KR100236756B1 - Process for preparing dehydrogenation catalyst - Google Patents

Process for preparing dehydrogenation catalyst Download PDF

Info

Publication number
KR100236756B1
KR100236756B1 KR1019970054365A KR19970054365A KR100236756B1 KR 100236756 B1 KR100236756 B1 KR 100236756B1 KR 1019970054365 A KR1019970054365 A KR 1019970054365A KR 19970054365 A KR19970054365 A KR 19970054365A KR 100236756 B1 KR100236756 B1 KR 100236756B1
Authority
KR
South Korea
Prior art keywords
catalyst
particles
dehydrogenation
reaction
alumina
Prior art date
Application number
KR1019970054365A
Other languages
Korean (ko)
Other versions
KR19990033108A (en
Inventor
서승원
홍성구
Original Assignee
전원중
주식회사효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전원중, 주식회사효성 filed Critical 전원중
Priority to KR1019970054365A priority Critical patent/KR100236756B1/en
Publication of KR19990033108A publication Critical patent/KR19990033108A/en
Application granted granted Critical
Publication of KR100236756B1 publication Critical patent/KR100236756B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 탈수소 반응용 촉매의 제조방법에 관한 것으로 알루미나 지지체를 제조함에 있어서, 드로핑과 1차 숙성단계에서 비중 0.86 - 0.87 g/㎖, 동점도가 10 - 30 cSt인 유동 파라핀을 현탁매개체로 사용함으로써 입자 내의 크기 1㎛ 이상인 기공을 형성시킨 대기공 알루미나 입자를 촉매 지지체로 사용함을 특징으로 하며, 본 발명에 의한 촉매는 탈수소 촉매의 반응안정성을 향상시키게 된다.The present invention relates to a method for preparing a catalyst for the dehydrogenation reaction. In preparing an alumina support, fluid paraffin having a specific gravity of 0.86-0.87 g / ml and a kinematic viscosity of 10-30 cSt is used as a suspending medium in a dropping and first aging step. By using the air-porous alumina particles having a pore size of 1㎛ or more in the particles as a catalyst support, the catalyst according to the invention improves the reaction stability of the dehydrogenation catalyst.

Description

탈수소 반응용 촉매의 제조방법Process for preparing catalyst for dehydrogenation

본 발명은 탈수소 반응용 촉매의 제조방법에 관한 것으로, 보다 상세하게로는 대기공 구형 알루미나 입자을 촉매지지체로 사용하여 높은 활성과 선택도 및 반응 안정성을 갖는 탈수소 반응용 촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for dehydrogenation reaction, and more particularly, to a method for preparing a catalyst for dehydrogenation reaction having high activity, selectivity, and reaction stability by using atmospheric sphere alumina particles as a catalyst support.

알루미나는 그 자체로서 촉매역할을 수행하거나 또는 촉매의 지지체로서 사용될 수 있으며, 이때 알루미나의 물리적 특성을 이를 이용하여 제조된 촉매의 물리적 안정성, 즉 운반 및 공정수행중에 필요한 기계적 강도 및 내마모성 뿐만 아니라 촉매의 반응성 즉, 활성도, 선택도, 반응안정성 등에도 큰 영향을 미친다.Alumina can act as a catalyst on its own or can be used as a support for a catalyst, in which the physical properties of the alumina are used to determine the physical stability of the catalyst prepared, ie the mechanical strength and abrasion resistance required during transport and process as well as The reactivity, that is, activity, selectivity, reaction stability, and the like have a great influence.

또한 알루미나 입자 내에 대기공이 있는 구조를 가질 경우, 반응물 및 생성물의 흐름을 원활하게 해주어서 결과적으로 반응성을 향상시키는 우수한 효과를 가질 수 있게 된다.In addition, when the structure has the air hole in the alumina particles, it is possible to smooth the flow of the reactants and products, as a result can have an excellent effect of improving the reactivity.

이러한 촉매를 이용하여 탈수화된 탄화수소는 정밀화학제품의 기초원료, 고분자재료의 기초원료 및 고성능 휘발유의 제조를 위한 첨가제의 원료 등으로 그 수요가 계속 증가하고 있는 경제성이 높은 화합물이다.Hydrocarbons dehydrated using such catalysts are highly economical compounds, which are in increasing demand as basic raw materials for fine chemicals, basic raw materials for polymer materials, and raw materials for additives for producing high performance gasoline.

노말파라핀을 탈수소하여 노말올레핀으로 전환하는 방법은 이미 공지되어 있는 것으로써, 그 방법은 수소와 노말파라핀을 탈수소촉매와 접촉시키고 대기압 혹은 그 이상의 고온으로 반응시키는 것이다.The process of dehydrogenating normal paraffins to normal olefins is already known, in which hydrogen and normal paraffins are brought into contact with a dehydrogenation catalyst and reacted at atmospheric or higher temperatures.

이 반응에 이용되는 탈수소촉매는 백금 또는 기타 Ⅷ B 족 귀금속원소에 속하는 금속을 알루미나, 실리카, 실리카-알루미나 등에 함침시킨 것이다.The dehydrogenation catalyst used in this reaction is impregnated with alumina, silica, silica-alumina or the like belonging to platinum or other metals belonging to Group VIII precious metal elements.

그러나 상기와 같은 반응에서는 탈수소화반응 이외에 열분해반응, 이성질화반응, 고리화반응 등의 부반응과 목적생성물인 모노올레핀이 더욱더 탈수화반응되어 디올레핀이 생성되는 등으로 인하여, 촉매의 이용 효율을 감소시키고 촉매의 비활성화를 가속화시킴으로써 결과적으로 촉매 수명의 단축을 야기할 수 있다.However, in the above reaction, in addition to dehydrogenation, side reactions such as pyrolysis, isomerization, and cyclization, and monoolefin, which is a product of interest, are further dehydrated to produce diolefin, thereby reducing the utilization efficiency of the catalyst. And accelerating deactivation of the catalyst may result in shortening of the catalyst life.

동시에 상업적 규모의 공정에 적용할 경우 원료의 낭비 및 후단분리 공정에 대한 과도한 무리를 일으킬 수 있다.At the same time, application to commercial scale processes can lead to waste of raw materials and excessive strain on the post-separation process.

따라서 노말파라핀의 노말올레핀으로의 선택도를 향상시키고 촉매의 비활성화를 감소시킴으로서, 탈수소반응용 촉매의 반응안정성과 사용수명을 연장시키기 위하여, 백금 또는 기타 Ⅷ B족 귀금속 원소에 한가지 이상의 금속성분을 결합시킨 촉매조성물의 첨가 및 대체가 제안되어 왔다.Therefore, by improving the selectivity of normal paraffins to normal olefins and reducing the deactivation of the catalyst, in order to extend the reaction stability and the service life of the catalyst for dehydrogenation, one or more metal components are combined with platinum or other Group B noble metal elements. The addition and replacement of the catalyst composition has been proposed.

영국특허 1,497,297호에는 갈륨, 인듐, 탈륨 중에서 최소한 한 가지 이상의 원소를 선택하여 백금 및 알칼리금속과 함께 알루미나에 함침시킨 촉매를 제안하였으며, 미국특허 4,551,574호에서는 백금, 주석, 인듐과 알칼리 또는 알칼리토금속을 알루미나에 함침시킨 촉매조성물에 대해 기술하고 있다.British Patent No. 1,497,297 proposes a catalyst in which alumina is impregnated with platinum and alkali metals by selecting at least one element from gallium, indium and thallium, and US Patent 4,551,574 proposes platinum, tin, indium and alkali or alkaline earth metals. A catalyst composition impregnated with alumina is described.

또한, 미국특허 4,762,960호에서는 백금, 주석, 게르마늄, 레늄 및 알칼리 또는 알칼리토금속을 옥사이드 지지체에 함침시킨 탈수소촉매 제조방법에 관해 기술하고 있으며, 미국특허 4,800,674호에서는 백금, 팔라듐, 이리듐, 오스뮴 및 Ⅳ A족 원소를 공침시킨 탈수소 촉매조성물에 대해서 제안하고 있다.In addition, US Pat. No. 4,762,960 describes a method for preparing a dehydrogenation catalyst in which platinum, tin, germanium, rhenium, and alkali or alkaline earth metals are impregnated in an oxide support, and US Pat. A dehydrogenation catalyst composition in which a group element is co-precipitated is proposed.

그러나, 상기와 같이 단순한 조성물의 추가 및 대체에 의해 제조된 촉매들은 노말파라핀의 탈수소화반응에 대한 반응활성 및 유용한 반응생성물의 선택도의 증진에는 효과를 나타내었으나, 촉매의 비활성화가 빠르게 진행되어 반응안정성의 측면에서는 만족스럽지 못한 것이었다.However, the catalysts prepared by the addition and replacement of simple compositions as described above had an effect on the reaction activity and the selectivity of useful reaction products for the dehydrogenation of normal paraffins, but the deactivation of the catalyst proceeded rapidly. In terms of stability, it was not satisfactory.

본 발명의 목적은 반응물인 노말파라핀과 생성물인 노말올레핀의 입자내에서의 흐름이 원활하도록 하여 결국, 촉매의 반응안정성을 향상시킬 수 있는 구형 알루미나 입자의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing spherical alumina particles that can smoothly flow in particles of a reactant normal paraffin and a product normal olefin, thereby improving the reaction stability of the catalyst.

본 발명은 노말 파라핀을 노말 올레핀으로 전환시키는 탈수소 촉매의 제조에 있어서, 드로핑과 1차 숙성단계에서 비중 0.86 - 0.87 g/㎖, 동점도가 10 - 30 cSt인 유동 파라핀을 사용함으로써 입자 내에 크기 1㎛ 이상인 기공을 형성시킨 대기공 알루미나 입자를 촉매 지지체로 사용함을 특징으로 한다.The present invention relates to the preparation of a dehydrogenation catalyst for converting normal paraffins to normal olefins, wherein the size of the particles in the particles by using flowing paraffins having a specific gravity of 0.86-0.87 g / ml and a kinematic viscosity of 10-30 cSt during the dropping and first aging stages. Atmospheric air alumina particles in which pores having a thickness of about 탆 or more are used as a catalyst support.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

구형알루미나 입자의 제조는 오일-드로핑 방법 즉, 알루미늄금속을 산용액에 용해시켜 제조된 알루미나 하이드로졸과 최종적으로는 제조과정에서 암모니아로 가수분해될 약염기를 혼합한 후, 현탁매개체인 불수용성(不水容性)액체에 드로핑하여 구형의 알루미나 하이드로겔을 형성한 후, 이 구형의 겔을 숙성한 후 세척, 건조, 소성과정을 거쳐서 최종적으로 구형 알루미나 입자를 제조하게 된다.The production of the spherical alumina particles is an oil-dropping method, that is, alumina hydrosol prepared by dissolving aluminum metal in an acid solution and finally a weak base to be hydrolyzed with ammonia in the manufacturing process, and then suspended water insoluble ( After dropping in a liquid to form a spherical alumina hydrogel, the spherical alumina hydrogel is aged and then washed, dried and calcined to finally produce spherical alumina particles.

본 발명에서는 대기공의 기공구조를 가지는 구형 알루미나 입자를 제조하기 위하여 알루미나 하이드로졸과 약염기의 혼합물이 드로핑되는 현탁매개체로서 특정 비중과 동점도를 가지는 유동파라핀을 도입하고 이를 통과하면서 생성된 알루미나 하이드로겔 입자도 상기 특정 유동파라핀내에서 1차 숙성과정을 거친 후에 수산화 암모니움 수용액에서의 2차 숙성과정으로 옮겨가도록 함으로써 대기공의 기공구조를 갖는 구형 알루미나 입자를 제조하였다.In the present invention, in order to prepare spherical alumina particles having a pore structure of air pores, alumina hydrogel produced by introducing a flowing paraffin having a specific specific gravity and kinematic viscosity as a suspension medium in which a mixture of alumina hydrosol and a weak base is dropped and passing through the same. Spherical alumina particles having a pore structure of atmospheric pores were prepared by allowing the particles to undergo a first aging process in the specific flow paraffin and then to a second aging process in an aqueous solution of ammonium hydroxide.

드로핑과정에서 사용되는 현탁매개체는, 수용성인 알루미나하이드로졸과 약염기의 혼합물에 대해 불용성이고 물보다 표면장력이 커서, 드로핑된 혼합물 방울이 그 자체의 부피에서 가장 적은 표면적을 가지는 구조인 구형으로 성형되도록 해주는 역할을 할 수 있어야 한다.The suspending medium used in the dropping process is formed into a spherical structure in which the drop of the dropped mixture has the smallest surface area in its volume because it is insoluble in water-soluble alumina hydrosol and weak base and has a higher surface tension than water. It should be able to play a role.

숙성과정에는 현탁매개체내에서 알루미나하이드로겔이 100 ∼ 110℃의 온도로 24 ∼ 48 시간 동안 머무르며 이때 알루미나하이드로겔내의 약염기가 가수분해되면서 서서히 세공구조를 형성하게 해주어야 한다. 즉, 본 발명은 드로핑과 숙성과정에서 상기와 같은 역할을 수행할 수 있도록 비중 0.86 - 0.87 g/㎖이고, 동점도가 10 - 30 cSt 인 유동파라핀을 현택매개체로 사용함으로써 알루미나 입자내에 크기 1㎛ 이상인 대기공의 세공구조를 가지도록 한다.During the aging process, the alumina hydrogel stays in the suspension medium at a temperature of 100 to 110 ° C. for 24 to 48 hours. At this time, the weak base in the alumina hydrogel is hydrolyzed to gradually form a pore structure. That is, the present invention uses a liquid paraffin having a specific gravity of 0.86-0.87 g / ㎖ and a kinematic viscosity of 10-30 cSt as a suspension medium to perform the above role in the dropping and aging process, the size 1㎛ It is to have the pore structure of the above air hole.

한편, 동점도가 제시된 범위를 벗어날 경우 비록 비중이 제시된 범위내에 있더라도 대기공의 세공구조를 형성할 수 없다.On the other hand, if the kinematic viscosity is outside the range presented, even if the specific gravity is within the range can not form the pore structure of the air hole.

본 발명의 실시예는 다음과 같으며, 여기에 사용된 대기공 지름의 유무판정은 전자현미경(SEM)을 사용하여 1,000배 확대된 사진의 판독에 의하여 결정하였어도, 비중 및 동점도 측정은 한국공업규격 2002(KS M 2002), 한국공업규격 2015(KS M 2014)에 의거하여 측정하였다.Examples of the present invention are as follows, and the determination of the presence or absence of the air hole diameter used here is determined by reading a photograph magnified 1,000 times using an electron microscope (SEM), the specific gravity and kinematic viscosity measurement is Korean Industrial Standard The measurements were made in accordance with 2002 (KS M 2002) and Korean Industrial Standard 2015 (KS M 2014).

[실시예 1]Example 1

순도 99.7% 그래뉼형태 알루미늄 금속 10g을 순수 45.3㎖가 담긴 반응기에 투여하고 상온에서 혼합한 다음, 35% 황산 22.6㎖를 반응기에 12시간동안에 걸쳐서 매우 서서히 투여하였다. 발생되는 수소가스는 계속 배출시키면서 물재킷을 사용하여 90℃가 넘지 않도록 냉각시켰으며, 3시간 경과 후 부터는 맨틀을 이용한 가열을 적절히 조절하여 90℃를 계속 유지하여 24시간 경과시켜 알루미늄 수용액 약 50㎖을 얻었다.10 g of purity 99.7% granular aluminum metal was administered to a reactor containing 45.3 ml of pure water, mixed at room temperature, and then 22.6 ml of 35% sulfuric acid was administered to the reactor very slowly over 12 hours. The generated hydrogen gas was continuously discharged and cooled to not exceed 90 ℃ by using the water jacket.After 3 hours, the heating using the mantle was properly adjusted to maintain 90 ℃ for 24 hours. Got.

상온으로 냉각시킨 반응기에 다이알릴아민 9.3g을 순수 23.9㎖에 용해시킨 약염기수용액을 제조한 후, 투여하고 강하게 교반하면서 혼합하여 약 90㎖의 알루미나하이드로졸을 얻었다.A weak base solution in which 9.3 g of diallylamine was dissolved in 23.9 mL of pure water was prepared in a reactor cooled to room temperature, and then administered and mixed with vigorous stirring to obtain about 90 mL of alumina hydrosol.

비중 0.8687, 동점도 14.15 cSt 인 유동 파라핀을 현탁매개체로서 지름 5㎝, 길이 10㎝의 유리관에 채우고 온도를 95℃로 유지하면서, 액위 4㎝위에서부터 Nozzle를 통하여 상기와 같이 제조된 알루미나하이드로졸을 드로핑하여 구형의 알루미나하이드로겔을 생성시켰다.Alumina hydrosols prepared as described above were drawn through a nozzle from 4 cm above the liquid level while filling liquid paraffin having a specific gravity of 0.8687 and a kinematic viscosity of 14.15 cSt as a suspension medium in a glass tube 5 cm in diameter and 10 cm in length and maintaining the temperature at 95 ° C. To produce spherical alumina hydrogel.

유리관 밑바닥에 축적된 알루미나 하이드로겔을 추출하여 동일한 유동파라핀이 충진된 오일조에 옮기고 107℃, 15시간 동안 1차 숙성시켰다. 1차숙성된 알루미나 하이드로겔을 오일조에서 추출하여 93℃, 25중량%의 수산화암모니움수용액 400㎖에 투입하고 8시간동안 2차 숙성을 진행시켰다.The alumina hydrogel accumulated in the bottom of the glass tube was extracted and transferred to the oil bath filled with the same liquid paraffin, and aged for 15 hours at 107 ° C. The first aged alumina hydrogel was extracted in an oil bath and poured into 400 ml of 25% by weight aqueous ammonium hydroxide solution, followed by secondary aging for 8 hours.

120℃에서 12시간동안 건조한 후, 630℃에서 3시간동안 소성하여 구형 알루미나 입자가 최종적으로 완성하여 입자의 전단면에 대한 전자현미경 촬영에 의하여 1㎛이상의 지름을 가지는 기공의 유무를 확인하였다.After drying at 120 ° C. for 12 hours, calcining at 630 ° C. for 3 hours, the spherical alumina particles were finally finished, and the presence of pores having a diameter of 1 μm or more was confirmed by electron microscopic imaging of the shear surface of the particles.

이렇게 제조된 구형 알루미나에 염화백금산 수용액과 염산을 각각 3.0부피%로 섞은 후 혼합수용액에 함침한 다음, 180℃의 건조공기에서 1시간 건조시킨 후, 400℃에서 2시간 소성시켰다. 백금이 함침된 알루미나 입자에 질산칼륨수용액과 염산을 각각 4.0부피%를 섞은 혼합수용액을 함침한 후, 150℃, 건조공기에서 2시간 건조시킨 다음, 650℃에서 2시간 소성시켜 최종 탈수화 촉매를 얻었다.Spherical alumina solution and hydrochloric acid were mixed in 3.0 vol% of the spherical alumina thus prepared, impregnated in a mixed aqueous solution, and then dried in a dry air at 180 ° C. for 1 hour, and then calcined at 400 ° C. for 2 hours. The impregnated alumina particles with platinum were impregnated with a mixed aqueous solution containing 4.0% by volume of potassium nitrate solution and hydrochloric acid, and then dried at 150 ° C. in dry air for 2 hours, and then calcined at 650 ° C. for 2 hours to obtain a final dehydration catalyst. Got it.

촉매의 성능평가를 위해 650℃에서 4시간 동안 수소로 환원한 후, 수소 및 프로판의 혼합기체를 유입시켜 탈수소반응 실험을 실시하였다. 반응조건은 프로판의 액체공간속도는 5hr-1, 수소와 프로판의 혼합몰비는 1였으며, 반응압력은 1.5기압, 반응온도는 630℃ 등온으로 유지하였다. 반응전후의 기체 조성은 반응장치에 연결된 기체분석기에 의해 분석되어 프로판 전환율과 프로필렌 선택도를 구하고, 반응시간 20시간 경과 후의 전환율과 선택도로부터 반응 안정성을 평가하였다.In order to evaluate the performance of the catalyst, it was reduced to hydrogen at 650 ° C. for 4 hours, and then a dehydrogenation experiment was conducted by introducing a mixed gas of hydrogen and propane. In the reaction conditions, the liquid space velocity of propane was 5hr −1 , the mixing molar ratio of hydrogen and propane was 1, the reaction pressure was 1.5 atm, and the reaction temperature was maintained at 630 ° C isothermal. The gas composition before and after the reaction was analyzed by a gas analyzer connected to the reactor to obtain propane conversion and propylene selectivity, and the reaction stability was evaluated from the conversion rate and selectivity after 20 hours of reaction time.

[비교예 1]Comparative Example 1

드로핑이 이루어지고 이어서 1차 숙성이 진행되는 현탁매개체로서 케로젠을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 구형 알루미나 입자를 제조, 분석하고 반응평가를 실시하였다.Spherical alumina particles were prepared and analyzed in the same manner as in Example 1, except that kerosene was used as a suspending medium in which dropping was performed and then primary aging was performed.

[비교예 2]Comparative Example 2

드로핑이 이루어지고 이어서 1차 숙성이 진행되는 현탁매개체로서 비중 0.8699, 동점도 77.02 cSt 인 유동파라핀을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 구형알루미나 입자를 제조, 분석하고 반응평가를 실시하였다.Spherical alumina particles were prepared and analyzed in the same manner as in Example 1, except for using a liquid paraffin having a specific gravity of 0.8699 and a kinematic viscosity of 77.02 cSt as a suspending medium in which dropping was carried out, followed by primary aging. It was.

상기와 같은 방법으로 제조된 구형 알루미나 입자의 분석결과와 반응평가 결과를 아래 표에 나타내었다.The analysis results and the reaction evaluation results of the spherical alumina particles prepared by the above method are shown in the table below.

Figure kpo00001
Figure kpo00001

본 발명은 상기와 같은 현탁매개체를 이용한 드로핑 및 숙성과정을 거쳐 제조된 구형알루미나 입자는 기공구조가 충분히 구축될 수 있기 때문에 지름이 1㎛이상인 대기공의 세공구조를 가질 수 없고, 이에 따라 반응물인 노말파라핀과 생성물인 노말올레핀의 입자내에서의 흐름이 원활하도록 하여 이를 촉매지지체로 사용하여 제조됨으로써 탈수소 촉매의 반응안정성을 향상시키게 된다.According to the present invention, the spherical alumina particles prepared through the dropping and aging process using the suspension medium as described above cannot have the pore structure of the air pores having a diameter of 1 μm or more because the pore structure can be sufficiently built, and thus the reactants. The flow of the normal paraffin and the product of the normal olefin in the particle is smoothly produced by using it as a catalyst support to improve the reaction stability of the dehydrogenation catalyst.

Claims (1)

노말 파라핀을 노말 올레핀으로 전환시키는 탈수소 촉매의 제조에 있어서, 드로핑과 1차 숙성단계와 비중 0.86 - 0.87 g/㎖, 동점도가 10 - 30 cSt인 유동 파라핀을 현탁매개체로 사용함으로써 입자 내에 크기 1㎛ 이상인 기공을 형성시킨 대기공 알루미나 입자를 촉매 지지체로 사용함을 특징으로 하는 탈수소 반응용 촉매의 제조방법.In the preparation of a dehydrogenation catalyst for converting normal paraffins to normal olefins, the size of the particles in the particle 1 was reduced by using a dropping, first aging step, and liquid paraffin having a specific gravity of 0.86-0.87 g / ml and a kinematic viscosity of 10-30 cSt as a suspension medium. A method for producing a catalyst for dehydrogenation reaction, characterized by using as a catalyst support atmospheric air alumina particles having pores having a thickness of not less than 탆.
KR1019970054365A 1997-10-23 1997-10-23 Process for preparing dehydrogenation catalyst KR100236756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970054365A KR100236756B1 (en) 1997-10-23 1997-10-23 Process for preparing dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970054365A KR100236756B1 (en) 1997-10-23 1997-10-23 Process for preparing dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
KR19990033108A KR19990033108A (en) 1999-05-15
KR100236756B1 true KR100236756B1 (en) 2000-01-15

Family

ID=19523248

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970054365A KR100236756B1 (en) 1997-10-23 1997-10-23 Process for preparing dehydrogenation catalyst

Country Status (1)

Country Link
KR (1) KR100236756B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507445B1 (en) * 1997-12-31 2005-12-08 주식회사 효성 Method for preparing a catalyst for dehydrogenation of low molecular weight hydrocarbons with macropores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507445B1 (en) * 1997-12-31 2005-12-08 주식회사 효성 Method for preparing a catalyst for dehydrogenation of low molecular weight hydrocarbons with macropores

Also Published As

Publication number Publication date
KR19990033108A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
EP0029321B1 (en) Hydrogenation catalyst material, a precursor thereto, method of making the latter and use of the catalyst for selective hydrogenation
RU2007215C1 (en) Method of production of carrier for catalyst used in hydrocarbons synthesis, and a method of catalyst production for hydrocarbons synthesis
KR100773666B1 (en) Layered Catalyst Composition and Processes for Preparing and Using the Composition
US4082697A (en) Catalyst carrier, its method of preparation and a reforming catalyst supported on the carrier
Armor et al. Aerogels as hydrogenation catalysts
GB2166970A (en) Silica-alumina-rare earth cogels
CN101157029A (en) A dicyclopentadiene hydrogenation special-purpose catalyzer and its preparing method
US6288295B1 (en) Catalyst for use in organic compound transformation reactions
AU2004205517B2 (en) Zirconia extrudates
JP4473450B2 (en) Nickel catalyst
CN107837797B (en) Preparation method of alumina pellets with bimodal pore distribution, alumina pellets and catalytic reforming catalyst
US5756419A (en) Process for the conversion of synthesis gas in the presence of a catalyst comprising cobalt and additional elements
JP2002177795A (en) Chemical product and process
CN107537585A (en) Dehydrogenating low-carbon alkane producing light olefins catalyst and preparation method thereof
KR100236756B1 (en) Process for preparing dehydrogenation catalyst
US3860532A (en) Method for preparing silica-alumina catalysts for the conversion of hydrocarbon
CN114585439A (en) Catalyst suitable for hydrocarbon conversion reaction, preparation method and application thereof
JP2003534898A (en) Novel alkylation catalyst and its use in alkylation
KR19990042914A (en) Method for preparing atmospheric air catalyst
US6608001B2 (en) Catalyst and method of making micrometer sized spherical particles
CN113800535A (en) Synthesis method of nano BaKL zeolite applied to aromatization of low-carbon alkane
US4129497A (en) Hydrocarbon catalytic reforming process
KR20000039911A (en) Method for preparation of macroporous catalytic support for dehydrogenation reaction
KR100365688B1 (en) Catalyst composition for dehydrogenating paraffin based hydrocarbon
RU2814918C1 (en) Catalyst suitable for hydrocarbon conversion reaction, method for its production and its application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20130905

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150914

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 19

EXPY Expiration of term