KR100239940B1 - method for manufacturing refractories material having SiC - Google Patents

method for manufacturing refractories material having SiC Download PDF

Info

Publication number
KR100239940B1
KR100239940B1 KR1019970051313A KR19970051313A KR100239940B1 KR 100239940 B1 KR100239940 B1 KR 100239940B1 KR 1019970051313 A KR1019970051313 A KR 1019970051313A KR 19970051313 A KR19970051313 A KR 19970051313A KR 100239940 B1 KR100239940 B1 KR 100239940B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
sic
weight
sialon
strength
Prior art date
Application number
KR1019970051313A
Other languages
Korean (ko)
Other versions
KR19990030863A (en
Inventor
범진형
Original Assignee
한종웅
조선내화주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한종웅, 조선내화주식회사 filed Critical 한종웅
Priority to KR1019970051313A priority Critical patent/KR100239940B1/en
Publication of KR19990030863A publication Critical patent/KR19990030863A/en
Application granted granted Critical
Publication of KR100239940B1 publication Critical patent/KR100239940B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites

Abstract

본 발명은 고강도 특성을 갖는 탄화규소(SiC)질 내화재의 제조방법에 관한 것으로, 이에 대한 구성은 알파형 탄화규소(α-SiC) 65∼90중량%, 규소(Si) 5∼25중량%, 알루미늄(Al) 5∼10중량%와 결합제로서 수지를 혼련하여 숙성, 성형후 일산화탄소(CO)와 질소(N2)가 공존하는 분위기에서 1200∼1500℃ 온도 및 3∼50시간 소성처리함을 특징으로 하는 탄화규소질 내화재의 제조방법에 관한 기술이다.The present invention relates to a method for producing silicon carbide (SiC) refractory material having high strength properties, the configuration is 65 to 90% by weight of alpha-type silicon carbide (α-SiC), 5 to 25% by weight of silicon (Si), 5-10% by weight of aluminum (Al) and resin as a binder are kneaded, aged, and calcined at 1200 to 1500 ° C for 3 to 50 hours in an atmosphere where carbon monoxide (CO) and nitrogen (N 2 ) coexist after molding. It is a technique regarding the manufacturing method of the silicon carbide refractory material.

Description

탄화규소(SiC)질 내화재의 제조방법{method for manufacturing refractories material having SiC}Method for manufacturing refractories material having SiC}

본 발명은 탄화규소(SiC)질 내화재의 제조방법에 관한 것으로, 보다 상세하게는 알파형 탄화규소(α-SiC)와 사이알론 생성원료를 혼합반응시켜 고강도, 내산화성 및 용융금속에 대한 내식성을 향상시키는 것에 관한 것이다.The present invention relates to a method for producing a silicon carbide (SiC) -quality refractory material, and more specifically, by mixing and reacting alpha-type silicon carbide (α-SiC) and sialon-producing raw materials, high strength, oxidation resistance and corrosion resistance to molten metal It's about improving.

탄화규소질 내화재는 내열충격성, 내식성, 열간강도, 내마모성, 열전도율 등이 우수하여 고로용(高爐用) 내화물, 요업킬른용(窯業Kiln用)내화물, 열교환기의 파이프, 기타공업용 내화물 등에 널리 이용되고 있다.Silicon carbide refractories have excellent thermal shock resistance, corrosion resistance, hot strength, abrasion resistance, thermal conductivity, etc. have.

통상적인 탄화규소질 내화재의 제조방법은 카본(C)을 혼합베드(Bed)에 첨가하여 소성중 금속규소(Si)와 반응시켜 베타형 탄화규소(β-SiC)를 얻고 있다.In a conventional method for producing a silicon carbide refractory material, carbon (C) is added to a mixed bed (Bed) to react with metal silicon (Si) during firing to obtain beta-type silicon carbide (β-SiC).

이러한 종래의 방법은 미세한 카본 첨가에 따른 혼련시 국부적인 카본의 밀집현상으로 이를 방지하기 위한 혼련시간이 길어지는 등의 어려움과 기브스 자유에너지(Gibbs Free Energy)가 낮은 상태인 고체와 고체의 반응이므로 원자확산에 의한 베타 탄화규소를 생성키 위하여는 소성온도가 높아야 하며, 이때는 금속규소와 카본의 계면 반응에 따라 대부분의 베타 탄화규소는 입계에서 일어난 국부적인 취약부위가 발생한다.Such a conventional method is difficult because of the long kneading time to prevent this due to local carbon density when kneading due to the addition of fine carbon and the reaction of the solid with the low Gibbs Free Energy state In order to produce beta silicon carbide by atomic diffusion, the firing temperature must be high. In this case, most beta silicon carbides generate local weak points due to the interfacial reaction between silicon and carbon.

따라서 압축강도와 열간강도등이 좋지 않다.Therefore, compressive strength and hot strength are not good.

또한 탄화 생성반응이 높은 온도에서(1450℃ 이상) 일어나고 온도조절에 의거 베타 탄화규소가 용융되기전(약 1400℃ 이하)에 베타 탄화규소를 생성시킨 후 다시 온도를 올리고(약 1430℃) 장시간 유지시켜 메트릭스(Matrix)내에 베타 탄화규소 메트(Matte)를 성장시켜 강도특성을 꾀하여야 하기 때문에 온도조절 및 상승과 그 공정이 복잡하였다.In addition, carbonization reaction occurs at high temperature (above 1450 ℃) and beta silicon carbide is produced before melting beta silicon carbide (about 1400 ℃ or less) according to the temperature control, and then the temperature is raised again (about 1430 ℃) and maintained for a long time. It was necessary to grow the beta silicon carbide mat (Matte) in the matrix (Matte) to the strength characteristics because the temperature control and rise and the process was complicated.

또한 결합재와 젖음성이 작은 카본으로 인한 결합재 양의 증대로서 배드(Bed)의 변화폭이 커지는 등의 공정상 어려움도 있다.In addition, due to the increase in the amount of the binder due to the binder and the small wettability carbon, there is also a difficulty in the process such as the change in the bed (Bed) is increased.

상기 문제점을 개선하기 위한 일환으로 본출원인은 카본(C)을 첨가하지 않고 알파형 탄화규소(α-SiC)와 금속규소(Si)를 혼합하여 CO가스 분위기 및 낮은 소성온도(1350 ∼ 1420℃)에서 소성처리하여서된 탄화규소질 내화물에 대해 국내특허공보 91-1363호를 제안한바 있으나, 이는 기공율이 높고(12.6∼14.5%), 곡강도(㎏/㎠)가 560∼620, 열간곡강도(㎏/㎠) 480∼505로서 충분한 특성을 얻지 못하고 있다.As a part of improving the above problems, the present applicant does not add carbon (C) and mixes alpha-type silicon carbide (α-SiC) and metal silicon (Si) in a CO gas atmosphere and a low firing temperature (1350 to 1420 ° C). Korean Patent Publication No. 91-1363 has been proposed for the silicon carbide refractory material which has been calcined at, but it has high porosity (12.6 ~ 14.5%), bending strength (kg / ㎠) and 560 ~ 620, hot bending strength (kg / Cm 2) 480 to 505, which do not provide sufficient characteristics.

한편, 사이알론을 기(基)로 하는 세라믹 소결재료의 제조방법이 일본공개특허공보 소59-69476호에 알려지고 있다.On the other hand, a method for producing a ceramic sintered material based on sialon is known from Japanese Patent Laid-Open No. 59-69476.

이는 소결중 반응하여 사이알론(조성식 : Si6-ZAlZOZN8-Z)을 생성하는 원료(Si3N4, Al2O3, SiO2, AlN)와 소결조제(Y2O3, MgO, CeO2, ZrO2), 탄소분말을 혼합하여 질소분위기 및 1600∼1800℃ 온도에서 소결하여 소결재료를 얻고 있다.It reacts during sintering to produce sialon (formula: Si 6-Z Al Z O Z N 8-Z ) and a raw material (Si 3 N 4 , Al 2 O 3 , SiO 2 , AlN) and a sintering aid (Y 2 O 3 , MgO, CeO 2 , ZrO 2 ) and carbon powder were mixed and sintered at a nitrogen atmosphere and 1600-1800 ° C. to obtain a sintered material.

그러나 상기와 같은 사이알론 복합방법은 각종 산화물을 출발원료로 사용하기 때문에 높은 소결온도에서 반응이 일어나고, 사이알론 생성시 파이버(fiber)의 입경이 큼과 함께 파이버 생성량이 적고, 분위기 가스의 성분을 내화재 조직으로 받아 들이는 양도 작아진다.However, since the sialon complex method uses various oxides as starting materials, the reaction takes place at a high sintering temperature, and when the sialon is formed, the fiber diameter is large, the amount of fiber is generated, and the composition of the atmosphere gas is reduced. The amount taken into the fireproofing tissue is also small.

따라서 온도조절에 의거 사이알론을 생성시킨 후 다시 온도를 올려 장시간 소결시켜야 강도가 발현되는바 에너지 소비를 비롯한 복잡한 공정이 수반된다.Therefore, after generating the sialon based on the temperature control, the temperature must be raised again and sintered for a long time so that the strength is expressed, which involves a complicated process including energy consumption.

뿐만 아니라 이렇게 발현된 곡강도(㎏/㎠)는 평균 850정도로서 우수한 특성이라 할 수 없다.In addition, the expressed flexural strength (kg / ㎠) is not an excellent characteristic as the average of about 850.

본 발명은 상기한 종래의 문제점을 해결하기 위해 안출한 것으로, 알파형 탄화규소(α-SiC)와 사이알론 생성원료를 혼합하여 소성하되 사이알론 생성원료를 산화물이 아닌 금속원소로 하여 적절히 배합함과 함께 소성을 일산화탄소(CO)와 질소(N2)가 공존하는 분위기에서 실시함으로써 기공율이 낮고 강도가 향상된 탄화규소질 내화재를 제공하고자 하는데 그 목적이 있다.The present invention has been made in order to solve the above-mentioned problems, and the mixture is calcined by mixing the alpha-type silicon carbide (α-SiC) and the sialon-generating material, but is suitably blended with the sialon-generating material as a metal element rather than an oxide. In addition, the firing is carried out in an atmosphere in which carbon monoxide (CO) and nitrogen (N 2 ) coexist to provide a silicon carbide refractory material having low porosity and improved strength.

도 1은 본 발명에 따른 미세구조를 나타낸 현미경사진1 is a micrograph showing a microstructure according to the present invention

상기 목적 달성을 위한 본 발명은 알파형 탄화규소(α-SiC) 65∼90중량%, 금속규소(Si) 5∼25중량%, 금속알루미늄(Al) 5∼10중량%와 결합제로서 수지계를 혼련하여 성형한 후 일산화탄소(CO) 와 질소(N2)가 공존하는 분위기에서 1200∼1500℃ 온도 및 3∼50시간 소성하여서 됨을 특징으로 하는 탄화규소질 내화재의 제조방법으로 구성된다.The present invention for achieving the above object is kneading the resin system as a binder with 65 to 90% by weight of alpha-type silicon carbide (α-SiC), 5 to 25% by weight of metal silicon (Si), 5 to 10% by weight of metal aluminum (Al) After molding, the method is a method for producing a silicon carbide refractory material, characterized in that the carbon monoxide (CO) and the nitrogen (N 2 ) is fired at a temperature of 1200 to 1500 ℃ and 3 to 50 hours in the coexistence atmosphere.

상기 각 조성물과 그 조성비, 소성조건(온도, 시간)에 대한 수치한정 범위에 있어서 이들은 상호유기적인 결합관계가 있으므로 독단적인 개별의 구성만을 대상으로 논할 수 없는 것으로 전체 결합조성중에서 탄화규소(SiC)가 90중량% 이상이거나, 금속규소(Si)가 25중량% 이상이거나, 금속알루미늄(Al)이 10중량% 이상일때는 과잉 매트릭스(Matrix)에 따른 강도저하와 큰 입자 및 작은 입자의 분배율이 좋지 않아 물리적 특성이 저하된다.In the numerical limits of each composition, its composition ratio, and firing conditions (temperature, time), since they have mutually organic bonding relationships, they cannot be discussed solely for individual individual compositions. Is more than 90% by weight, more than 25% by weight of metal silicon (Si), or more than 10% by weight of metal aluminum (Al), the strength decrease due to the excess matrix (Matrix) and the distribution ratio of large particles and small particles is not good Physical properties are degraded.

소성분위기내에 제공되는 CO가스와 N2가스는 금속규소(Si)와 금속알루미늄(Al)을 반응시켜 베타 탄화규소(β-SiC)와 사이알론을 생성시키며 이는 입자사이와 기공내에 휘스커(whisker)나 파이버상으로 생성되기 때문에 기존의 산화물이나 질화물을 첨가하거나 사이알론을 다량 생성시켜 제조하는 방법보다 소성온도를 낮추더라도 고밀도 소결체를 얻을 수 있을 뿐만 아니라 생성되는 휘스커의 양이 많고 잘 분산되어 기존의 어떤 방법보다도 우수한 강도 특성을 나타낸다.The CO gas and N 2 gas provided in the minor atmosphere react with metal silicon (Si) and metal aluminum (Al) to form beta silicon carbide (β-SiC) and sialon, which is a whisker between particles and in pores. As it is produced in the form of fiber, it is possible to obtain high density sintered body even if the firing temperature is lower than the method of adding oxide or nitride or producing large amount of sialon, and the amount of whisker generated is well dispersed and well dispersed. It exhibits superior strength properties than any method.

소성온도가 1200℃ 이하이거나 1500℃ 이상일때는 휘스커나 파이버 상에 따른 고밀도 소결체를 얻을 수 없고, 소성시간이 3시간 이하이거나 50시간 이상일때는 베타 탄화규소가 소량 생성되거나 파괴되고 사이알론의 복합효과가 작아서 미세조직이 발달되지 않을 뿐만 아니라 강도특성도 낮은 값을 나타냈다.When the firing temperature is lower than 1200 ℃ or higher than 1500 ℃, high density sintered body according to whiskers or fibers cannot be obtained. When the firing time is lower than 3 hours or higher than 50 hours, small amounts of beta silicon carbide are produced or destroyed, and the sialon complex effect It was small and not only did not develop microstructure, but also had low strength characteristics.

또한 금속규소의 입도를 10㎛ 이하의 입도로 하고, 알루미늄 입자는 길이와 입자경의 비가 5∼500배의 분율이고 입경의 크기가 10㎛-500㎛인 큰 파이버상으로 사용한다.In addition, the particle size of the metal silicon is 10 μm or less, and the aluminum particles are used in a large fiber phase having a ratio of 5 to 500 times the ratio of the length and the particle diameter and the size of the particle diameter of 10 μm to 500 μm.

이렇게 출발원료를 사용하면 사이알론 생성시 출발원료로 사용한 알루미늄 파이버를 기지로 하여 휘스커들이 발달되는데, 이는 기존의 산화물이나 질화물의 상호 확산에 의해 사이알론이 생성되는 것이 아니고, 소성분위기중의 일산화탄소(CO)와 질소(N2) 가스가 침입되어 출발원료로 사용한 알루미늄 파이버의 자리에서 사이알론이 다량의 휘스커 형상으로 생성됨으로써 치밀한 조직을 얻을 수 있다.When starting materials are used, whiskers are developed on the basis of aluminum fibers used as starting materials for the production of sialon, which does not generate sialon by interdiffusion of existing oxides or nitrides. Dense tissue can be obtained by generating a large amount of whiskers in the form of a large amount of whiskers at the place of the aluminum fiber used as a starting material due to the penetration of CO) and nitrogen (N 2 ) gas.

또한 베타 탄화규소의 경우 본 발명자의 국내특허공보 91-1363호와 같은 효과로 생성된다.In the case of beta silicon carbide is also produced by the same effect as the present inventors domestic patent publication No. 91-1363.

이렇게 생성된 사이알론 및 베타탄화규소의 휘스커는 입자와 잘 연결하여 기존의 방법들 보다 월등히 높은 강도값을 나타내는 원인으로 작용한다.The whiskers of sialon and beta silicon carbide thus produced are well connected to the particles and serve as a cause of showing a much higher strength value than the conventional methods.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

실시예 1Example 1

표 1과 같은 배합표에 따라 원료를 배합하고 가압 혼련 후 상온에서 숙성과 자연 건조를 행한다.The raw materials are blended according to the compounding table as shown in Table 1, and then aged and naturally dried at room temperature after pressure kneading.

그후 자연건조된 성형체를 150℃ 에서 다시 건조한다.The naturally dried molded body is then dried again at 150 ° C.

건조된 성형체를 턴널킬른(Tunnel Kiln)로에서 1200∼1500℃에서 3∼50시간 소성하되 CO가스와 질소가스를 발생시킬 수 있는 분위기를 조장하면서 소성을 완료한다.The dried compacts are calcined for 3 to 50 hours at 1200-1500 ° C. in a Tunnel Kiln furnace to complete the firing while encouraging an atmosphere in which CO gas and nitrogen gas can be generated.

원료배합비 : ┌탄화규소 80wt%, 금속규소 15wt%, 금속알루미늄 5wt%Raw material blending ratio: wtsilicon carbide 80wt%, metal silicon 15wt%, metal aluminum 5wt%

└결합제 1-10wt%외 첨가(상기 전체에 대한 중량비)└ 1-10 wt% binder added (weight ratio of the whole)

입도분포 ┌금속규소 10㎛Particle Size Distribution ┌Metal Silicon 10㎛

└전체입도분포 1㎜이상 40wt%, 1-0.297㎜ 30wt%, 0.297이하 30wt%└Total particle size distribution 1mm or more 40wt%, 1-0.297mm 30wt%, 0.297 or less 30wt%

소성조건 : ┌온도 1395±20℃Firing condition: ┌Temperature 1395 ± 20 ℃

└시간 : 20±10시간└Time: 20 ± 10 Hours

상기와 같은 조건의 실시예에 따라 나타난 물리적 성질은 표 2와 같이 곡강도가 1300㎏/㎠, 열간곡강도 1400㎏/㎠, 압축강도가 4500㎏/㎠으로서 비교발명(시료 5-7)을 비롯한 종래 발명(시료 8-10)에 비해 우수한 물리적 성질을 갖는다.Physical properties shown in accordance with the embodiment of the above conditions are as shown in Table 2, the bending strength is 1300㎏ / ㎠, hot bending strength 1400㎏ / ㎠, the compressive strength is 4500㎏ / ㎠ as the conventional invention including the comparative invention (sample 5-7) It has excellent physical properties compared to the invention (Sample 8-10).

종래 발명중 시료 8-9는 국내특허공보 91-1363호이고, 시료 10은 일본공개특허공보 소59-69476호이다.In the prior invention, Sample 8-9 is Korean Patent Publication No. 91-1363, and Sample 10 is Japanese Laid-Open Patent Publication No. 59-69476.

실시예 2Example 2

표 1과 같은 조건으로 실시하였다.It carried out under the conditions as shown in Table 1.

원료배합비┌탄화규소 75wt%, 금속규소 20wt%, 금속알루미늄 5wt%Raw material mixture ratio: silicon carbide 75wt%, metal silicon 20wt%, metal aluminum 5wt%

└결합제1-10wt%외첨가(탄화규소-금속규소의 전체에 대한 중량비)└1-10 wt% external addition (binder weight ratio of silicon carbide to metal silicon)

입도분포┌금속규소 10㎛Particle Size Distribution ┌ Metal Silicon 10㎛

└전체입도분포 1㎜이상 45wt%, 1-0.297㎜ 25wt%, 0.297 이하 35wt%└Total particle size distribution 1mm or more 45wt%, 1-0.297mm 25wt%, 0.297 or less 35wt%

소성조건 ┌온도 1420±20℃Firing Conditions ┌Temperature 1420 ± 20 ℃

└시간 20±10시간└Time 20 ± 10 Hours

상기와 같은 조건의 실시예에 따라 나타난 물리적 성질은 표 2와 같이 곡강도 1200㎏/㎠, 열간곡강도 1100㎏/㎠, 압축강도 3800㎏/㎠으로서 종전기술에 비해 우수하게 나타났다.As shown in Table 2, the physical properties shown in the above conditions were superior to the prior art as bending strength 1200 kg / cm 2, hot bending strength 1100 kg / cm 2 and compressive strength 3800 kg / cm 2.

기공율도 종전기술들의 경우 12% 이상이었으나, 본 발명의 경우 5-10%로 우수하게 나타났다.(도 1은 이에 따른 미세구조를 나타낸 현미경사진)Porosity was also 12% or more in the case of the prior art, 5-10% was excellent in the present invention (Fig. 1 is a micrograph showing the microstructure accordingly).

실시예 3 및 4Examples 3 and 4

표 1과 같은 원료배합비로 하고, 그외 조건은 실시예 1과 동일하게 하였다.It was set as the raw material mixture ratio of Table 1, and other conditions were made the same as Example 1.

그 결과 표 2와 같은 물리적 성질을 얻었다.As a result, physical properties as shown in Table 2 were obtained.

본 실시예 역시 종래에 비해 우수한 성질을 얻었다.This embodiment also obtained excellent properties compared to the prior art.

이상에서와 같이 본원 발명은 종전 기술에 비해 사이알론 생성시 Al 자리를 금속알루미늄으로 하고 산소(O)와 질소(N)의 자리를 분위기 가스를 이용함으로서 조직이 치밀하고 기상반응에 의한 휘스커가 다량 생성되어 산화물이나 질화물을 이용하는 종전기술에 비하여 월등히 향상된 강도특성과 치밀한 조직을 얻을 수 있었다.As described above, in the present invention, the structure is dense and the whisker due to the gas phase reaction is large by using Al as the metal aluminum and Si (O) and nitrogen (N) as the atmosphere gas when generating the sialon. Compared with the previous technology using oxides and nitrides, the strength characteristics and the dense structure were greatly improved.

표 1에서 알루미나(산화물)를 이용하여 사이알론을 생성시킨 경우를 비교로 시험하였는데, 표 2에서와 같이 종전기술들 보다는 그 특성이 우수하게 나타났지만 금속알루미늄을 사용하는 경우보다는 강도등 제반 물성이 낮게 나타났다.In Table 1, the case of producing sialon by using alumina (oxide) was tested by comparison. As shown in Table 2, the properties were superior to those of the prior art, but the physical properties such as strength were higher than those of metal aluminum. Appeared low.

종래 발명보다 우수한 원인은 본 발명자가 기 발명한 특허공보 91-1363호의 효과라고 사료되며, 금속알루미늄을 사용한 경우보다 특성이 낮은 원인은 사이알론의 산소(O)자리를 분위기 가스중의 산소(CO의 산소, 이때 CO의 C는 베타 탄화규소 생성의 C자리로 됨)를 이용하지 않고 알루미나(Al2O3)의 산소가 이용됨으로서 치밀화에 효과적이지 못하고 반응물질 생성시 작은 휘스커가 아닌 큰 파이버상으로 생성되기 때문이다.It is considered that the cause superior to the conventional invention is the effect of Patent Publication No. 91-1363, which was invented by the inventor, and the cause of lower characteristics than the case of using metal aluminum is the oxygen (O) site of sialon. Is not effective in densification because oxygen of alumina (Al 2 O 3 ) is used instead of oxygen, where C of CO is the C-site of beta silicon carbide production. This is because

[표 1]TABLE 1

Figure pat00002
Figure pat00002

실시예Example 비교예Comparative example 종래Conventional 1One 22 33 44 55 66 77 88 99 1010 부피비중Volume specific gravity 2.762.76 2.772.77 2.722.72 2.752.75 2.672.67 2.742.74 2.692.69 2.692.69 2.752.75 기공율(%)Porosity (%) 5.75.7 7.87.8 7.27.2 9.89.8 10.910.9 12.512.5 11.211.2 13.913.9 13.713.7 곡강도(㎏/㎠)Bending strength (㎏ / ㎠) 13001300 12001200 10201020 940940 850850 580580 810810 600600 580580 800800 열간곡강도(㎏/㎠)Hot bending strength (㎏ / ㎠) 14001400 11001100 10251025 930930 910910 560560 780780 500500 500500 압축강도(㎏/㎠)Compressive strength (㎏ / ㎠) 45004500 38003800 36003600 31503150 32003200 22002200 29802980

이상에서와 같이 본 발명은 알파형 탄화규소(α-SiC)에 사이알론 합성원료인 금속규소(Si), 금속알루미늄(Al)을 적절히 배합함과 함께 일산화탄소(CO) 및 질소(N2)가 공존하는 분위기하에서 소성처리시 소성체내로 상기 가스(CO, N2)성분이 침입되어 밀도를 증가시키고 기상반응에 의한 휘스커(whisker)의 생성량이 많아져 고강도의 특성을 갖는 소결체를 얻게 된다.As described above, according to the present invention, carbon monoxide (CO) and nitrogen (N 2 ) are mixed with the alpha-silicon carbide (α-SiC) with the appropriate combination of metal silicon (Si) and metal aluminum (Al), which are sialon synthetic materials. In the coexistence atmosphere, the gas (CO, N 2 ) component infiltrates into the fired body during the firing process, increases the density, and increases the amount of whisker generated by the gas phase reaction, thereby obtaining a sintered body having high strength characteristics.

Claims (2)

알파형 탄화규소(α-SiC) 65∼90중량%, 규소(Si) 5∼25중량%, 알루미늄(Al) 5∼10중량%와 결합제로서 공지의 수지를 혼련하여 숙성, 성형후 일산화탄소(CO)와 질소(N2)가 공존하는 분위기에서 1200∼1500℃ 온도 및 3∼50시간 소성처리함을 특징으로 하는 탄화규소질 내화재의 제조방법.65 to 90% by weight of alpha-type silicon carbide (α-SiC), 5 to 25% by weight of silicon (Si), 5 to 10% by weight of aluminum (Al) and a known resin as a binder are aged and aged to form carbon monoxide (CO) ) And a calcination treatment at 1200 to 1500 ° C. for 3 to 50 hours in an atmosphere where nitrogen and N 2 coexist. 제 1 항에 있어서,The method of claim 1, 규소(Si)의 입도가 10㎛ 이하이고, 알루미늄(Al)입도는 길이와 입자경의 비가 5∼500배의 분율로서 입경의 크기가 10∼500㎛ 임을 특징으로 하는 탄화규소질 내화재의 제조방법.A method for producing silicon carbide refractory material, characterized in that the particle size of silicon (Si) is 10 µm or less, and the aluminum (Al) particle size is a fraction of 5 to 500 times the ratio of length and particle diameter.
KR1019970051313A 1997-10-07 1997-10-07 method for manufacturing refractories material having SiC KR100239940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970051313A KR100239940B1 (en) 1997-10-07 1997-10-07 method for manufacturing refractories material having SiC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970051313A KR100239940B1 (en) 1997-10-07 1997-10-07 method for manufacturing refractories material having SiC

Publications (2)

Publication Number Publication Date
KR19990030863A KR19990030863A (en) 1999-05-06
KR100239940B1 true KR100239940B1 (en) 2000-02-01

Family

ID=19522292

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970051313A KR100239940B1 (en) 1997-10-07 1997-10-07 method for manufacturing refractories material having SiC

Country Status (1)

Country Link
KR (1) KR100239940B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993044B1 (en) 2003-12-22 2010-11-08 재단법인 포항산업과학연구원 Fabrication Method of Porous SiC Ceramics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711797B1 (en) * 2005-10-13 2007-04-30 주식회사 포스코 SiC-based porous body and method of fabricating the same
KR102017689B1 (en) * 2012-10-18 2019-10-21 엘지이노텍 주식회사 Method for preparing silicon carbide powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174182A (en) * 1985-01-26 1986-08-05 イビデン株式会社 Silicon carbide base composite body with high size precisionand sliding properties and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993044B1 (en) 2003-12-22 2010-11-08 재단법인 포항산업과학연구원 Fabrication Method of Porous SiC Ceramics

Also Published As

Publication number Publication date
KR19990030863A (en) 1999-05-06

Similar Documents

Publication Publication Date Title
Warlimont Ceramics
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
Wu et al. Reaction bonding and mechanical properties of mullite/silicon carbide composites
JPH0665624B2 (en) Novel refractory having high alumina content and method for producing the same
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
KR100239940B1 (en) method for manufacturing refractories material having SiC
US4460528A (en) Refractory
JPH0212893B2 (en)
Semen et al. Structural ceramics derived from a preceramic polymer
US4557884A (en) Refractory
US4985378A (en) Carbon-containing refractory and a manufacturing method therefor
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
KR100305245B1 (en) method for fabricating silicon carbide fire proof material
JP3661958B2 (en) Refractory for casting
JPH0640765A (en) Spinel ceramics and its production
JP2000191363A (en) Spalling resistant spinel brick
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
JPS6141861B2 (en)
JP2508511B2 (en) Alumina composite
JPS63270360A (en) High-density sintered silicon oxynitride and production thereof
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP3097894B2 (en) Preparation of inorganic fiber reinforced ceramic composites.
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JP2631109B2 (en) Method for producing silicon nitride composite sintered body

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121004

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 18

EXPY Expiration of term