KR100233236B1 - Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof - Google Patents

Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof Download PDF

Info

Publication number
KR100233236B1
KR100233236B1 KR1019960069281A KR19960069281A KR100233236B1 KR 100233236 B1 KR100233236 B1 KR 100233236B1 KR 1019960069281 A KR1019960069281 A KR 1019960069281A KR 19960069281 A KR19960069281 A KR 19960069281A KR 100233236 B1 KR100233236 B1 KR 100233236B1
Authority
KR
South Korea
Prior art keywords
vanadium oxide
molybdenum
substituted
secondary battery
lithium secondary
Prior art date
Application number
KR1019960069281A
Other languages
Korean (ko)
Other versions
KR19980050458A (en
Inventor
장순호
장기호
강성구
류광선
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019960069281A priority Critical patent/KR100233236B1/en
Priority to JP9308849A priority patent/JPH10218621A/en
Publication of KR19980050458A publication Critical patent/KR19980050458A/en
Application granted granted Critical
Publication of KR100233236B1 publication Critical patent/KR100233236B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

리튬 2차전지Lithium secondary battery

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

리튬 2차전지의 양극물질로 사용되는 바나듐계 산화물의 용량을 증가시키고 수명을 연장시키기 위해 몰리브덴을 치환시킨 바나듐산화물 및 그 제조 방법 3. 발명의 해결방법의 요지Vanadium oxide substituted with molybdenum in order to increase the capacity and extend the life of the vanadium oxide used as a cathode material of a lithium secondary battery, and a manufacturing method thereof 3. Summary of the Invention

아르곤 분위기의 건조상자 안에서 MoO3, V2O3와 V2O5를 정량적으로 섞은 다음 이를 실리카 튜브에 넣고 진공 봉입한 후 650℃의 온도에서 96~120시간 열처리함Quantitatively mix MoO 3 , V 2 O 3 and V 2 O 5 in an argon atmosphere drying box, place it in a silica tube, vacuum seal, and heat-process at 96 ° C for 96 to 120 hours.

4. 발명의 중요한 용도4. Important uses of the invention

리튬 2차전지의 양전극 물질Positive Electrode Material of Lithium Secondary Battery

Description

몰리브덴이 치환된 바나듐산화물 및 그 제조 방법{Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof}Vanadium Oxide Substituted with Molybdenum and Manufacturing Method Thereof {Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof}

본 발명은 리튬 2차전지에 관한 것으로서, 특히 새로운 양극물질인 몰리브덴이 치환된 바나듐산화물 및 그 제조 방법에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly, to a vanadium oxide substituted with molybdenum, a new positive electrode material, and a manufacturing method thereof.

도 1A는 종래의 바나듐 산화물(V2O5)의 구조도이다. 종래의 바나듐계 산화물중 그 특성이 가장 좋은 LiXV2O5는 1.0V ~ 3.5V의 전위를 가지고 X=2.5까지 리튬이온의 삽입(방전)이 가능하며, 리튬의 양에 따라 다음과 같은 여러 가지 상을 가진다. X〈 0.01 에서는 α상, 0.35〈 X〈 0.7 의 범위에서는 ε상과δ상, 1〈 X〈 2 의 범위에서는 γ상을, 2〈 X〈 3 의 범위에서는 ω상을 각각 갖는다. 이중 ω상은 안정한 등방정계를 가지며 재충전성도 좋은 것으로 알려졌다. 그러나 LiXV2O5는 상기한 바와 같이 X 〉1의 범위에서 구조의 변이로 인해 준안정상(metastable phase)이 형성되고 비가역적인 전기화학 반응을 일으킨다. 즉 사용가능한 가역전위는 3.5V~3.0V이다. 따라서 V2O5를 리튬 2차전지의 양극으로 사용하면 V2O5의 낮은 전기전도도와 리튬이 1.0 e-이상 삽입될 때 발생하는 비가역적 환원반응으로 인해 방전용량의 감소를 유발한다.1A is a structural diagram of a conventional vanadium oxide (V 2 O 5 ). Among the vanadium oxides, Li X V 2 O 5, which has the best properties, is capable of inserting (discharging) lithium ions up to X = 2.5 with a potential of 1.0 V to 3.5 V. It has several awards. In X <0.01, it has (alpha) phase, (epsilon) phase and delta phase in the range of 0.35 <X <0.7, gamma phase in the range of 1 <X <2, and a ω phase in the range of 2 <X <3. The ω phase is known to have a stable isotropic system and good rechargeability. However, as described above, Li X V 2 O 5 forms a metastable phase due to the structural variation in the range of X> 1 and causes an irreversible electrochemical reaction. In other words, the available reversible potential is 3.5V to 3.0V. Therefore, the use of V 2 O 5 as a positive electrode of a lithium secondary battery causes a decrease in discharge capacity due to the low electrical conductivity of V 2 O 5 and the irreversible reduction reaction occurring when lithium is inserted more than 1.0 e .

따라서 상기의 문제점을 해결하기 위하여 안출된 본 발명은 리튬 2차전지의 양극물질로 사용되는 바나듐계 산화물의 용량을 증가시키고 수명을 연장시키기 위해 몰리브덴을 치환시킨 바나듐산화물 및 그 제조방법을 제공하는 것이 그 목적이다.Therefore, the present invention devised to solve the above problems is to provide a vanadium oxide substituted with molybdenum in order to increase the capacity and extend the life of the vanadium-based oxide used as a cathode material of a lithium secondary battery and a method of manufacturing the same. That is the purpose.

도 1A는 종래의 바나듐산화물의 구조도,1A is a structural diagram of a conventional vanadium oxide,

도 1B는 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 구조도,1B is a structural diagram of vanadium oxide substituted with molybdenum according to the present invention;

도 2는 본 발명에 따른 몰리브덴을 치환시킨 바나듐계 산화물을 제조하는 순서도,2 is a flowchart of manufacturing a vanadium-based oxide substituted with molybdenum according to the present invention;

도 3은 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 X선회절분석도,3 is an X-ray diffraction diagram of molybdenum-substituted vanadium oxide according to the present invention,

도 4는 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 충방전 곡선도이다.4 is a charge and discharge curve of molybdenum-substituted vanadium oxide according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

11 : 혼합과정 12 : 진공봉입과정11: mixing process 12: vacuum encapsulation process

13 : 열처리과정 14 : MoyV2-yO5( 0 < y < 0.5 )13 heat treatment process 14 Mo y V 2-y O 5 (0 <y <0.5)

상기의 목적을 달성하기 위하여 본 발명은 아르곤 분위기의 건조상자 안에서 MoO3, V2O3와 V2O5를 정량적으로 섞은 다음, 이를 실리카 튜브에 넣고 진공 봉입한 후 630~670℃의 온도에서 96~120시간 열처리하여 MoyV2-yO5( 0 < y < 0.5 )를 생성하는 것을 특징으로 한다.In order to achieve the above object, the present invention quantitatively mixes MoO 3 , V 2 O 3 and V 2 O 5 in a dry box of argon atmosphere, and then put them in a silica tube and vacuum-sealed at a temperature of 630 ~ 670 ℃ Heat treatment 96-120 hours to produce Mo y V 2-y O 5 (0 <y <0.5).

이하 첨부된 도면을 참조하여 본 발명의 일실시예를 상세히 설명한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1B는 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 구조도이며 도1 A에 도시된 바와 같이 층상구조를 가지고 있음을 알 수 있다. 도 1A의 V2O5가 (Mo0.3V0.7)2O5로 될 때까지 몰리브덴이 치환되며, Mo6+의 이온반경(0.62Å)이 V5+의 이온반경(0.54Å)에 비해 그리 크지 않으므로 구조의 변화가 크게 일어나지 않아 (Mo0.3V0.7)2O5는 V2O5와 비슷한 층상구조를 가진다. 또한 Mo6+가 Mo5+로 환원되는 반응과 V5+의 환원반응이 서로 경쟁함으로써 전기화학적 리튬 층간삽입(intercalation)에 기여하게 된다.FIG. 1B is a structural diagram of molybdenum-substituted vanadium oxide according to the present invention and has a layered structure as shown in FIG. 1A. Molybdenum is substituted until V 2 O 5 of FIG. 1A becomes (Mo 0.3 V 0.7 ) 2 O 5 , and the ionic radius of Mo 6+ (0.62Å) is less than that of V 5+ (0.54Å). because larger the change in structure does not occur significantly (Mo 0.3 V 0.7) 2 O 5 has a layered structure similar to the V 2 O 5. In addition, the reduction of Mo 6+ to Mo 5+ and the reduction of V 5+ compete with each other, thereby contributing to electrochemical lithium intercalation.

따라서 V2O5에 몰리브덴을 치환시키면 V2O5가 지닌 낮은 전기전도도, 좁은 가역사이클영역 그리고 작은 방전용량의 문제를 개선할 수 있어 보다 특성이 향상된 리튬 2차전지의 양극물질로서의 응용이 가능하다.Therefore, V low electrical conductivity, narrow reversible cycle region and can be applied as a positive electrode material of a small discharge capacity to improve the problem for an improved lithium secondary battery characteristics than when 2 O 5 substituted for molybdenum in the V 2 O 5 with Do.

도 2는 몰리브덴을 치환시킨 바나듐계 산화물을 제조하는 순서도이다.2 is a flowchart of manufacturing a vanadium oxide substituted with molybdenum.

먼저 아르곤 분위기의 건조상자 안에서 MoO3, V2O3와 V2O5를 정량적으로 섞는다(11). 그 다음 이를 실리카 튜브에 넣고 진공 봉입(12)한 후 630~670℃의 온도에서 96~120시간 열처리(13)하여 MoyV2-yO5(y= 0.1, 0.2, 0.3, 0.4)(14)를 제조한다.First, MoO 3 , V 2 O 3 and V 2 O 5 are mixed quantitatively in an argon atmosphere drying box (11). Then, it was put in a silica tube and vacuum sealed (12), followed by heat treatment (13) for 96-120 hours at a temperature of 630-670 ° C. to Mo y V 2-y O 5 (y = 0.1, 0.2, 0.3, 0.4) ( 14) is prepared.

상기 방법에 의해 제조한 MoyV2-yO5를 유도결합플라즈마를 이용하여 원소분석한 결과 ±0.03몰 범위의 오차를 보여 정량적으로 제조가 잘 되었음을 알 수 있다.Elemental analysis of the Mo y V 2-y O 5 prepared by the above method using an inductively coupled plasma showed an error in the range of ± 0.03 moles, indicating that the production was successful quantitatively.

도 3은 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 X-선 회절분석도이며, 도면부호 21, 22, 23 및 24는 MoyV2-yO5의 y값이 0.1, 0.2, 0.3 및 0.4일 때의 X-선 회절분석도를 각각 나타낸다. 또한 리튬의 양에 따른 MoyV2-yO5(y = 0.1, 0.2, 0.3, 0.4)의 X선 회절 분석 결과를 다음 표 1에 요약하였다.3 is an X-ray diffractogram of molybdenum-substituted vanadium oxide according to the present invention, and reference numerals 21, 22, 23, and 24 are 0.1, 0.2, 0.3, and y values of Mo y V 2-y O 5 ; X-ray diffractograms at 0.4 are respectively shown. In addition, the X-ray diffraction analysis of Mo y V 2-y O 5 (y = 0.1, 0.2, 0.3, 0.4) according to the amount of lithium is summarized in Table 1 below.

시료명격자상수(Å)Sample Name Constant V2O5 V 2 O 5 Mo0.1V1.9O5 Mo 0.1 V 1.9 O 5 Mo0.2V1.8O5 Mo 0.2 V 1.8 O 5 Mo0.3V1.7O5 Mo 0.3 V 1.7 O 5 Mo0.4V1.6O5 Mo 0.4 V 1.6 O 5 aa 11.5111.51 11.5411.54 11.5811.58 11.6911.69 11.7611.76 bb 3.563.56 3.583.58 3.583.58 3.613.61 3.643.64 cc 4.374.37 4.334.33 4.294.29 4.254.25 4.254.25 격자부피(Å3)Lattice Volume (Å 3 ) 179.05179.05 178.95178.95 177.79177.79 180.57180.57 181.86181.86

상기 표 1에서와 같이 MoyV2-yO5(y = 0.1, 0.2, 0.3, 0.4)는 모두 사방정계의 구조를 가지며 a 상수가 몰리브덴의 치환량이 증가할수록 증가하는 것은 상대적으로 이온반경이 큰 Mo6+와 V4+의 농도가 증가한 데 기인한 것이며, 반대로 c 상수가 줄어든 것은 인접한 산소층(O2-층)간의 정전기적 반발력의 감소나 내부구조의 변화에 의한 것이다. 또한 도 3에 나타난 바와 같이 y값이 증가함에 따라 도면부호(400)과 (301) 피크의 분리가 명확해지는 것은 원자의 재배열이 일어남을 암시한다.As shown in Table 1, all of Mo y V 2-y O 5 (y = 0.1, 0.2, 0.3, 0.4) have a tetragonal structure, and a constant increases as the substitution amount of molybdenum increases. This is due to the increased concentrations of Mo 6+ and V 4+ , and conversely, a decrease in the c constant is due to a decrease in electrostatic repulsion between adjacent oxygen layers (O 2 -layers) or changes in internal structure. Also, as shown in FIG. 3, the separation of peaks 400 and 301 becomes clear as y increases, indicating that rearrangement of atoms occurs.

전극특성 평가를 위하여 음전극으로 리튬금속, 양전극으로 MoyV2-yO5으로 하고 10%의 아세틸렌 블랙과 1%의 PTFE를 사용하였으며, 전해질은 에틸렌 카보네이트와 디에틸카보네이트의 1:1 혼합용액에 LiAsF6염을 1몰 녹인 용액을 사용하였고 가해준 전류밀도는 70 μA/cm2이다.To evaluate the electrode characteristics, lithium metal was used as the negative electrode and Mo y V 2-y O 5 was used as the positive electrode, 10% acetylene black and 1% PTFE were used. The electrolyte was a 1: 1 mixed solution of ethylene carbonate and diethyl carbonate. A solution of 1 mol of LiAsF 6 salt was used. The current density was 70 μA / cm 2 .

도 4는 본 발명에 따른 몰리브덴이 치환된 바나듐산화물의 충방전곡선도이다. 도면 부호 31, 32 및 33은 MoyV2-yO5에서 y의 값이 0.2, 0.3 및 0.4일 때의 충방전곡선을 각각 나타낸다. 도 4에서 MoyV2-yO5가 2.2V ~ 3.5V까지는 가역적인 충방전이 진행되는 것을 알 수 있는데, 이는 V2O5의 가역영역이 3.0V ~ 3.5V 인 것에 비해 크게 늘어난 것이다. 또한 1차 충방전용량과 연속되는 사이클에서의 용량을 고려하면 Mo0.3V1.7O5가 전극특성이 가장 좋다.4 is a charge and discharge curve of molybdenum-substituted vanadium oxide according to the present invention. Reference numerals 31, 32, and 33 denote charge and discharge curves when y is 0.2, 0.3, and 0.4 in Mo y V 2-y O 5 , respectively. In Figure 4 it can be seen that Mo y V 2-y O 5 is a reversible charge and discharge proceeds from 2.2V to 3.5V, which is greatly increased compared to the reversible region of V 2 O 5 is 3.0V ~ 3.5V. . In addition, Mo 0.3 V 1.7 O 5 has the best electrode characteristics in consideration of the primary charge / discharge capacity and capacity in successive cycles.

MoyV2-yO5의 전기화학 반응중 구조의 안정성을 살피기 위해, Mo0.3V1.7O5을 이용해 리튬의 양에 따른 구조변화를 X선 회절분석을 통하여 조사한 결과를 표 2에 도시하였다.In order to examine the stability of the structure during the electrochemical reaction of Mo y V 2-y O 5 , the structural change according to the amount of lithium using Mo 0.3 V 1.7 O 5 through X-ray diffraction analysis is shown in Table 2 .

방전전압 (V)Discharge voltage (V) 층간삽입된 리튬의 양(X)Amount of intercalated lithium (X) 격자상수 (Å)Lattice constant 격자부피 (Å3)Lattice Volume (Å 3 ) 결정구조Crystal structure aa bb cc 3.653.65 0.000.00 11.6911.69 3.643.64 4.254.25 180.57180.57 사방정계A tetragonal system 2.902.90 0.230.23 11.5511.55 3.563.56 4.504.50 184.67184.67 사방정계A tetragonal system 2.602.60 0.600.60 11.5411.54 3.543.54 4.494.49 183.21183.21 사방정계A tetragonal system 2.202.20 1.631.63 11.5211.52 3.643.64 5.085.08 212.65212.65 사방정계A tetragonal system 1.601.60 2.052.05 9.319.31 4.224.22 365.86365.86 정방정계Tetragonal 1.001.00 2.942.94 9.309.30 4.544.54 392.50392.50 정방정계Tetragonal

표 2에 도시한 바와 같이 2.2V 까지 방전시에 Mo0.3V1.7O5는 사방정계를 유지하고 있음을 알 수 있으며 1.6V 에서 정방정계로의 상전이가 일어난다. 이를 다시 3.5V 로 충전시키면 등방정계가 된다. 이것은 2.2V 까지의 영역에서는 MoyV2-yO5의 구조가 전기화학 반응(충방전반응)에도 안정함을 보여준다.As shown in Table 2, it can be seen that Mo 0.3 V 1.7 O 5 maintains a tetragonal system when discharged to 2.2V, and a phase transition from 1.6V to a tetragonal system occurs. When it is charged to 3.5V again, it becomes isotropic. This shows that the structure of Mo y V 2-y O 5 is stable to the electrochemical reaction (charge and discharge reaction) in the region up to 2.2V.

상기한 바와 같이 본 발명에서 제안한 새로운 리튬 2차전지용 양극물질 MoyV2-yO5( 0〈 y〈 0.5 )는 기존의 V2O5에 몰리브덴을 치환시킴으로써 가역 충방전영역을 3.5V ~ 2.2V 까지 늘어나 전지의 가용용량이 증가되었고 또한 전기화학 반응중에도 구조가 안정하게 유지되므로 종래의 바나듐계 산화물보다 전극특성을 향상시켰다.As described above, the new positive electrode material Mo y V 2-y O 5 (0 <y <0.5) proposed by the present invention replaces molybdenum with the existing V 2 O 5 to change the reversible charge / discharge area from 3.5V to As the available capacity of the battery was increased to 2.2V and the structure remained stable during the electrochemical reaction, the electrode characteristics were improved compared to the conventional vanadium oxide.

본 발명은 이상의 바람직한 실시예와 관련해서 설명되었지만, 본 발명의 사상 또는 범위로부터 벗어남이 없이 본 발명이 속한 기술분야에서 통상의 지식을 가진자가 여러 가지 다른 형태로 실시할 수 있다.Although the present invention has been described in connection with the above preferred embodiments, it will be apparent to those skilled in the art that the present invention may be embodied in various other forms without departing from the spirit or scope of the invention.

본 발명에 따른 바나듐계 산화물은 전지의 용량을 증가시킬 뿐만 아니라 전기화학반응중의 구조변화도 거의 없으므로 전지의 수명을 연장시키고 제조방법도 간단해 매우 경제적이다.The vanadium oxide according to the present invention not only increases the capacity of the battery but also hardly changes the structure during the electrochemical reaction, thus extending the life of the battery and making the manufacturing method simple and very economical.

Claims (3)

리튬 2차 전지의 양극 물질로 사용되는 바나듐 산화물의 제조방법에 있어서,In the manufacturing method of vanadium oxide used as a positive electrode material of a lithium secondary battery, 건조 상자 안에서 MoO3와 바나듐 산화물을, 최종적으로 생성되는 몰리브덴이 치환된 바나듐 산화물의 조성 MoyV2-yO5(0<y<0.5)과 일치하도록, 정량적으로 혼합하는 제1단계;A first step of quantitatively mixing MoO 3 and vanadium oxide in a dry box to coincide with the composition Mo y V 2-y O 5 (0 <y <0.5) of the finally produced molybdenum-substituted vanadium oxide; 상기 제1단계의 혼합물을 실리카 튜브에 넣고 진공 봉입하는 제2단계; 및A second step of vacuum-sealing the mixture of the first step into a silica tube; And 진공 봉입된 상기 내용물을 630℃~670℃의 온도에서 96~120시간 열처리하는 제3단계를 포함하는 몰리브덴이 치환된 바나듐 산화물(MoyV2-yO5(0<y<0.5))의 제조방법.Molybdenum-substituted vanadium oxide (Mo y V 2-y O 5 (0 <y <0.5)) comprising a third step of heat-treating the vacuum encapsulated contents at a temperature of 630 ° C. to 670 ° C. for 96 to 120 hours. Manufacturing method. 제1항에 있어서,The method of claim 1, 상기 제1단계의 바나듐 산화물은 V2O3및 V2O5인 것을 특징으로 하는 몰리브덴이 치환된 바나듐산화물 제조 방법.Molybdenum-substituted vanadium oxide, characterized in that the vanadium oxide of the first step is V 2 O 3 and V 2 O 5 . 리튬 2차 전지의 양극 물질로 사용되는 바나듐 산화물에 있어서,In the vanadium oxide used as a positive electrode material of a lithium secondary battery, 건조상자 안에서 MoO3와 V2O3및 V2O5를 최종적으로 생성되는 몰리브덴이 치환된 바나듐 산화물의 조성 MoyV2-yO5(0<y<0.5)과 일치하도록 정량적으로 혼합하는 제1단계;In the drying box, MoO 3 and V 2 O 3 and V 2 O 5 were mixed quantitatively to match Mo y V 2-y O 5 (0 <y <0.5) with the final composition of the molybdenum-substituted vanadium oxide. First step; 상기 제1단계의 혼합물을 실리카 튜브에 넣고 진공 봉입하는 제2단계; 및A second step of vacuum-sealing the mixture of the first step into a silica tube; And 진공봉입된 내용물을 630℃~670℃의 온도에서 96~120시간 열처리하는 제3단계를 포함하는 과정을 거쳐 생성된 몰리브덴이 치환된 바나듐 산화물(MoyV2-yO5(0<y<0.5)).Molybdenum-substituted vanadium oxide (Mo y V 2-y O 5 (0 <y <) produced by a process including a third step of heat-treating the vacuum-packed contents at a temperature of 630 ° C. to 670 ° C. for 96 to 120 hours. 0.5)).
KR1019960069281A 1996-12-20 1996-12-20 Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof KR100233236B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960069281A KR100233236B1 (en) 1996-12-20 1996-12-20 Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof
JP9308849A JPH10218621A (en) 1996-12-20 1997-11-11 Vanadium oxide substituted with molybdenum dna its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069281A KR100233236B1 (en) 1996-12-20 1996-12-20 Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof

Publications (2)

Publication Number Publication Date
KR19980050458A KR19980050458A (en) 1998-09-15
KR100233236B1 true KR100233236B1 (en) 1999-12-01

Family

ID=19489868

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069281A KR100233236B1 (en) 1996-12-20 1996-12-20 Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof

Country Status (2)

Country Link
JP (1) JPH10218621A (en)
KR (1) KR100233236B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444278B2 (en) 2017-11-24 2022-09-13 Lg Energy Solution, Ltd. Cathode material for lithium secondary battery, and preparation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426958B1 (en) * 2002-03-13 2004-04-13 한국과학기술원 Synthesis Method of LiFePO4 Powder by Controlling Heat Treatment Atmosphere for Lithium Secondary Battery cathode
JP2008300233A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Electrode material, manufacturing method thereof, and nonaqueous lithium secondary battery
KR102229448B1 (en) * 2017-10-16 2021-03-17 주식회사 엘지화학 Positive electrode material for lithium secondary battery and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109262A (en) * 1988-10-19 1990-04-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109262A (en) * 1988-10-19 1990-04-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444278B2 (en) 2017-11-24 2022-09-13 Lg Energy Solution, Ltd. Cathode material for lithium secondary battery, and preparation method therefor

Also Published As

Publication number Publication date
JPH10218621A (en) 1998-08-18
KR19980050458A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
Jang et al. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/Li x Mn2 O 4 rechargeable cells
US6759168B2 (en) Nonaqueous secondary battery with lithium titanium cathode
KR20210021351A (en) Metal oxide-based electrode composition
KR20040018154A (en) Nonaqueous electrolyte secondary battery
CN101702447A (en) Nonaqueous electrolytic solution for high-voltage lithium ion batteries and preparation method and application thereof
JPH09171813A (en) Nonaqueous electrolyte battery
US5422203A (en) Rapid reversible intercalation of lithium into carbon secondary battery electrodes
Hamwi et al. Graphite fluorides prepared at room temperature 2. A very good electrochemical behaviour as cathode material in lithium non-aqueous electrolyte cell
JP3528402B2 (en) Lithium ion conductive solid electrolyte and all-solid lithium secondary battery using the same
KR100233236B1 (en) Vanadium Oxide Substituted with Molybdenum and Preparation Method Thereof
Yang et al. Study on structure and electrochemical performance of Tm3+-doped monoclinic Li3V2 (PO4) 3/C cathode material for lithium-ion batteries
US4224390A (en) Lithium molybdenum disulphide battery cathode
JP4052695B2 (en) Lithium secondary battery
CN114613956B (en) High-capacity sodium ion P2 type positive electrode material and preparation method and application thereof
JPH0562690A (en) Nonaqueous electrolyte cell
JP7276323B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
CA1114896A (en) Lithium molybdenum disulphide battery cathode
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JP3555321B2 (en) Anode material and lithium secondary battery
KR100408515B1 (en) Organic electrolyte and lithium secondary battery using the same
KR20050020185A (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
US20020061442A1 (en) Positive electrode material and secondary battery using the same
CN116759560B (en) Lithium iron manganese phosphate battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080905

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee