KR100247691B1 - A lithium ion secondary battery having improved charging and discharging properties of high efficiency - Google Patents

A lithium ion secondary battery having improved charging and discharging properties of high efficiency Download PDF

Info

Publication number
KR100247691B1
KR100247691B1 KR1019970068152A KR19970068152A KR100247691B1 KR 100247691 B1 KR100247691 B1 KR 100247691B1 KR 1019970068152 A KR1019970068152 A KR 1019970068152A KR 19970068152 A KR19970068152 A KR 19970068152A KR 100247691 B1 KR100247691 B1 KR 100247691B1
Authority
KR
South Korea
Prior art keywords
positive electrode
ion secondary
secondary battery
lithium ion
active material
Prior art date
Application number
KR1019970068152A
Other languages
Korean (ko)
Other versions
KR19990049246A (en
Inventor
박재우
임형택
Original Assignee
홍건희
한국타이어주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍건희, 한국타이어주식회사 filed Critical 홍건희
Priority to KR1019970068152A priority Critical patent/KR100247691B1/en
Publication of KR19990049246A publication Critical patent/KR19990049246A/en
Application granted granted Critical
Publication of KR100247691B1 publication Critical patent/KR100247691B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 고율충방전 성능이 향상된 리튬이온 이차전지에 관한 것으로 더욱 상세하게는 양극 단자가 2 개 또는 그 이상이고, 이들 양극단자를 양극 전체에 고루 분포시키기 위해서 양극 단자 개수로 양극 길이를 나눈 후 각 부분의 중앙에 양극단자를 위치시키는 것을 특징으로 하는 리튬이온 이차전지에 관한 것이다.The present invention relates to a lithium ion secondary battery with improved high-rate charging and discharging performance, and more particularly, has two or more positive electrode terminals, and after dividing the positive electrode length by the number of positive electrode terminals in order to distribute these positive electrode terminals throughout the positive electrode, It relates to a lithium ion secondary battery, characterized in that the positive electrode terminal in the center of the portion.

이와 같은 리튬이온 이차전지는 고율 충방전시 양극 활물질과 양극 집전체 및 양극 활물질 사이의 접촉 저항 증가로 인한 양극 활물질 이용률의 감소를 방지하여, 저율 충방전에서 보다 전지의 용량이 감소하는 것을 줄일 수 있다.Such a lithium ion secondary battery prevents a decrease in the utilization rate of the positive electrode active material due to an increase in contact resistance between the positive electrode active material, the positive electrode current collector, and the positive electrode active material during high rate charging and discharging, thereby reducing the decrease in battery capacity at low rate charging and discharging. have.

Description

고율충방전 성능이 향상된 리튬이온 이차전지Lithium-ion secondary battery with improved high rate charge and discharge performance

본 발명은 고율충방전 성능이 향상된 리튬이온 이차전지에 관한 것이다. 더욱 상세하게는 양극단자를 2 개 이상 사용하여 양극활물질의 이용률을 높인 리튬이온 이차전지를 제공하는 것이다.The present invention relates to a lithium ion secondary battery with improved high rate charge and discharge performance. More specifically, it is to provide a lithium ion secondary battery using a positive electrode terminal of two or more to increase the utilization of the positive electrode active material.

현재 시중에 유통되고 있는 리튬이온 이차전지는 1991년 쏘니(SONY)사가 처음으로 상품화에 성공한 것으로, 일반적으로 그 구성은 양극, 음극, 전해질, 격리막, 캡 및 캔으로 이루어진된다.The lithium-ion secondary battery currently on the market was first commercialized by Sony in 1991, and generally consists of a cathode, an anode, an electrolyte, a separator, a cap, and a can.

우선 양극은 활물질, 도전재, 결착제, 집전체 및 양극단자로 구성된다. 활물질로는 주로 LiCoO2를 사용하며, LiNiO2, LiMnO4, LiCoXNi1-XO2등의 리튬 복합 산화물도 사용한다. 도전재로는 흑연, 카본블랙, 아세틸렌블랙을 사용하며, 구성전지에 따라 사용량과 종류가 다르다. 결착제는 폴리비닐리덴 플로라이드 ( Poly- vinylidene fiuoride, 이하 "PVDF"라 함) 단일중합체나 혼성중합체를 사용하고, 집전체로는 20㎛ 정도의 얇은 두께를 가진 알루미늄 박을 사용하며, 양극 단자로는 띠 형태의 알루미늄 박을 사용한다.First, the positive electrode is composed of an active material, a conductive material, a binder, a current collector, and a positive electrode terminal. LiCoO 2 is mainly used as the active material, and lithium composite oxides such as LiNiO 2 , LiMnO 4 , and LiCo X Ni 1-X O 2 are also used. Graphite, carbon black and acetylene black are used as the conductive material, and the amount and type of the battery are different depending on the component batteries. The binder may be a polyvinylidene fluoride (hereinafter referred to as “PVDF”) homopolymer or copolymer, and an aluminum foil having a thickness of about 20 μm as a current collector. The furnace uses a strip of aluminum foil.

또한, 음극은 활물질, 도전재, 결착제, 집전체 및 음극단자로 구성된다. 음극의 활물질은 제조회사별로 다른 것을 사용하지만 크게 구분하면 흑연과 탄소로 나눌 수 있다. 흑연은 충분한 전도도가 있기 때문에 별도의 도전재가 필요하지 않지만 탄소는 전기 전도도가 낮기 때문에 도전재를 첨가해서 전극을 만든다. 결착재는 양극과 동일한 것을 사용하거나, 분자량이 다른 PVDF 를 사용할 수 있다. 집전체는 양극보다 얇은 예를들면, 대략 12 내지 18 ㎛ 의 동박을 사용하며, 음극단자는 띠 형태의 니켈박을 사용한다. 전해제는 전지에 사용하는 활물질에 따라 매우 다양하며 사용량과 종류도 매우 다르다. 또한, 전해질은 LiPF6가 주로 사용되고 있고 LiBF4, LiAsF6등도 사용되고 있으며 전해질의 용매로는 카보네이트 계통이 사용되며 PC, EC, DEC, DMC 등이 있다. 추가로, 격리막은 PP 미세다공막이나 PE, 또는 PP 와 PE 의 층이 혼합된 복합미세다공막을 사용하며 두께는 약 25 내지 30㎛ 전후의 것을 사용한다.The negative electrode is composed of an active material, a conductive material, a binder, a current collector, and a negative electrode terminal. The active material of the negative electrode is different depending on the manufacturer, but can be divided into graphite and carbon. Graphite does not need a separate conductive material because it has sufficient conductivity, but carbon has a low electrical conductivity, so the conductive material is added to form an electrode. The binder may use the same one as the positive electrode, or may use PVDF having a different molecular weight. The current collector uses, for example, a copper foil having a thickness of about 12 to 18 μm thinner than the positive electrode, and a negative electrode terminal uses a strip-shaped nickel foil. Electrolytes vary greatly depending on the active materials used in the battery, and their amounts and types are very different. In addition, LiPF 6 is mainly used as the electrolyte, LiBF 4 , LiAsF 6, and the like are also used. As the solvent of the electrolyte, a carbonate system is used, and PC, EC, DEC, and DMC are used. In addition, the separator uses a PP microporous membrane or a PE or a composite microporous membrane in which a layer of PP and PE is mixed, and a thickness of about 25 to 30 μm is used.

전지의 캡 부분은 전지의 안전을 위해서 매우 정교하게 구성되어 있고, 전지에 이상현상이 발생하면 안정장치인 PTC 와 안전 벤트(safety vent)가 작용하여 안전하게 사용할 수 있도록 설계되어 있다.The battery cap is designed to be very precise for the safety of the battery, and when an abnormality occurs in the battery, the safety device PTC and safety vent are designed to be used safely.

이와 같은 전지의 여러가지 구성요소는 전지의 최종제작후의 성능에 영향을 미치는 인자로 작용한다.Various components of such a battery act as a factor affecting the performance after the final production of the battery.

종래에는 간헐 코팅에 의해서 제작된 전극을 감아서 젤리롤(jelly roll)을 제작하였다. 제작된 젤리롤은 한쪽바닥의 중심에는 양극단자가, 다른쪽 바닥의 바깥쪽에는 음극단자가 위치하도록 감기 과정에서 단자를 용접하였다.Conventionally, a roll of the electrode manufactured by intermittent coating was wound to prepare a jelly roll. The manufactured jelly roll was welded to the terminal in the winding process so that the positive terminal is located at the center of one bottom and the negative terminal is located at the outside of the other bottom.

전기 전도도가 비교적 낮은 양극에서는 일반적으로 양극 활물질간, 활물질과 집전체간의 전기 전도도가 중요하다. 따라서 전극을 얇고 길게 만드는 경우, 저율 충방전에서와 달리 고율 충방전에서는 집전체와 활물질 사이의 전기 전도도 및 접촉 저항이 문제가 된다. 얇게 코팅된 전극은 활물질의 이용률을 높일 수 있어 고율 충방전에 유리하지만, 저항은 길이에 비례하고 면적에 반비례하기 때문에 집전체내의 전기적 저항을 줄여야 한다. 음극에서 활물질로 사용하는 흑연은 전기저항이 작기 때문에 전기 전도도에 유리하지만 양극에서 활물질로 사용하는 산화물은 전기 저항이 크고 도전재에 따라서 저항이 크게 변하므로 문제가 된다.In a positive electrode having a relatively low electrical conductivity, the electrical conductivity between the positive electrode active material and the active material and the current collector is generally important. Therefore, when the electrode is made thin and long, the electrical conductivity and the contact resistance between the current collector and the active material become a problem in high rate charge and discharge, unlike in low rate charge and discharge. The thinly coated electrode can increase the utilization rate of the active material, which is advantageous for high rate charging and discharging. However, since the resistance is proportional to the length and inversely proportional to the area, the electrical resistance in the current collector must be reduced. Graphite used as the active material in the negative electrode is advantageous in electrical conductivity because the electrical resistance is small, but the oxide used as the active material in the positive electrode is a problem because the electrical resistance is large and the resistance varies greatly depending on the conductive material.

또한, 통상의 리튬이온 이차전지에서는 양극 전극의 한쪽 끝에 알루미늄 탭을 용접한 후 양극과 음극 사이에 분리막(separator)을 삽입한 후 와인더(winder)를 이용해서 원통의 형태로 감아서 젤리롤을 제작하고 있는데, 저율 충방전에서는 양극 단자 하나만으로도 양극 활물질을 충분히 사용할 수 있었으나, 고율충방전에서는 양극 활물질, 양극 집전체 및 양극 활물질 사이의 접촉 저항이 크게 문제가 되어 양극 단자에서 멀어질수록 활물질의 이용률이 감소하여 저율 층방전에서보다 용량이 크게 감소되는 현상이 발생한다.In addition, in a typical lithium ion secondary battery, an aluminum tab is welded at one end of a positive electrode, a separator is inserted between the positive electrode and the negative electrode, and then wound into a cylindrical shape using a winder to roll up the jelly roll. In the low rate charging and discharging, the positive electrode active material could be used with only one positive electrode terminal. However, in the high rate charging and discharging, the contact resistance between the positive electrode active material, the positive electrode current collector, and the positive electrode active material becomes a big problem. The utilization rate decreases, resulting in a significantly reduced capacity than in low rate layer discharge.

이에 본 발명에서는 양극 단자의 개수를 늘리고, 활물질이 균등히 배분되도록 양극단자의 위치를 정해, 접촉저항을 줄이고 양극 활물질의 이용률을 높이는 것을 과제로 하였다.In the present invention, the number of positive electrode terminals is increased, and the positions of the positive electrode terminals are determined so that the active materials are evenly distributed, thereby reducing contact resistance and increasing the utilization rate of the positive electrode active material.

도 1은 본 발명의 실시예에 따른 양극단자가 2개인 양극판을 나타낸 것이다.1 shows a positive plate having two positive terminals according to an embodiment of the present invention.

1 ---- 양극활물질 2 ---- 양극 단자(Al tab)1 ---- Anode Active Material 2 ---- Anode Terminal (Al tab)

3 ---- 절연테이프 4 ---- 양극단자의 위치3 ---- Insulation tape 4 ---- Position of anode terminal

도 2는 도 1의 양극판을 감아 제작한 젤리롤을 나타낸 것이다.FIG. 2 illustrates a jelly roll prepared by winding the positive plate of FIG. 1.

1 ---- 양극단자(Al tab) 2 ---- 음극단자(Ni tab)1 ---- Cathode terminal (Al tab) 2 ---- Cathode terminal (Ni tab)

본 발명은 리튬이온 이차전지에 있어서, 양극 단자가 2 개 또는 그 이상이고, 이들 양극단자을 양극 전체에 고루 분포시키기 위해서 양극 단자 개수로 양극 길이를 나눈 후 각 부분의 중앙에 양극단자를 위치시키는 것을 특징으로 하는 리튬이온 이차전지를 제공하는 것이다.In the present invention, a lithium ion secondary battery has two or more positive electrode terminals, and in order to distribute these positive electrode terminals evenly over the positive electrode, the positive electrode terminals are divided by the number of positive electrode terminals, and the positive electrode terminals are positioned at the center of each part. It is to provide a lithium ion secondary battery.

상기에서, 양극단자의 개수는 양극의 길이에 따라 정해질 수 있다.In the above, the number of the positive electrode terminal may be determined according to the length of the positive electrode.

이하, 본 발명을 첨부한 도면을 참조로 하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail with reference to the accompanying drawings of the present invention.

도 1 은 양극단자의 개수가 2개인 경우의 양극판을 나타낸다.1 shows a positive electrode plate when the number of positive electrode terminals is two.

보통 전지 한개에 하나뿐인 양극 단자가 2 개가 있으며, 각각의 양극 단자가 양극 활물질을 효과적 활용할 수 있도록 배분하여 양극판의 양쪽 끝에서 1/4 인 지점에 위치한다. 상기 양극단자는 전극의 폭길이의 두배보다 약 2 cm 길게 절단하여 전극의 폭길이에 맞게 한 번 접어 전극의 양면을 감싸서 양극단자가 전극에서 2cm 튀어나온 상태가 되게 한다.Usually there is only one positive electrode terminal in each battery, and each positive electrode terminal is distributed to effectively utilize the positive electrode active material and is located at a quarter point at both ends of the positive electrode plate. The positive electrode terminal is cut about 2 cm longer than twice the width of the electrode and folds once to match the width of the electrode to surround both sides of the electrode so that the positive electrode terminal protrudes 2 cm from the electrode.

또한, 용접된 양극 단자에 의해 분리막이 찢어지는 것을 방지하기 위하여 용접된 양극 단자위에 절연 테이프를 붙인다. 상기 절연테이프 또한 전극폭의 두배보다 조금 길게 잘라 양극판과 양극단자가 접촉된 부분을 모두 두르도록 한다.In addition, in order to prevent the separator from being torn by the welded anode terminal, an insulating tape is applied on the welded anode terminal. The insulating tape is also cut a little longer than twice the width of the electrode to cover all of the contact portion between the positive electrode plate and the positive electrode terminal.

이와 같이 제작한 양극판을 감아서 제작한 젤리롤을 도 2 에 나타내었다.The jelly roll produced by winding the positive electrode plate thus prepared is shown in FIG. 2.

젤리롤의 형태일 때 두 개의 양극단자 중 하나는 원통의 중심에 다른 하나는 바깥쪽에 위치하고, 이 두 양극단자는 11 자 모양으로 평행하게 일직선상에 놓이게 된다. 이는 젤리롤을 캔에 삽입한 이후의 전지조립 공정을 용이하게 하기 위함이다. 이들 양극 단자가 위치한 반대편, 즉 원통의 다른쪽 바닥에는 니켈탭을 용접한 음극단자가 위치한다.In the form of a jelly roll, one of the two anode terminals is located at the center of the cylinder and the other at the outside, and the two anode terminals are arranged in parallel in an 11-character shape. This is to facilitate the battery assembly process after the jelly roll is inserted into the can. The cathode terminal welded with nickel tabs is located on the other side of the cylinder, on the opposite side where these anode terminals are located.

상기와 같이 제작한 젤리롤을 가지고 통상적인 전지 조립 공정에 의해 전지를 제작한다.The battery is produced by the conventional battery assembly process with the jelly roll produced as mentioned above.

이하, 본 발명을 실시예에 의해 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

길이가 45 cm, 폭이 5 cm 인 양극판과 폭이 3mm, 두께가 100 ㎛ 이며, 길이는 전극폭의 두배보다 약 2 cm 크게, 예를들면 12 cm 로 절단한 양극단자를 두 개 준비하였다.A positive electrode plate having a length of 45 cm, a width of 5 cm, a width of 3 mm, and a thickness of 100 μm, and two anode terminals cut at a length of about 2 cm larger than twice the electrode width, for example, 12 cm, were prepared.

양극단자 중 하나는 전극길이의 1/4 지점인 전극의 한쪽끝으로부터 11.25 cm 위치에, 다른 하나는 젤리롤 형태로 감았을 때 두 전극이 일직전상에 위치하도록 하기위해 젤리롤의 중심부분이 되는 한쪽끝으로부터 1/4 지점보다 0.5 cm 밖인 11.75 cm 위치에 무지부를 제작하여 알루미늄탭으로 용접하였다.One of the positive terminals is 11.25 cm from one end of the electrode, one quarter of the length of the electrode, and the other is the central part of the jelly roll to ensure that the two electrodes are positioned immediately before they are wound in the form of jelly rolls. A plain fabric was produced at a position of 11.75 cm, which is 0.5 cm outside the quarter point from one end, and welded with an aluminum tab.

양극 단자는 양극판의 폭의 길이에 맞게 접어서 양극판의 양면을 감싸도록 하였고, 절연테이프를 10.5 cm 로 잘라 양극단자와 전극과 접촉부위에 모두 테이프를 둘렀다.The positive electrode terminal was folded to fit the width of the positive electrode plate to surround both sides of the positive electrode plate. The insulating tape was cut into 10.5 cm and the tape was wrapped around both the positive electrode terminal, the electrode and the contacting part.

상기한 양극판을 감아서 젤리롤을 제작하였다. 이때 양극단자는 11 자형태로 일직선상에 위치하도록 하였다. 이 젤리롤을 캔에 삽입하여 전지를 조립하였다.The positive electrode plate was wound to prepare a jelly roll. At this time, the anode terminals were arranged in a straight line in the shape of 11 characters. This jelly roll was inserted into a can and the battery was assembled.

본 발명에 따라 양극단자를 두 개 사용한 전지와 통상의 양극 단자를 1 개 사용한 전지의 방전용량을 다음과 같이 측정하여 표 1에 나타내었다.According to the present invention, the discharge capacity of a battery using two positive terminals and a battery using one conventional positive terminal is measured as follows, and is shown in Table 1 below.

본 발명에 따른 전지 및 통상의 전지는 저율방전을 0.3A 로 5 싸이클 시행하고, 계속해서 고율방전을 1.0A 로 시행하여, 5 싸이클째의 방전용량(저율방전)과 6 싸이클째의 방전용량(고율방전)을 측정하였다.The battery according to the present invention and the conventional battery were subjected to five cycles of low-rate discharge at 0.3 A, and then to a high-rate discharge at 1.0 A, and the discharge capacity at the fifth cycle (low rate discharge) and the discharge capacity at the sixth cycle ( High rate discharge).

양극단자가 2개인 전지Battery with two positive terminals 양극단자가 1개인 전지Battery with one positive terminal *)고율방전시 용량(%)*) High discharge capacity (%) 97.4%97.4% 99.3%99.3%

*) :

Figure 1019970068152_B1_M0001
× 100*):
Figure 1019970068152_B1_M0001
× 100

상기 표 1에 나타낸 바와 같이 본 발명에 따른 리튬이온 이차전지는 저율충방전시와 비교해 고율충방전시의 용량이 거의 감소하지 않았다.As shown in Table 1, the lithium ion secondary battery according to the present invention had almost no decrease in capacity during high-rate charging and discharging, compared with low-rate charging and discharging.

본 발명에 따른 리튬이온 이차전지는 고율 충방전시 양극 활물질과 양극 집전체 및 양극 활몰질 사이의 접촉 저항 증가로 인한 양극 활물질 이용률의 감소를 방지하여, 저율 충방전에서보다 전지의 용량이 감소하는 것을 줄일 수 있다.The lithium ion secondary battery according to the present invention prevents a decrease in the utilization rate of the positive electrode active material due to an increase in contact resistance between the positive electrode active material, the positive electrode current collector, and the positive electrode active material during high rate charging and discharging, thereby reducing the capacity of the battery compared to the low rate charging and discharging. Can be reduced.

Claims (1)

리튬이온 이차전지에 있어서, 양극 단자가 2 개 또는 그 이상이고, 이들 양극단자를 양극 전체에 고루 분포시키기 위해서 양극 단자 개수로 양극 길이를 나눈 후 각 부분의 중앙에 양극단자를 위치시키는 것을 특징으로 하는 리튬이온 이차전지.In a lithium ion secondary battery, there are two or more positive electrode terminals, and in order to distribute these positive electrode terminals evenly over the positive electrode, the positive electrode terminals are divided by the number of positive electrode terminals, and the positive electrode terminals are positioned at the center of each part. Ion secondary battery.
KR1019970068152A 1997-12-12 1997-12-12 A lithium ion secondary battery having improved charging and discharging properties of high efficiency KR100247691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970068152A KR100247691B1 (en) 1997-12-12 1997-12-12 A lithium ion secondary battery having improved charging and discharging properties of high efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970068152A KR100247691B1 (en) 1997-12-12 1997-12-12 A lithium ion secondary battery having improved charging and discharging properties of high efficiency

Publications (2)

Publication Number Publication Date
KR19990049246A KR19990049246A (en) 1999-07-05
KR100247691B1 true KR100247691B1 (en) 2000-03-15

Family

ID=19527141

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970068152A KR100247691B1 (en) 1997-12-12 1997-12-12 A lithium ion secondary battery having improved charging and discharging properties of high efficiency

Country Status (1)

Country Link
KR (1) KR100247691B1 (en)

Also Published As

Publication number Publication date
KR19990049246A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US9231245B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing the battery
US7935445B2 (en) Lithium ion secondary battery
KR100711669B1 (en) Solid Electrolyte Battery
US6632256B1 (en) Method for manufacturing a non-aqueous-gel-electrolyte battery
JP3637408B2 (en) Sheet electrode and battery using the same
JP3687251B2 (en) Non-aqueous secondary battery with wound electrode group and method for manufacturing the same
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP4352475B2 (en) Solid electrolyte secondary battery
KR20080092842A (en) Coin type nonaqueous electrolyte secondary battery
US20090166192A1 (en) Electrode for electrochemical device and electrochemical device
JP4031635B2 (en) Electrochemical devices
JP3080609B2 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
KR20010062467A (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
KR20000062585A (en) Solid Electrolyte Battery
EP0910131B1 (en) Lithium secondary battery
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4366775B2 (en) Solid electrolyte battery
KR101274893B1 (en) Stack and folding-typed electrode assembly and electrochemical cell comprising the Same
JP2000058112A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2003077543A (en) Flat nonaqueous electrolyte secondary battery
JP2928779B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH10241735A (en) Lithium ion battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021216

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee