KR100250062B1 - The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag - Google Patents

The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag Download PDF

Info

Publication number
KR100250062B1
KR100250062B1 KR1019980005855A KR19980005855A KR100250062B1 KR 100250062 B1 KR100250062 B1 KR 100250062B1 KR 1019980005855 A KR1019980005855 A KR 1019980005855A KR 19980005855 A KR19980005855 A KR 19980005855A KR 100250062 B1 KR100250062 B1 KR 100250062B1
Authority
KR
South Korea
Prior art keywords
slag
precious metal
converter
oxide
melting
Prior art date
Application number
KR1019980005855A
Other languages
Korean (ko)
Other versions
KR19990070808A (en
Inventor
반봉찬
고재진
김창민
Original Assignee
이상한
코리아리싸이트주식회사
반봉찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상한, 코리아리싸이트주식회사, 반봉찬 filed Critical 이상한
Priority to KR1019980005855A priority Critical patent/KR100250062B1/en
Publication of KR19990070808A publication Critical patent/KR19990070808A/en
Application granted granted Critical
Publication of KR100250062B1 publication Critical patent/KR100250062B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

배가스정화용 자동차 폐촉매에는 자동차배기가스의 환경유해원소를 제거하기 위한 촉매인 금, 은, 백금족원소들과 같은 귀금속원소를 다량 함유하고 있으나, 불구하고 현재 국내에서는 이를 효과적으로 추출할 기술이 마땅치 않아 거의 전량 폐기되거나, 외국에 수출되는 것에 불과한 것이었다.The waste catalyst for exhaust gas purification contains a large amount of precious metal elements such as gold, silver and platinum group elements, which are catalysts for removing environmentally harmful elements of automobile exhaust gas. It was all discarded or exported abroad.

따라서 본 발명은 철강제련시에 발생하는 전로 및 전기로슬래그의 조성이 귀금속건식용해법을 이용하여 배가스정화용 자동차 폐촉매를 용융시켜 귀금속원소를 얻고자 할 때 첨가하는 용재성분으로 매우 바람직하다는 것에 착안하여 종래 고가의 용재성분인 생석회나 이산화규소를 대체하여 사용하기 위한 것이다.Therefore, the present invention has been made in view of the fact that the composition of converter and electric furnace slag generated during steel smelting is very preferable as a solvent component to be added to obtain the precious metal element by melting the exhaust catalyst for exhaust gas purification using the noble metal dry dissolution method. It is intended to replace the expensive slag of quicklime or silicon dioxide.

Description

전로 및 전기로슬래그를 이용한 배가스정화용 자동차폐촉매의 귀금속원소 추출방법Method of Extracting Precious Metals from Automobile Waste Catalyst for Flue Gas Purification Using Converter and Electric Furnace Slag

본 발명은 철강제련시에 발생하는 전로 및 전기로슬래그를 이용하여 폐기되는 배가스정화용 자동차폐촉매(이하 배가스폐촉매라 한다.)로 부터 백금(Pt), 팔라디움(Pb), 로듐(Rh) 등의 귀금속원소를 추출하는 방법에 관한 것이다.The present invention uses platinum (Pt), palladium (Pb), rhodium (Rh), etc., from an automobile waste catalyst for exhaust gas purification (hereinafter referred to as an exhaust gas waste catalyst) that is disposed by using converter and electric furnace slag generated during steel refining. It relates to a method for extracting precious metal elements.

현재 배가스폐촉매에는 자동차 배기가스의 환경유해원소를 제거하기 위한 촉매인 금, 은, 백금족원소들과 같은 귀금속원소를 다량 함유하고 있으나, 국내에는 상기와 같은 배가스폐촉매의 이용방안에 대한 연구는 그다지 진전되어있지 못한 상황이다. 특히 배가스폐촉매에 함유된 귀금속원소를 추출, 정련하는 기술은 아직 미비하므로 배가스폐촉매를 그대로 폐기처분하거나, 조정련상태에서 외국에 수출할 수 밖에 없어 국가적으로 많은 경제적 손실을 보고 있는 실정이다.At present, the exhaust gas waste catalyst contains a large amount of precious metal elements such as gold, silver, and platinum group elements, which are catalysts for removing environmentally harmful elements of automobile exhaust gas. There is not much progress. In particular, the technology for extracting and refining the precious metal elements contained in the waste gas waste catalyst is still inadequate. Therefore, the waste gas waste catalyst has to be disposed of as it is, or exported to foreign countries in the state of refining.

현재 배가스폐촉매로부터 귀금속원소를 추출하기위해 여러 가지 방법이 사용되고 있으나, 산이나 알카리용액으로 귀금속원소를 직접 침출시키는 습식법은 수질 오염 등의 우려가 있어 세계적으로 점차 사양화되고 있으며, 대신 포집재가 기저에 형성된 플라즈마로나 아크로에 배가스폐촉매를 용융시켜 슬래그를 조성하고 귀금속 원소들을 조금속상태로 포집재에 의해 포집한 후, 이를 소규모의 습식법으로 정련하는 귀금속 건식용해법을 대부분의 국가에서 채택하고 있다.Currently, various methods are used to extract precious metal elements from waste gas waste catalysts. However, wet methods that directly leach precious metal elements with acids or alkaline solutions are increasingly being specified worldwide due to water pollution. Most countries have adopted a noble metal dry melting method in which slag is formed by melting exhaust gas waste catalyst in a plasma furnace or an arc furnace, and precious metal elements are collected by a collecting material in a crude metal state, and then refined by a small wet method.

상기 귀금속 건식용해법은 용융된 배가스폐촉매에서 추출될 귀금속원소의 손실을 줄이는 것이 무엇보다 중요하며, 이를 위해서는 적절한 슬래그조성을 유지하는 것이 매우 중요하다. 또한 상기 슬래그 조성과 염기도 조정은 배가스폐촉매 내의 귀금속원소의 회수측면과 내화물유지, 유동도, 소재화측면에서 대단히 중요한 요소로써, 현재는 배가스폐촉매를 용융시켜 슬래그를 만들기 위해 탄산나트륨(Na2CO3), 산화칼슘(CaO), 탄산칼슘(CaCO3), 이산화규소(SiO2)과 같은 천연적 용재의 염기성 성분을 사용하여 슬래그의 유동성 및 귀금속의 슬래그 내의 용해도를 저감시키는 방법을 사용하고 있으나, 배가스폐촉매는 로에서 직접 용융시 슬래그 점성도가 크고, 전기 전도도는 적어 전기로에서 이를 적절하게 처리하기가 지극히 어려운 폐단을 갖는다. 또한 슬래그 조성을 조절하기 위한 슬래그 조정제로 상기 원료들을 사용하기에는 이들 원료들이 너무나 고가이고 귀금속원소의 추출율이 낮아 비경제적이며, 귀금속원소의 추출에 많은 시간을 필요로 하는 폐단을 갖는 것이다.In the noble metal dry dissolution method, it is important to reduce the loss of precious metal elements to be extracted from the molten exhaust gas waste catalyst, and for this purpose, it is very important to maintain proper slag composition. In addition, the slag composition and basicity adjustment are very important factors in terms of recovery of noble metal elements in the exhaust gas waste catalyst, refractory maintenance, fluidity, and materialization. At present, sodium carbonate (Na 2 CO) is used to melt the exhaust gas waste catalyst to make slag. 3 ), using the basic components of natural solvents such as calcium oxide (CaO), calcium carbonate (CaCO 3 ), silicon dioxide (SiO 2 ) to reduce the flow of slag and solubility of the precious metal in the slag However, the exhaust gas waste catalyst has a high slag viscosity when directly melted in the furnace, and has a small end that is extremely difficult to properly treat in an electric furnace due to its low electrical conductivity. In addition, these raw materials are too expensive to use the raw materials as a slag adjusting agent for controlling the slag composition, and the extraction rate of the precious metal elements is uneconomical, and has a closed end that requires a lot of time to extract the precious metal elements.

본 발명은 철강제련시 제강공정에서 발생하는 전로 및 전기로슬래그에 산화철(FeO), 산화칼슘(CaO) 등의 유용성분이 들어있어 귀금속원소의 슬래그내 용해도가 최적임을 감안하여 귀금속건식용해법중 상기 배가스폐촉매의 용융시 귀금속원소를 추출하기 위한 용재로 사용하므로써 배가스폐촉매로부터 귀금속원소를 추출하고자 하는 것이다.The present invention contains the useful components such as iron oxide (FeO), calcium oxide (CaO) in the converter and electric furnace slag generated in the steelmaking process during steel smelting in consideration of the optimum solubility in the slag of the precious metal element waste gas waste during the dry metal melting method It is intended to extract the precious metal element from the exhaust gas waste catalyst by using it as a solvent for extracting the precious metal element during the melting of the catalyst.

제강슬래그는 일반적으로 전로, 평로, 전기로 등에 의하여 생산되는데 그 성분이 다른 제강슬래그가 배출된다. 이들 중 제강슬래그중 전로슬래그는 철강의 생산과정에 생산되는 부산물로서 일반적으로 염기도가 높고 비중이 큰 철, 망간등의 유가금속을 함유하고 있기 때문에 여러 슬래그들 중에서 그 자체의 경도가 상당히 높은편이다.Steelmaking slag is generally produced by converters, furnaces, electric furnaces, etc., and steelmaking slag having different components is discharged. Among them, converter slag among steelmaking slag is a by-product produced in the production process of steel, and since it contains valuable metals such as iron and manganese, which are generally basic and have a high specific gravity, their hardness is quite high among various slags. .

또한 전기로 슬래그는 산화슬래그와 환원슬래그가 있는데 전기로 모두 팽창율이 10%이하로 팽창붕괴성은 아주 낮은 천연 쇄석과 비슷하다.Furnace slag is composed of oxidized slag and reducing slag, both of which are similar to natural crushed stone, which has very low expansion decay rate.

표 1과 같이 슬래그속에 포함된 각종 산화물은 자연 암석이나 광물에서 볼 수 있는 성분들이고 전로슬래그는 철(Fe)성분을 상당량 포함하고 있는 특징을 가진다.As shown in Table 1, the various oxides contained in the slag are the components found in natural rocks and minerals, and the converter slag has a significant amount of iron (Fe).

전로슬래그의 화학적 조성은 중량 퍼센트로 산화칼슘(CaO)44.8~52.3%, 이산화규소(SiO2)13.2~18.6%, 산화알루미늄(Al2O3)0.9~2.8%, 유황(S)0.02~0.1%, 전철분(T.Fe)14.8~19.2%, 산화마그네슘(MgO)2.8~9.6%, 산화망간(MnO)3.2~6.0%, 산화티타늄(TiO2)1.0~2.4%이다. 전기로 슬래그의 화학적 조성은 중량 펴센트로 이산화규소(SiO2)12.8~23.2%, 산화칼슘(CaO)14.5~42.7%, 산화알루미늄(Al2O3)3.9~11.9%, 전철분(T.Fe)11.2~44.1%, 산화마그네슘(MgO)4.0~13.6%, 산화망간(MnO)0.1~1.6%, 산화티타늄(TiO2)0.04~0.6% 이다.The chemical composition of converter slag is by weight percent of calcium oxide (CaO) 44.8-52.3%, silicon dioxide (SiO 2 ) 13.2-18.6%, aluminum oxide (Al 2 O 3 ) 0.9-2.8%, sulfur (S) 0.02-0.1 %, Iron powder (T.Fe) 14.8 to 19.2%, magnesium oxide (MgO) 2.8 to 9.6%, manganese oxide (MnO) 3.2 to 6.0%, titanium oxide (TiO 2 ) 1.0 to 2.4%. The chemical composition of the electric furnace slag is 12.8 to 23.2% of silicon dioxide (SiO 2 ), 14.5 to 42.7% of calcium oxide (CaO), 3.9 to 11.9% of aluminum oxide (Al 2 O 3 ), and iron powder (T.Fe). ) 11.2-44.1%, magnesium oxide (MgO) 4.0-13.6%, manganese oxide (MnO) 0.1-1.6%, titanium oxide (TiO 2 ) 0.04-0.6%.

특히, 귀금속원소의 고온용융에서는 귀금속원소의 손실을 줄이기위해 적절한 슬래그조성은 유지하는 것이 대단히 중요하므로 이들 용해시 이산화규소(SiO2)나 산화칼슘(CaO)과 같은 고가의 용재성분을 첨가하여 슬래그의 유동성 및 귀금속의 슬래그내의 용해도를 저감시키는 방법을 쓰고 있다. 특히 철 등을 포집 금속으로 사용하는 귀금속 건식용해법에서는 이를 슬래그 성분으로 부터의 철공급과 용융시 전도성 확보를 목적으로 철분말을 투입하거나 철성분의 함유 슬래그가 필요하다.In particular, it is very important to maintain proper slag composition in order to reduce the loss of precious metal elements at high temperature melting of precious metal elements. Therefore, the slag may be added by adding expensive solvent components such as silicon dioxide (SiO 2 ) or calcium oxide (CaO). A method of reducing the fluidity and solubility of noble metals in slag is used. In particular, in the dry metal melting method of noble metals using iron as a collecting metal, iron powder or slag containing iron is required to supply iron from slag and secure conductivity during melting.

이처럼 배가스폐촉매의 직접 용해시나 하소후의 용해시 사용하는 용재 성분으로 종래의 고가인 용재를 사용하는 것보다 제강공정에서 발생하는 전로와 전기로의 폐 슬래그를 대체재료로 사용하는 것이 에너지 측면, 유가금속 회수율 향상, 용해시간 단축, 자원 재활용 측면에서 바람직하였다.As such, the use of waste slag generated in the steelmaking process as an alternative material, rather than using a conventionally expensive material, as a component for the direct melting of exhaust gas waste catalyst or after calcination, is an energy aspect and a valuable metal. It was preferable to improve recovery rate, shorten dissolution time and recycle resources.

제1도는 본 발명의 공정도.1 is a process diagram of the present invention.

이하 본 발명의 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, the manufacturing method of the present invention will be described in detail.

먼저 배가스폐촉매는 슈레더로 분쇄하는 공정과 상기 공정을 거쳐 분쇄된 배가스폐촉매를 그대로 용융로에 투입하거나 또는 분쇄된 배가스폐촉매를 하소작업을 통해 수지(樹脂) 등을 분해시키고, 납(Pb) 등의 휘발성 금속성분은 제거하여 용융로에 투입하고, 또한 전로 및 전기로슬래그 역시 직경 대략 0.1 ~ 10㎜이하로 수쇄또는 크라셔에 의해 분쇄한 뒤, 수분을 건조시켜 역시 용융로에 투입하는 공정을 거친다. 상기 전로 및 전기로슬래그의 직경을 0.1에서 10㎜로 한정하는 이유는 전로 및 전기로슬래그가 0.1㎜이하일 경우에는 비산의 우려가 있고, 10㎜이상일 경우에는 용융작업이 곤란하기 때문이다.First, the waste gas waste catalyst is pulverized with a shredder and the waste gas waste catalyst pulverized through the above process is directly put into a melting furnace or the pulverized waste gas waste catalyst is calcined to decompose resin and the like, and lead (Pb) is used. Volatile metal components such as these are removed and introduced into the melting furnace, and the converter and the electric furnace slag are also crushed by a crusher or a crusher with a diameter of about 0.1 to 10 mm or less, followed by a process of drying the water and putting it into the melting furnace. The reason for limiting the diameter of the converter and the furnace slag to 0.1 to 10 mm is that there is a fear of scattering when the converter and the furnace slag is 0.1 mm or less, and when it is 10 mm or more, the melting operation is difficult.

이와같이 용융로에 투입된 배가스폐촉매와 전로 및 전기로슬래그를 용융시킴에 있어서 염기도를 0.7~1.3에 맞춰 용융시키는 공정과 상기 용융공정을 거쳐 배가스폐촉매에 함유되어있던 귀금속원소를 포집한 조금속(粗金屬)을 회수하는 공정과, 상기 조금속을 습식분리공정을 거쳐 귀금속원소를 추출하는 공정으로 이루어진다.Thus, in melting the exhaust gas waste catalyst, the converter and the electric furnace slag introduced into the melting furnace, a crude metal that collects the precious metal elements contained in the exhaust gas waste catalyst through the melting process according to the basicity of 0.7 to 1.3 and the melting process. ) And a process of extracting the precious metal element through the wet separation process of the crude metal.

상기 용융로의 온도는 1100~1300℃정도가 바람직하고, 상기 용융로 내의 염기도를 0.7 ~ 1.3로 조절하는 이유는 상기 염기도에서 슬래그의 유동성이 가장 좋고, 귀금속원소의 추출을 용이하게 하기 때문이다. 또한 배가스폐촉매의 용융작업에 있어서 열보존 및 조업의 편의성을 위해서 용융로에 투입되는 전로 및 전기로슬래그의 중량은 원료전체중량의 1/5~1/3정도로 하는 것이 바람직하다. 이는 전로 및 전기로슬래그의 투입량이 1/5이하일 경우에는 용해작업이 곤란하고, 1/3이상인 영우에는 슬래그의 귀금속함량이 증가하기 때문이다.The temperature of the melting furnace is preferably about 1100 ~ 1300 ℃, the reason for adjusting the basicity in the melting furnace to 0.7 ~ 1.3 is because the flowability of slag in the basicity is the best, and it is easy to extract precious metal elements. In addition, in the melting operation of the waste gas waste catalyst, the weight of the converter and the electric furnace slag introduced into the melting furnace is preferable to be about 1/5 to 1/3 of the total weight of the raw material for heat preservation and convenience of operation. This is because when the input of the converter and the electric furnace slag is less than 1/5, it is difficult to dissolve the work, and the noble metal content of the slag increases in young cattle more than 1/3.

본 발명에서 상기한 것처럼 폐기되던 전로 및 전기로슬래그를 이용하여 배가스폐촉매로 부터 귀금속원소를 추출하므로써 폐기물을 자원화할 수 있을 뿐만 아니라 공해방지의 효과과 저렴한 가격으로 귀금속원소를 회수할 수 있는 방법을 제공하기 위한 것으로, 바람직한 실시예들을 상기한 제조공정에 따라 시행하였다.In the present invention, by extracting the precious metal element from the exhaust gas waste catalyst by using the converter and the electric furnace slag which was discarded as described above, it is possible not only to recycle the waste, but also to provide a method of recovering the precious metal element at the low cost and the effect of preventing pollution. To this end, preferred embodiments were carried out according to the above-described manufacturing process.

[제1실시예][First Embodiment]

배가스폐촉매으로 부터 귀금속원소를 추출하는 실험을 직류아크 로와 플라즈마 로에서 시행하였다. 이때 용재로는 화학적 조성은 중량 퍼센트로 산화칼슘(CaO)44.8~52.3%, 이산화규소(SiO2)13.2~18.6%, 산화알루미늄(Al2O3)0.9~2.8%, 유황(S)0.02~0.1%, 전철분(T.Fe)14.8~19.2%, 산화마그네슘(MgO)2.8~9.6%, 산화망간(MnO)3.2~6.0%, 산화티타늄(TiO2)1.0~2.4%인 전로슬래그와 화학적 조성이 중량 퍼센트로 이산화규소(SiO2)12.8~23.2%, 산화칼슘(CaO)14.5~42.7%, 산화알루미늄(Al2O3)3.9~11.9%, 전철분(T.Fe)11.2~44.1%, 산화마그네슘(MgO)4.0~13.6%, 산화망간(MnO)0.1~1.6%, 산화티타늄(TiO2)0.04~0.6%인 전기로슬래그를 이용하였고, 슬래그의 염기도는 0.8로 맞추어 기저양극 접속을 하여 실시하였으며, 이때 슬래그를 용해하기 전에 로의 가열과 양전극간의 전기적 접촉이 양호하도록 코크스입자를 사용하였으며 이때의 온도는 1200℃이다. 상부와 노저전극의 사이에 스크랩을 장입후 아크발생후 배가스폐촉매를 장입하여 약 180분간의 용융후 완전히 용융이 이루어진 후 출탕하였고, 조금속으로부터 습식분리공정을 통해 귀금속원소를 추출하였다.Experiments for extracting precious metals from exhaust gas waste catalysts were carried out in direct current and plasma furnaces. In this case, the chemical composition is 44.8 to 52.3% of calcium oxide (CaO), 13.2 to 18.6% of silicon dioxide (SiO 2 ), 0.9 to 2.8% of aluminum oxide (Al 2 O 3 ), and sulfur (S) of 0.02 to 0.1%, T.Fe 14.8 ~ 19.2%, Magnesium Oxide (MgO) 2.8 ~ 9.6%, Manganese Oxide (MnO) 3.2 ~ 6.0%, Titanium Oxide (TiO 2 ) 1.0 ~ 2.4% Composition by weight percent silicon dioxide (SiO 2 ) 12.8 ~ 23.2%, calcium oxide (CaO) 14.5-42.7%, aluminum oxide (Al 2 O 3 ) 3.9 ~ 11.9%, iron powder (T.Fe) 11.2-44.1% Magnesium oxide (MgO) 4.0 ~ 13.6%, manganese oxide (MnO) 0.1 ~ 1.6%, titanium oxide (TiO 2 ) 0.04 ~ 0.6% electric furnace slag was used, and the basicity of the slag was 0.8 to base an anode connection At this time, before melting the slag, coke particles were used so that electrical contact between the heating of the furnace and the positive electrode was good, and the temperature was 1200 ° C. After charging the scrap between the top and the bottom electrode, after the arc generation, charged the exhaust gas waste catalyst, melted for about 180 minutes and then melted completely, and extracted precious metal elements from the crude metal through a wet separation process.

[제2실시예]Second Embodiment

실시예 1과 동일한 성분의 전로 및 전기로슬래그를 용재로 가스-산소버너 도가니로에서 동일한 방법으로 조금속을 제조하였고, 역시 습식분리공정을 통해 귀금속원소를 추출하였다.Crude metals were prepared in the same manner in the gas-oxygen burner crucible furnace using the converter and the electric furnace slag of the same component as Example 1, and the precious metal elements were also extracted through a wet separation process.

[비교예][Comparative Example]

종래의 용재, 즉 산화칼슘(CaO)를 이용하여 배가스폐촉매를 용융하는 용융시험을 단전극 아크로에서 시행하였는데 슬래그의 염기도는 영향 요소를 줄이기 위해 다른 첨가물없이 산화칼슘(CaO)를 이용하여 전기아크로 내에서 제1실시예와 동일한 방법으로 시행하였다.The melting test for melting the exhaust gas waste catalyst using a conventional material, namely calcium oxide (CaO), was conducted in a single-electrode arc furnace, and the basicity of slag was changed to electric arc by using calcium oxide (CaO) without other additives to reduce the influence factor. In the same manner as in the first embodiment.

실시예 1, 실시예 2, 비교예에서 제조된 슬래그의 용출 특성을 평가하기 위해 환경오염 공정시험법인 TCLP법에 따라 시료를 건조후 분쇄한 후 용출액과 혼합(1:20)하여 온도 22±3℃, 진폭 4~5㎝분당 30±2회, 18±2시간 진탕기에서 진탕하여 여과한 후 항목별로 분석을 시행하였으며 귀금속원소의 잔여 함량을 조사하였다.In order to evaluate the elution characteristics of the slag prepared in Examples 1, 2, and Comparative Example, the sample was dried and pulverized according to TCLP method, which is an environmental pollution test method, mixed with the eluent (1:20), and the temperature was 22 ± 3. After filtering by shaking at 30 ± 2 times for 4 ~ 5cm amplitude and shaking at 18 ± 2 hours, the analysis was carried out for each item and the residual content of precious metals was investigated.

표에서는 제조된 슬래그의 침출특성을 나타낸다.The table shows leaching characteristics of the produced slag.

또한 표 3에 나타난 바와같이 귀금속원소의 추출율을 비교하여 보더라도 종래의 용재와 비교하여 전로 및 전기로슬래그를 사용할 때 오히려 귀금속원소의 추출율이 높았으며, 실시예 1,2의 경우가 비교예보다 용융시 침출농도도 매우 낮았고, 용융중의 슬래그는 유동성이 좋았으며, 출탕이 원활하였다. 실제 조업측면에서 고려하더라도 실시예 1과 2의 경우가 대단히 용융하기가 용이하였으며, 아크발생이 대단히 양호하였다.In addition, even when comparing the extraction rate of the precious metal element as shown in Table 3, the extraction rate of the precious metal element was higher when using the converter and the electric furnace slag compared to the conventional solvent, the case of Examples 1 and 2 when melting than the comparative example The leaching concentration was also very low, the slag in the melt had good fluidity and smooth tapping. Even in consideration of the actual operation, the examples 1 and 2 were very easy to melt, and the arc generation was very good.

이상 살펴 본 바와 같이 본 발명은 철강제련시 제강공정에서 발생되는 전로 및 전기로슬래그를 폐 전자스크랩의 인쇄회로기판으로 부터 귀금속원소 추출시 종래 고가의 용재 대체재로 사용하므로써 배가스폐촉매 내의 귀금속원소를 저렴한 비용으로 생산할 수 있으며, 종래 폐 가전제품 등의 배가스폐촉매의 폐기로인한 공해방지에 일조할 수 있으며, 종래의 용재와 비교하더라도 귀금속원소의 추출율이 오히려 나은 효과를 갖는 발명인 것이다.As described above, the present invention uses the converter and the electric furnace slag generated in the steelmaking process during steel smelting to replace precious metal elements from the printed circuit boards of the waste electronic scraps. It can be produced at a cost, and can contribute to the prevention of pollution due to the disposal of waste gas waste catalysts, such as conventional home appliances, and the invention is an invention that the extraction rate of precious metal elements has a rather good effect even when compared to conventional solvents.

Claims (1)

배가스폐촉매를 슈레더로 분쇄하는 공정과, 상기 공정을 거쳐 분쇄된 배가스폐촉매를 그대로 용융로에 투입하거나 또는 분쇄된 배가스폐촉매를 하소작업을 통해 용융로에 투입하고 용재에 의해 배가스폐촉매로 부터 귀금속원소를 추출하는 귀금속건식용해법에 있어서 상기 배가스폐촉매가 투입된 용융로에 화학적 조성이 중량 퍼센트로 산화칼슘(CaO)44.8~52.3%, 이산화규소(SiO2)13.2~18.6%, 산화알루미늄(Al2O3)0.9~2.8%, 유황(S)0.02~0.1%, 전철분(T.Fe)14.8~19.2%, 산화마그네슘(MgO)2.8~9.6%, 산화망간(MnO)3.2~6.0%, 산화티타늄(TiO2)1.0~2.4%인 전로슬래그와 화학적 조성이 중량 퍼센트로 이산화규소(SiO2)12.8~23.2%, 산화칼슘(CaO)14.5~42.7%, 산화알루미늄(Al2O3)3.9~11.9%, 전철분(T.Fe)11.2~44.1%, 산화마그네슘(MgO)4.0~13.6%, 산화망간(MnO)0.1~1.6%, 산화티타늄(TiO2)0.04~0.6%인 전기로슬래그를 직경 0.1 ~ 10㎜ 크기로 분쇄하여 수분을 건조시킨 뒤 투입하고, 상기 배가스폐촉매와 전로 및 전기로슬래그를 염기도가 0.7 ~ 1.3이 되도록 용융시키는 공정과, 상기 용융공정을 거쳐 배가스폐촉매에 함유되어있던 귀금속원소를 포집한 조금속(粗金屬)을 회수하는 공정과, 상기 조금속을 습식분리공정을 거쳐 귀금속원소를 추출하는 공정으로 이루어짐을 특징으로 하는 전로 및 전기로슬래그를 이용한 배가스정화용 자동차 폐촉매의 귀금속원소 추출방법.The waste gas waste catalyst is crushed with a shredder, and the waste gas waste catalyst pulverized through the above process is directly put into the melting furnace or the pulverized waste gas waste catalyst is put into the melting furnace through calcination and the precious metal is discharged from the waste gas waste catalyst by the solvent. Jewelry dry melting the chemical composition to the furnace wherein the exhaust gas waste catalyst injected calcium oxide in percent by weight in the (CaO) to extract the elements 44.8 ~ 52.3%, silicon dioxide (SiO 2) 13.2 ~ 18.6% , aluminum oxide (Al 2 O 3 ) 0.9 to 2.8%, sulfur (S) 0.02 to 0.1%, iron powder (T.Fe) 14.8 to 19.2%, magnesium oxide (MgO) 2.8 to 9.6%, manganese oxide (MnO) 3.2 to 6.0%, titanium oxide (TiO 2 ) 1.0-2.4% converter slag and chemical composition by weight percent silicon dioxide (SiO 2 ) 12.8-23.2%, calcium oxide (CaO) 14.5-42.7%, aluminum oxide (Al 2 O 3 ) 3.9-11.9 %, Electric iron slag (T.Fe) 11.2 ~ 44.1%, magnesium oxide (MgO) 4.0 ~ 13.6%, manganese oxide (MnO) 0.1 ~ 1.6%, titanium oxide (TiO 2 ) 0.04 ~ 0.6% Is pulverized to a diameter of 0.1 ~ 10㎜ to dry the moisture, and then added, and the exhaust gas waste catalyst, the converter and the electric furnace slag is melted to have a basicity of 0.7 ~ 1.3, and contained in the waste gas waste catalyst through the melting process Waste gas purification using the converter and electric furnace slag, characterized in that the process of recovering the crude metal that has collected the precious metal element, and extracting the precious metal element through the wet separation process. Method of extracting precious metal elements from catalysts.
KR1019980005855A 1998-02-18 1998-02-18 The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag KR100250062B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980005855A KR100250062B1 (en) 1998-02-18 1998-02-18 The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980005855A KR100250062B1 (en) 1998-02-18 1998-02-18 The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag

Publications (2)

Publication Number Publication Date
KR19990070808A KR19990070808A (en) 1999-09-15
KR100250062B1 true KR100250062B1 (en) 2000-04-01

Family

ID=19533690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980005855A KR100250062B1 (en) 1998-02-18 1998-02-18 The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag

Country Status (1)

Country Link
KR (1) KR100250062B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060524A (en) * 2002-01-09 2003-07-16 이덕호 Fine Crush Mixture Process of Collected Metal and Platinum Metals Recycling Method of Waste Automotive Catalyst for Ventilation Gas Purification by Smelting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528506B1 (en) * 2002-11-06 2005-11-15 한국지질자원연구원 A Method for Concentrating and Recovering Precious Metals from Spent PCBs and Spent Auto-Catalysts Simultaneously
KR101134178B1 (en) * 2009-11-18 2012-04-09 한국지질자원연구원 Concentrating Process for Recovering Valuable Metals from Spent Automotive Catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228671A (en) * 1993-01-29 1994-08-16 Sumitomo Metal Mining Co Ltd Method for concentrating platinum-group metal from spent catalyst containg the metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228671A (en) * 1993-01-29 1994-08-16 Sumitomo Metal Mining Co Ltd Method for concentrating platinum-group metal from spent catalyst containg the metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030060524A (en) * 2002-01-09 2003-07-16 이덕호 Fine Crush Mixture Process of Collected Metal and Platinum Metals Recycling Method of Waste Automotive Catalyst for Ventilation Gas Purification by Smelting

Also Published As

Publication number Publication date
KR19990070808A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
CN106086416B (en) A kind of technology that wiring board waste disposal utilizes
KR20100017909A (en) Method for the valorisation of zinc-and sulphate-rich residue
CA2668506C (en) Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma
EA009226B1 (en) Process and apparatus for recovery of non-ferrous metals from zinc residues
KR101717738B1 (en) Manufacturing method of crude copper from low-grade copper sludge
CN110029218B (en) Comprehensive utilization method of gold mine cyanide-containing tailing slag
EA004622B1 (en) Treatment of metal sulphide concentrates
CA2519054C (en) Recovery of metal values from cermet
PL142616B1 (en) Metallic lead obtaining method
KR100250061B1 (en) Method for extracting the noble metal noble metal of the waste pcb using a converter and electric furnace slag
KR100250062B1 (en) The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using a converter and electric furnace slag
RU2360984C1 (en) Extraction method of platinum metals
Schwab et al. Zinc Recycling via the Imperial Smelting Technology—Latest Developments and Possibilities
US7905941B2 (en) Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma
KR100250060B1 (en) Method for extracting the noble metal of the waste pcb using waste copper slag
JP7242250B2 (en) How to recover precious metals
KR100250063B1 (en) The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using scrapped copper slag
CN110724821A (en) Method for comprehensively recovering valuable metals from low-grade multi-metal hazardous wastes
JP4271196B2 (en) Method for recovering slag of quality suitable for valuable metals and cement raw materials
CN112143908B (en) Smelting process for treating complex gold ore
KR101863086B1 (en) Manufacturing method of crude copper and pig iron from low-grade copper sludge
KR910005056B1 (en) Method for refining of au. ag
KR19980076710A (en) How to recover pig iron and zinc from LD converter steel dust, EAF steel dust and LD converter steel slag
KR20060071066A (en) Aluminum sludge separation machine
JPS6056407B2 (en) How to treat electric furnace dust

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee