen kan gjbres mer stabil enn ved vanlige fremgangs-måter hvor dyrkingsmediet inneholder en optimal biotinmengde. When using the present method for synthetic media that contain an excess of biotin or for semi-synthetic media that contain an excess of corn-stop liquid and other types of media with an excess of biotin, the method has the advantage that the yield and the cultivation process can be made more stable than with normal methods where the cultivation medium contains an optimal amount of biotin.

Oppfinnelsen skal i det folgende forklares i detalj ved hjelp av folgende utforelseseksempler. In the following, the invention will be explained in detail with the help of the following exemplary embodiments.

Eksempel 1 Example 1

Sammensetning av podemedium: Composition of grafting medium:

Sammensetning av dyrkingsmedium: Composition of culture medium:

% angivelsene for dyrkingsmediene refererer seg til vekt/volum % bortsett fra mais-stopvæsken og aminosyrelosningen som er angitt som volum pr. volum %. The % indications for the culture media refer to weight/volume %, except for the maize stop liquid and the amino acid solution, which are indicated as volume per volume %.

Microbacterium ammoniaphilum ble dyrket i buljong-skråagar i 2h timer ved 30°C. Microbacterium ammoniaphilum was grown in broth slant agar for 2 hours at 30°C.

Kulturen ble suspendert i 30 ml sterilt vann, hvorpå 3 ml av suspensjonen ble podet på 150 ml av det ovenfor angitte steriliserte podemedium i en 500 ml Erlenmeyer kolbe. The culture was suspended in 30 ml of sterile water, whereupon 3 ml of the suspension was inoculated onto 150 ml of the above-mentioned sterilized inoculation medium in a 500 ml Erlenmeyer flask.

Fremstillingen av denne podekultur ble utfort aerobisk ved 30°C i The production of this inoculum was carried out aerobically at 30°C i

20 timer. 20 hours.

Dyrkingsmediet for gjæringen var, som angitt ovenfor, et fullstendig syntetisk medium, hvor det ble tilsatt 20 jig/lit. biotin (den optimale biotinkonsentrasjon for podekulturen var 1,5 jig/lit. og den maksimalt nodvendige mengde for velst var 10 ^ig/lit. når karbohydratkonsentrasjonen var 5%). 100 ml av det steriliserte biotinholdige medium ble fylt over på en 1500 ml rystekulturflaske. Etter at podekulturen var ferdig ble 2$ av lbsningen benyttet til podning av det syntetiske gjæringsmedium hvorpå de forskjellige typer ikke-ioniske overflateaktive midler som er angitt i tabell 1, ble tilsatt i en mengde på 50 mg/100 ml og mediet dyrket i kB timer under aerobe betingelser. The culture medium for the fermentation was, as indicated above, a completely synthetic medium, to which 20 µg/liter was added. biotin (the optimum biotin concentration for the inoculum was 1.5 µg/lit. and the maximum required amount for well was 10 µg/lit. when the carbohydrate concentration was 5%). 100 ml of the sterilized biotin-containing medium was poured onto a 1500 ml shaking culture bottle. After the inoculation culture was finished, 2$ of the lbs was used to inoculate the synthetic fermentation medium whereupon the different types of non-ionic surfactants indicated in Table 1 were added in an amount of 50 mg/100 ml and the medium cultured for kB hours under aerobic conditions.

Mengden av L-glutaminsyre ble deretter bestemt ved papirkromatografi som vist i tabell I. The amount of L-glutamic acid was then determined by paper chromatography as shown in Table I.

+ mindre enn 1 mg/lit. + less than 1 mg/litre.

++ over 1 mg/lit. - under 20 mg/lit. ++ above 1 mg/litre. - below 20 mg/litre.

++++over 50 mg/lit. ++++over 50 mg/litre.

Av tabellen fremgår det at det i alle tilfeller bortsett fra når sorbitanmonostearat ble benyttet, ble det produsert L-glutaminsyre ved tilsetning av et ikke-ionisk overflateaktivt middel i kulturmediet som inneholdt overskudd av biotin. Ved anvendelse av polyetylenglykolmonostearat ble det oppnådd overraskende store mengder L-glutaminsyre. From the table it appears that in all cases except when sorbitan monostearate was used, L-glutamic acid was produced by adding a non-ionic surfactant to the culture medium which contained an excess of biotin. By using polyethylene glycol monostearate, surprisingly large amounts of L-glutamic acid were obtained.

Eksempel 2. Example 2.

Sammensetningen av pode-kulturmediet var den samme som i eksempel 1. Til dyrkingsmediet ble det tilsatt de mengderbiotin som er angitt The composition of the inoculum culture medium was the same as in example 1. The amounts of biotin indicated were added to the culture medium

i tabell II. Konsentrasjonen av polyetylenglykolmonostearat fremgår av tabell II. Dyrkingsmediet ble behandlet som beskrevet i eksempel 1. Den mengde L-glutaminsyre som var produsert etter 3 dagers dyrking er også angitt i tabellen. in Table II. The concentration of polyethylene glycol monostearate appears in Table II. The cultivation medium was treated as described in example 1. The amount of L-glutamic acid that was produced after 3 days of cultivation is also indicated in the table.

Som det fremgår av tabellen varierer polyetylenglykolmonostorat-tilsetningen noe med biotininnholdet i mediet; Det har imidlertid vist seg at det kan fremstilles L-glutaminsyre med godt utbytte, dersom polyetylenglykolmonostearat tilsettes, uansett hvor mye biotin mediet inneholder. As can be seen from the table, the polyethylene glycol monostorate addition varies somewhat with the biotin content of the medium; However, it has been shown that L-glutamic acid can be produced with a good yield, if polyethylene glycol monostearate is added, regardless of how much biotin the medium contains.

E ksempel 3 Example 3

Sammensetningen av buljongen for dyrking av mikroorganismene var den samme som i eksempel 1. The composition of the broth for growing the microorganisms was the same as in Example 1.

Med tanke på anvendelsen av avfallsmelasse som karbohydratkilde Considering the use of waste molasses as a carbohydrate source

i dyrkingsbuljongen ble det benyttet 1,5$ glukose og 3>5$ sukrose som karbo_hydratmaterial i buljongsammensetningen under anvendelse av biotinmengder på 20/ug/l, 50 / ag/ l og 100/ag/1. Polyetylenglykol-monostearat ble tilsatt i de konsentrasjoner som er angitt i tabell III og gjæringen ble utfort på samme måte som i Eksempel 1. Den mengde L-glutaminsyre som var dannet etter 3 dager er angitt in the culture broth, 1.5% glucose and 3>5% sucrose were used as carbohydrate material in the broth composition using biotin amounts of 20 µg/l, 50 µg/l and 100 µg/l. Polyethylene glycol monostearate was added in the concentrations indicated in Table III and the fermentation was carried out in the same way as in Example 1. The amount of L-glutamic acid that had formed after 3 days is indicated

i tabell III. in Table III.

Tabellen bekrefter at det ved anvendelse av polyetylenglykol-monostearat oppnås et bemerkelsesverdig hoyt utbytte av L-glutaminsyre på tross av at kulturmediet inneholder overskudd The table confirms that by using polyethylene glycol monostearate, a remarkably high yield of L-glutamic acid is achieved despite the fact that the culture medium contains an excess

av biotin. of biotin.

Eksempel h Example h

Buljongen for dyrkingen hadde samme sammensetning som i eksempel 1. The broth for the cultivation had the same composition as in example 1.

Som karbohydratmaterial for dyrkingsmediet ble det benyttet avfallsmelasse (9,36$ -total-karbohydrat, tf,22$ direkte æduserende sukker og 2,3 Mg/100 ml biotin) som var behandlet med ionevekslerharpiks og fortynnet til en konsentrasjon på ca. 5$» Bortsett fra at det ble benyttet mindre biotin (20 jig/lit. i eksempel 1 ) var sammensetningen og gjæringsteknikken den samme som i eksempel 1. Polyetylenglykolmonostearat ble anvendt i de konsentrasjoner som er angitt i tabell IV. L-glutaminsyremengden etter 3 dagers dyrking er angitt i den samme tabell. Waste molasses (9.36% total carbohydrate, tf.22% direct educing sugar and 2.3 Mg/100 ml biotin) was used as carbohydrate material for the culture medium, which had been treated with ion exchange resin and diluted to a concentration of approx. 5$» Except that less biotin was used (20 jig/lit. in Example 1 ) the composition and the fermentation technique were the same as in Example 1. Polyethylene glycol monostearate was used in the concentrations indicated in Table IV. The amount of L-glutamic acid after 3 days of cultivation is indicated in the same table.

Av eksempelet fremgår det at det ved anvendelse av polyetylenglykol-monostearat i passende konsentrasjoner oppnås et bemerkelsesverdig hoyt utbytte av L-glutaminsyre når den totale karbohydrat-. konsentrasjon er 5$5 den anvendte avfallsmelasse er behandlet med ionevekslerharpiks og buljongen inneholder 12^3 ng/100 ml biotin-overskudd. From the example, it appears that by using polyethylene glycol monostearate in suitable concentrations, a remarkably high yield of L-glutamic acid is achieved when the total carbohydrate-. concentration is 5$5 the waste molasses used is treated with ion exchange resin and the broth contains 12^3 ng/100 ml biotin excess.

Eksempel 5 Example 5

Sammensetning av podemediet: Composition of the potting medium:

Sammensetning av dyrkingsmediet: Composition of the culture medium:

Under anvendelse av de ovenfor angitte dyrkingsmedier ble det dyrket en stamme på samme måte som i eksempel 1, og kulturen ble benjttet til poding av et hoved-dyrkhgsmedium. Dyrkingsmediet ble tilsatt 50 mg/100 ml polyetylenglykolmonostearat. Etter 3 dagers dyrking var den fremstilte mengde L-glutaminsyre 23,7 mg/ml. Samtidig med dette ble det foretatt en dyrking under identiske •betingelser uten anvendelse av polyetylenglykolmonostearat, hvilket forte til en L-glutaminsyremengde på bare 1,6 mg/ml. Using the above culture media, a strain was grown in the same manner as in Example 1, and the culture was used for inoculation of a main culture medium. 50 mg/100 ml of polyethylene glycol monostearate was added to the culture medium. After 3 days of cultivation, the amount of L-glutamic acid produced was 23.7 mg/ml. At the same time, cultivation was carried out under identical conditions without the use of polyethylene glycol monostearate, which led to an L-glutamic acid quantity of only 1.6 mg/ml.

Etter avsluttet dyrking ble bakteriene fjernet og væsken inndampet under oppvarming. L-glutaminsyrektystallene lot seg lett utfelle ved avkjoling av den inndampede buljong ved justering av dens pH-verdi til 3,2. De utfelte grove krystaller ble deretter torket ved sentrifugering. After the end of cultivation, the bacteria were removed and the liquid evaporated under heating. The L-glutamic acid crystals readily precipitated upon cooling the evaporated broth by adjusting its pH value to 3.2. The precipitated coarse crystals were then dried by centrifugation.

Eksempel 6 Example 6

Sammensetningene av podemediet og hoveddyrkingsmediet var de The compositions of the pod medium and the main culture medium were those

samme som i det foregående eksempel, bortsett fra at biotininnholdet ble endret til 100 p. g/ 1. Den mengde L-glutaminsyre som ble fremstilt i lbpet av 3 dagers dyrking var 1*+,8 mg/ml, mens det ble oppnådd et utbytte på 21,5 mg/ml L-glutaminsyre ved tilsetning av 150 mg/100 ml polyetylenglykolmonostearat til dyrkingsbuljongen. the same as in the previous example, except that the biotin content was changed to 100 µg/l. The amount of L-glutamic acid produced in 1 lb of 3 days of culture was 1*+.8 mg/ml, while a yield of 21.5 mg/ml L-glutamic acid by adding 150 mg/100 ml polyethylene glycol monostearate to the culture broth.

Eksempel 7 Example 7

Mikroorganismene ble dyrket i et podemedium som hadde den samme sammensetning som i eksempel 5» I hoveddyrkingsmediet ble det benyttet 1,5$ glukose og 3,5$ sukrose som karbo-hydratmaterial, og dyrkingen ble utfort med en sammensetning og etter en metode som var identisk med den i eksempel 5> L-glutaminsyremengden etter 3 dager var 23,6 mg/ml og 1,2 mg/ml henhv. med og uten polyetylen-glykolmonostearat. The microorganisms were cultivated in an inoculum medium which had the same composition as in example 5. In the main cultivation medium, 1.5% glucose and 3.5% sucrose were used as carbohydrate material, and the cultivation was carried out with a composition and according to a method which was identical to that in example 5> the amount of L-glutamic acid after 3 days was 23.6 mg/ml and 1.2 mg/ml respectively. with and without polyethylene glycol monostearate.

Eksempel 8 Example 8

Mikroorganismene ble dyrket i et podemedium som hadde samme sammensetning som i eksempel 1. Som karbohydratmaterial for hovedmediet ble det benyttet avfallsmelasse (total-karbohydrat* 62,57$, direkte reduserende sukker: 20,07$, biotin: 8ky7 jig/100 g, The microorganisms were grown in an inoculum medium which had the same composition as in example 1. Waste molasses was used as carbohydrate material for the main medium (total carbohydrate* 62.57$, direct reducing sugar: 20.07$, biotin: 8ky7 jig/100 g,

L-glutaminsyre 0,5 mg/ml) som ble fortynnet til en konsentrasjon L-glutamic acid 0.5 mg/ml) which was diluted to a concentration

på ca. 5$. Dyrkingen ble utfort i et dyrkingsmedium med en sammensetning og ved en fremgangsmåte som var lik den som er beskrevet i eksempel 5, bortsett fra at mediet ikke inneholdt 20 pg/ 1 biotin. Ved tilsetning av 150 mg/100 ml polyetylenglykol-monostearat til hovedmediet ble det oppnådd 1*+,7 mg/ml L-glutaminsyre ved 3 dagers dyrking. Uten anvendelse av polyetylenglykolmonostearat ble det under de samme betingelser bare oppnådd 0,7 mg/ml glutaminsyre. of approx. 5$. Cultivation was carried out in a culture medium with a composition and method similar to that described in Example 5, except that the medium did not contain 20 µg/l biotin. By adding 150 mg/100 ml polyethylene glycol monostearate to the main medium, 1*+.7 mg/ml L-glutamic acid was obtained after 3 days of cultivation. Without the use of polyethylene glycol monostearate, only 0.7 mg/ml glutamic acid was obtained under the same conditions.

Eksempel 9 Example 9

Mikroorganismene ble dyrket i en podekultur som angitt i eksempel 5« Forsukret stivelseslosning (total-karbohydrat 56,3#j direkte reduserende sukker M3,8# og biotin 83 ^ig/100 ml) som var forsukret ved anvendelse av et forsukringsenzym i flytende form ble justert til et total-karbohydratinnhold på ca. 5$. Dyrkingen ble gjennomfort som i det foregående eksempel og forte til L-glutaminsyremengder på 17,9 og 0,3 mg/ml henhv. med 150 mg/100 ml polyetylenglykolmonostearat og uten polyetylenglykolmonostearat. The microorganisms were grown in an inoculum as indicated in Example 5. Saccharified starch slurry (total carbohydrate 56.3% direct reducing sugar M3.8% and biotin 83 µg/100 ml) which was saccharified using a saccharification enzyme in liquid form was adjusted to a total carbohydrate content of approx. 5$. Cultivation was carried out as in the previous example and fed to L-glutamic acid amounts of 17.9 and 0.3 mg/ml respectively. with 150 mg/100 ml polyethylene glycol monostearate and without polyethylene glycol monostearate.

Claims (1)

Fremgangsmåte for fremstilling av L-glutaminsyre ved aerob dyrking av mikroorganismen Microbacterium ammoniaphilum, hvor denne podes i et dyrkingsmedium inneholdende kilder for karbohydrater, nitrogen samt uorganiske salter, i nærvær av biotin i en mengde som er storre enn den mengde som trenges for veksten, samt en overflateaktiv aktivator, karakterisert ved at det som aktivator anvendes polyetylenglykolmonostearat.Process for the production of L-glutamic acid by aerobic cultivation of the microorganism Microbacterium ammoniaphilum, where this is inoculated in a culture medium containing sources of carbohydrates, nitrogen and inorganic salts, in the presence of biotin in an amount that is greater than the amount needed for growth, and a surface-active activator, characterized in that polyethylene glycol monostearate is used as an activator.
NO404872A 1971-11-09 1972-11-08 AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other NO147927C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1427071A SE356112B (en) 1971-11-09 1971-11-09

Publications (2)

Publication Number Publication Date
NO147927B true NO147927B (en) 1983-03-28
NO147927C NO147927C (en) 1983-07-06

Family

ID=20298823

Family Applications (1)

Application Number Title Priority Date Filing Date
NO404872A NO147927C (en) 1971-11-09 1972-11-08 AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other

Country Status (9)

Country Link
JP (1) JPS544459B2 (en)
CA (1) CA989897A (en)
DE (1) DE2254383A1 (en)
DK (1) DK140859B (en)
FR (1) FR2160105A5 (en)
GB (1) GB1372904A (en)
IT (1) IT973447B (en)
NO (1) NO147927C (en)
SE (1) SE356112B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709243C2 (en) * 1976-02-17 1983-04-21 Forsheda Gummifabrik AB, 33012 Forsheda Method and device for sealing a shaft
SE414219B (en) * 1977-12-23 1980-07-14 Derman Ab K G DEVICE FOR SEALING AN ANIMAL OPENING BETWEEN AN INTERNAL PART PREFERRED BY AN AXLE AND THIS SURROUNDING OUTER PART
US4204948A (en) * 1978-12-18 1980-05-27 Allis-Chalmers Corporation Self-purging seal
FR2476788A3 (en) * 1980-02-25 1981-08-28 Beurel Guy Sealing for fixed annular discharge casing on rotary drum - has interhousing opposed rigid and supple radial flanges to form pressurised cell
FR2480390A1 (en) * 1980-04-14 1981-10-16 Tech Mecanique Indles Seal for journal bearing - uses elastic tongue from shaft mounted ring with tongue pressure countered by compressed air feed at high speeds
DE3249245C2 (en) * 1982-01-30 1986-06-12 Tbt Tiefbohrtechnik Gmbh Und Co Kg, 7433 Dettingen Device for sealing a pipe section of a deep drilling tool
DE3203134C2 (en) 1982-01-30 1984-01-05 Tbt Tiefbohrtechnik Gmbh Und Co Kg, 7433 Dettingen Deep drilling tool
JPH0535249Y2 (en) * 1988-03-31 1993-09-07
FI1263U1 (en) * 1993-09-10 1994-03-18 Enfoplan Oy Anordning Foer taetning av ett genomfoeringsorgan
US11035473B2 (en) 2018-08-10 2021-06-15 Cinchseal Associates, Inc. Inner diameter rotating drum seal

Also Published As

Publication number Publication date
GB1372904A (en) 1974-11-06
DE2254383A1 (en) 1973-05-17
FR2160105A5 (en) 1973-06-22
IT973447B (en) 1974-06-10
SE356112B (en) 1973-05-14
CA989897A (en) 1976-05-25
JPS4875962A (en) 1973-10-12
DK140859B (en) 1979-11-26
JPS544459B2 (en) 1979-03-07
DK140859C (en) 1980-05-05
NO147927C (en) 1983-07-06

Similar Documents

Publication Publication Date Title
US5336617A (en) Process for preparing trehalulose and isomaltulose
CA1168999A (en) Method for preparing 2,5-diketo-d-gluconic acid
EP0051637A1 (en) Liquid culturing of sporulating, ectomycorrhizal fungi
US4745064A (en) Process for the degradation of s-triazine derivatives in aqueous solutions
NO147927B (en) AA device separates from two media located in each room on each side of an annular aperture between two parts that are movable relative to each other
Yamada et al. l-Serine production by a glycine-resistant mutant of methylotrophic Hyphomicrobium methylovorum
JPH06237779A (en) Production of l-glutamic acid by fermentation method
US4692408A (en) Fermentation process for the production of polysaccharides
Izumi et al. Pyruvic acid production from 1, 2-propanediol by thiamin-requiring Acinetobacter sp. 80-M
Rode et al. Adaptation of Rhodopseudomonas sphaeroides to Growth on d-(—)-Tartrate and Large-Scale Production of a Constitutive d-(—)-Tartrate Dehydratase During Growth on dl-Malate
Vargas-Garcia et al. Influence of nutritional and environmental factors on polysaccharide production by Azotobacter vinelandii cultured on 4-hydroxybenzoic acid
US4904587A (en) Production of D-ribose
NO118484B (en)
Kotera et al. Isolation method of highly tartaric acid producing mutants of Gluconobacter suboxydans
US4060455A (en) Process for the microbial production of L-serine using pseudomonas Sp. DSM 672
KR900005771B1 (en) Process for the preparation of glutamic acid
JPH0823993A (en) Production of uridine diphosphate n-acetylglucosamine
JP3006907B2 (en) Method for producing L-alanine by fermentation method
SU908092A1 (en) Method of obtaining riboflavin
KR900007948B1 (en) Novel microorganism for producing of glutamic acid
JP4066287B2 (en) Novel microorganism and method for producing erythritol using the same
CA1288076C (en) Rhizobial growth enhancement
JP3029868B2 (en) Method for producing L-alanine by fermentation method
KR900007000B1 (en) Novel candida utilis and process for production of protein
US3313709A (en) Process of making glutamic acid by fermentation of kerosene